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ABSTRACT

We present a statistical decision approach for the point set
matching of unordered feature sets. Both feature sets have
associated uncertainties, and the number of elements in each
set may be different. Computation of the match likelihood
requires a correspondence between feature sets; we solve the
correspondence problem in polynomial time using the Hun-
garian algorithm. We also consider the problem of matching
when there is an unknown translation between the point sets.
We present Bayes match solutions for both the determinis-
tic and the random translation cases. Finally, we apply this
matching method to the problem of synthetic aperture radar
target classification from scattering center feature sets.

1. INTRODUCTION

In this paper we develop a statistical approach to the point set
matching problem that is encountered frequently in signal
and image processing applications. Example applications
include image-based object classification problems, where a
set of features (such as locations of local maxima in an im-
age along with attributes that characterize, say, the shape or
amplitude of each maximum) is used as a low-dimensional
surrogate to the original image for use in likelihood compu-
tation.

We consider the following problem. A feature set Y
is estimated from a test image and compared to a catalog
of feature sets Xk corresponding to hypotheses Hk. We
assume uncertainty in both the estimated feature set Y and
each hypothesis feature set Xk; the uncertainty is encoded
using a statistical model. The signal processing objective is
to compute the posterior likelihood of each hypothesisHk by
comparing the feature setsXk and Y . In the sequel we drop
the script k onXk andHk and consider a generic hypothesis
H with corresponding point set X .
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A particular application for point set matching is radar
target classification from scattering features. Each feature
set Y or Xk is an unordered set of scattering centers; typi-
cally theXk are obtained via training or synthetic scattering
prediction methods, and Y is obtained by applying a feature
extractor to a measured SAR image chip that has passed a
prescreening stage. Each element of Xk or Y is a vector of
scattering center feature attributes whose elements typically
characterize the location of the scattering center in the im-
age plane, its amplitude, and possibly also polarization or
shape attributes [1]. We use the term “set” to denote an un-
ordered list of features and “vector” to denote an ordered list
of elements. Thus, we have unordered sets of scattering fea-
tures, but the attributes characterizing the feature (location,
amplitude, etc.) are ordered.

Matching of inexact feature sets, and the related inexact
graph matching problem, have been considered in [2]–[9].
Boyer and Kak [3] develop a structural matching technique
that includes a conditional information measure to penal-
ize attribute deviations in the match. Bayesian structural
matching techniques [6, 7] provide subgraph matches and
by considering graph edit distances. Matching based on mu-
tual information is considered in [8], and matching using a
Hausdorff distance metric under rigid body transformations
is addressed in [9]. Here, we consider a problem in which
there is no structural relationship between the nodes and seek
Bayes optimal matches that incorporate prior probabilities
of node deletions and extraneous nodes. This paper extends
Chiang, et. al. [10] by (1) reducing the computational com-
plexity of the correspondence search from O((m + n)3) to
O(max(m,n)3), and (2) developing a Bayes match algo-
rithm that accommodates an unknown translation between
the pair of point sets being matched.

We make use of the Hungarian algorithm to solve the
matching problem, which enables us to find a Bayes opti-
mal match in O(max(m,n)3) time, wherem and n are the
number of features in X and Y , respectively.

We also consider the problem of point set matchingwhen
there is an unknown translation between the point sets. We
present an iterative algorithm to maximize the match like-



lihood for unknown, deterministic shifts. In addition, we
consider a Bayesian solution under the assumption that the
translation is randomwith a known prior probability density.
The algorithm is guaranteed to converge to a local maximum
of the match likelihood.

The paper is organized as follows. In Section 2 we
state the classification problem and discuss the Bayesian
match likelihood evaluation. The polynomial time solution
to the matching problem is presented in Section 3. Section
4 presents an algorithm to find the match likelihood for the
case of unknown translation between the point sets. Sec-
tion 5 applies the matching techniques to target classifica-
tion fromX-band SAR imagery, and Section 6 concludes the
paper.

2. PROBLEM STATEMENT

TheBayesmatchingproblemweconsider is given as follows.
We are given a set of n features

Y = {Y1, Y2, . . . , Yn} (1)

extracted from a measurement. Each feature Yi is an � × 1
vector of ordered attributes. The attributes may characterize
location, amplitude, pose, or other properties of the feature.
Corresponding to each candidate hypothesis H we have a
set ofm features

X = {X1, X2, . . . , Xm} (2)

Both feature sets have uncertainty in the feature attributes.
We assume a probability model for the uncertainty of the
attributes for any feature, and for the feature attributes if
Yi is a false-alarm feature (i.e., Yi does not correspond to a
feature in X). We also assume a probability model for the
appearance or absence of a given feature in Y .

We seek to compute the posterior likelihood of the hy-
pothesis, that is to find P (H|Y ). By Bayes’ rule

P (H|Y ) =
f(Y |H)P (H)

f(Y )
=
f(Y |X)P (H)

f(Y )
(3)

AssumingP (H) is known, computation of the posterior like-
lihood P (H|Y ) requires finding f(Y |X) under H , where
some elements of X may be missing in Y and conversely,
and where attributes in Xi and Yj have uncertainties.

3. COMPUTATION OF THE MATCH LIKELIHOOD

Computation of the likelihood f(Y |X) requires a correspon-
dence map Γ between features inX and Y . The correspon-
dencemap is a nuisance parameter that arises because feature
sets are not ordered with respect to each other.

LetΓ denote the correspondence betweenX and Y , with
Γj = i denoting thematchXi ↔ Yj . We setΓj = 0 ifYj has

no match in X , and we call Yj a “false alarm”. Similarly if
noΓj = i, 1 ≤ j ≤ n thenXi has nomatch inY , andwe say
Xi is “missed”. Given a correspondence Γ, and assuming
the feature uncertainties are conditionally independent given
H , then

f(Y |X) = arg max
Γ

f(Y |X,Γ) (4)

where

f(Y |X,Γ) =


P (nf false alarms)

∏
{j:Γj=0}

fFA(Yj)




·



∏
{j:Γj=i>0}

Pi · f(Yj |Xi)




·



∏
{i:Γj �=i,∀j}

[1 − Pi]


 (5)

where Pi is the detection probability of Xi and fFA(·) is
the pdf of a false alarm rate. The first braced term in (5)
models the likelihood of false alarm features, the second
term contains the likelihood of each Xi ↔ Yj match, and
the third term penalizes the missed Xi features.

Computation of f(Y |X) involves maximizing the right
hand side of (5) over all correspondence maps Γ. Since the
number of maps is exponential inm and n, it at first appears
that finding the best match has exponential complexity. Sur-
prisingly, the problem can be solved inO(max(m,n)3) time
if the false alarm probability obeys an exponential rule

P (nf false alarms) = ceβnf (6)

for some constants c and β.
The Hungarian algorithm finds, in O(k3) computations,

the one-to-one correspondence between the elements of the
k×1 vectors [x1, . . . , xk]T and [y1, . . . , yk]T thatminimizes
the cost of the correspondence [11], where the cost of cor-
responding xi with yj is given by the ijth entry of the k× k
matrix C. The correspondence is equivalent to selecting ex-
actly one element from each row and column of the array
such that the sum of the selected entries is minimized.

The Hungarian algorithm can be modified to find the
optimal correspondence betweenX andY that includes both
insertions and deletions in the correspondence. From (5) and
(6) we observe

log f(Y |X,Γ) = const +
∑

{j:Γj=0}
β + log[fFA(Yj)]

+
∑

{j:Γj=i>0}
log[Pi · f(Yj |Xi)]

+
∑

{i:Γj �=i,∀j}
log[1 − Pi] (7)



We employ the Hungarian algorithmwith (m+n)×(m+n)
cost matrix C given by

C =




c11 · · · c1n M1 ∞
...

. . .
...

. . .
cm1 · · · cmn ∞ Mm

F1 ∞ 0 · · · 0
. . .

...
. . .

...
∞ Fn 0 · · · 0




(8)

where

cij = − log[Pi · f(Yj |Xi)]
Mi = − log[1 − Pi]
Fj = −β − log[fFA(Yj)]

The elements on the right hand side of (7) appear in the cost
matrix above. To see that the Hungarian algorithm with this
cost matrix maximizes (7), consider i ≤ m. If Γi = j
for some j ∈ [1, . . . , n], then Xi corresponds to Yj with
cost cij . If Γi > n, then no Yj corresponds to Xi. In this
case j = i + n and Mi is the log miss probability cost for
Xi. Note that j cannot be any other integer greater than
n, because the corresponding cost is infinity. Similarly, if
i > m andΓi = j ∈ [1, . . . , n], then i = j+mwith costFj .
Here, feature Yj corresponds to no Xi, and is thus labeled
as a false alarm. Finally, correspondences Γi = j for i > m
and j > n incur zero cost. The Hungarian algorithm thus
finds the correspondence that maximizes the log-likelihood
score (7) in O((m+ n)3) computations.

The special structure of the cost matrix in (8) admits an
even simpler solution. From (8) we see that if the cost of
matching feature Yj withXi is higher than that of declaring
both Yj a false alarm and Xi as a miss, then the latter will
result in a lower score, and the correspondence will include
it. Thus we may apply the Hungarian algorithm using a cost
matrix C, where, ifm ≥ n,

cij =
{

min(cij ,mi + fj), 1 ≤ j ≤ n
mi, n+ 1 ≤ j ≤ m

(9)

for 1 ≤ i ≤ m. If m < n, we form C similarly, but by
filling the last n−m rows with fj . Applying the Hungarian
algorithm with cost matrix C, we achieve a complexity of
O(max(m,n)3) instead of O((m + n)3). The reduction
is significant in many applications because often m ≈ n;
when m = n, using C to compute the correspondence and
likelihood reduces the computation by a factor of 8 compared
to using C.

4. TRANSLATION UNCERTAINTY

We next turn to the problem of translation uncertainty in
the match. Translation uncertainty may be caused by an

unknown location shift between the test and hypothesized
image features. In addition, by using the logarithm of am-
plitude, one can accommodate an unknown gain in image
intensity. We consider the problem of finding the maximum
match score f(Y |X, r̃) over an unknown translation vector
r̃. Typically, translation uncertainty applies to only some of
the attributes in each vectorXi or Yj ; thus, we partition r̃ as

r̃ =
[
r
0

] }d
}�− d

(10)

4.1. Deterministic Translation

We first consider the case in which r is an unknown, deter-
ministic vector. We modify the match likelihood problem as
one of finding

max
r

f(Y |X, r) (11)

We assume the feature uncertainties are of the form

f(Yj |Xi, r) = f0(Yj −Xi − r) (12)

for some known pdf f0(·), and that only the matched feature
pairs depend on translation. Then from equations (11)–(12),
the maximum likelihood estimate (MLE) of r for a given
correspondence map Γ is

r̂ML = arg max
r

∏
Γj=i>0

f0(Yj −Xi − r) (13)

For the special case that f0 ∼ N (0,Σ), theMLE of r admits
a closed-form solution

r̂ML =
1
p
S1 +

1
p
Σ−1

11 Σ12S2 (14)

where

Σ−1 =
[

Σ11 Σ12
ΣT

12 Σ22

] }d
}�− d

(15)

S =
∑

Γj=i>0

(Yj −Xi) =
[
S1
S2

] }d
}�− d

(16)

p = number of elements in {Γj = i > 0} (17)

4.2. Random Translation

If we instead assume the translation uncertainty is random
and governed by a prior probability density function f(r),
then the MAP estimate of r is found using Bayes’ rule:

f(r|Y,X) =
f(Y |X, r)f(X|r)f(r)

f(Y,X)
(18)

so that
r̂MAP = max

r
f(Y |X, r)f(r) (19)

For the case of Gaussian feature uncertainties and a Gaus-
sian prior f(r) ∼ N (0,ΣR) we again obtain a closed-form
solution

r̂MAP = (pΣ11 + Σ−1
R )−1(Σ11S1 + Σ12S2) (20)



4.3. Match Likelihood with Translation Uncertainty

Equations (14) and (20), coupled with the Hungarian al-
gorithm match computation in Section 3, lead to a simple
iterative algorithm for finding the match likelihood f(Y |X)
when translation uncertainty is present. Initially we find the
correspondencemapΓ(0), and using this correspondence, we
compute an initial estimate r(0) of r using (14) or (20), along
with Γ(0). We compute the match likelihood (and associated
correspondence map Γ(1)) using that translation estimate by
applying the Hungarian algorithm, then update the estimate
r(1). The algorithm iterates until convergence; it converges
in finite time if two consecutive Hungarian algorithm appli-
cations produce the same correspondence mapping, i.e., if
Γ(k+1) = Γ(k). In all examples tried to date the algorithm
converges in finite time, usually within a few iterations for
problems withm and n in the range of 10–30.

It can be shown that the match likelihood is nondecreas-
ing for each step of the algorithm; thus, the algorithm con-
verges to a local maximum of the likelihood function. The
Hungarian algorithm is the most computationally expen-
sive part of each iteration step, but the Hungarian algorithm
has much lower computation if given an initial correspon-
dence that is close to the final one; consequently, we found
that initializing the Hungarian algorithm with the most re-
cently found correspondence significantly reduces compu-
tation time.

5. RADAR TARGET CLASSIFICATION EXAMPLE

In this section we present an example of feature-based clas-
sification using point features extracted from X-band SAR
image chips, using the 1ft×1ft MSTAR Public Targets data
set. The data set contains SAR data chips of 10 targets at 15◦

and 17◦ depression angles. For each target, approximately
270 images are available. For each image chip we extract
scattering center locations and amplitudes using a peak ex-
tractor that finds local maxima from the magnitude SAR im-
age, and we keep the ten highest amplitude peaks. We use
the 15◦ data to form the catalog feature sets (Xk) and the 17◦

data as the measurement feature sets (Y ). Only the down-
range and crossrange locations of the scattering centers are
used as feature attributes. We note that higher correct clas-
sification rates are obtained if we use other scattering center
attributes (such as amplitude), or if we use a larger number
of scattering centers per image (see [10]); we have chosen
the present example because it concisely illustrates the main
points of the matching algorithm.

For each of the 2747 target image chips, we find the
five image chips in each of the ten target classes that have
the highest SAR magnitude image correlation. The target
classes and poses (pose is in this case azimuth angle) corre-
sponding to these 50 image chips form the set of candidate
hypotheses we test using the one-to-one likelihood function
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Figure 1: Probability of correct classification for feature-
based matching of ten MSTAR public targets with feature
translation uncertainty.

in equation (5). The uncertainty model we use is N (0, σ2
p)

for the location attributes for both measured and catalog fea-
ture sets, Pd = 0.9 and a 2D Poisson process with a rate of
3 clutter peaks per chip for the modeling of false alarms.

The image chips provided in the MSTAR data set are
centered, and the translation to align similar image chips has
a standard deviation of less than one pixel. To emulate higher
translation uncertainty, we add a random Gaussian offset
in range and crossrange to the extracted features from the
measurement image; the offset has zero mean and variance
σ2

T . We then apply three classifiers: one that assumes no
translation is necessary to align the features, one that uses the
MLE translation, and one that uses the Bayes translation. In
all cases we assume the feature uncertainty f0 ∼ N (0, σ2

pI)
in equation (12) with σ2

p = 1/2. The classification results
are shown in Figure 1.

We note from Figure 1 that classification performance
without translation is slightly better than theML-based clas-
sifier when no additional feature uncertainty is added (that
is, when σT = 0 in Figure 1). This is not surprising be-
cause the MSTAR chips are already centered, leaving little
translation uncertainty; if there is no translation uncertainty,
an algorithm that incorporates this prior information should
outperform an algorithm that does not. Thus, for applica-
tions in which a prior alignment procedure is applied, if the
alignment uncertainty is on the order of or smaller than the
feature uncertainty, one can obtain good classification per-
formance by assuming no translation uncertainty and using a
correspondingly simple (and computationally faster) match
algorithm. When translationuncertainty is large compared to
feature uncertainty (the feature uncertainty is≈ σp =

√
2/2

in this case), match algorithms that incorporate translation



perform better than match algorithms that do not. The ML-
based matcher is independent of translation uncertainty, and
is therefore robust to translation as seen in Figure ??. The
Bayes-based classifier has the best performance of the three
classifiers, and approaches the ML performance as transla-
tion uncertainty becomes large, as is theoretically predicted.

6. CONCLUSION

We have presented a Bayesian approach to the point set
matching problem, in which uncertainties for the feature set
attributes are included in the match metric. The match re-
quires the correspondence between the two feature sets. We
apply the Hungarian algorithm to provide the optimum cor-
respondence in polynomial complexity, and show how the
special structure of the match cost matrix can be used to re-
duce computations from O((m + n)3) to O(max(m,n)3)
when misses and false alarms are present.

We have also considered the point set matching problem
in the presence of an unknown translation between the point
sets. Both deterministic and random translation models are
considered. An algorithm for providing the Bayes likelihood
is found by iterating between finding the best match corre-
spondence and finding the best translation. For the Gaussian
case, a closed-form solution for the best translation is found.
The convergence to a local maximum of the likelihood func-
tion is established.

We have applied the point set matching approach to fea-
tures extracted from measured X-band SAR imagery. We
showed that both the deterministic and random translation
assumptions result in match algorithms that are robust to
translationuncertainty. These algorithmsprovidebetter clas-
sification performance for cases in which the feature uncer-
tainty is small compared to the translation uncertainty. On
the other hand, for cases in which a prior alignment proce-
dure is applied, if the alignment uncertainty is on the order
of the feature uncertainty, one can obtain good classification
performance by assuming no translation uncertainty and us-
ing a correspondingly simple (and computationally faster)
match algorithm.
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