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ABSTRACT

We present an algorithm for locating and orienting a
set of acoustic arrays that have been deployed in a
scene at unknown locations and orientation angles.
This self-calibration problem is solved using a num-
ber of source signals also deployed in the scene. We
assume each array can estimate the time-of-arrival
and direction-of-arrival (with respect to the array’s
local orientation coordinates) of every source. From
this information we compute the array locations and
orientations. We consider four subproblems, in which
the source signals or emission times are either known
or unknown. We develop necessary conditions for
solving the self-calibration problem, and provide a
maximum likelihood solution and corresponding lo-
cation error estimate.

1 INTRODUCTION

Unattended Ground Sensors (UGSs) are becoming
increasingly important for providing today’s Army
with needed situational awareness in battlefield and
MOUT deployments [1]. The basic concept is to de-
ploy alarge number of low-cost, self-powered sensors
that acquire and process data. The sensors typically
consist of an array of microphones to detect, track,
and classify acoustic signatures. In addition, seismic
and low-cost imaging sensors may also be present.
Ground sensors are placed in the field by hand, by an
air drop, or by artillery launch. Each sensor moni-
tors its environment to detect, track, and characterize
signatures; this information is sent to a central in-
formation processor (CIP) for subsequent data fusion
with other sensors and report generation.
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In order to fuse sensor information, it is important to
know the location and orientation of each sensor. In
some deployments, such as careful hand placement,
accurate location and orientation of the sensors can
be assumed. However, for many sensor deployment
situations, it is difficult or impossible to ensure accu-
rate location and orientation. One could equip each
sensor with a GPS and compass to obtain location and
orientation information, but this adds to the expense
and power requirements of the sensor, in conflict with
the goals of low cost and long battery life. Thus, there
is interest in developing methods to self-calibrate the
sensor array with a minimum of additional hardware
or processing. Recent work on blind beamforming
considers a related problem of forming a maximum
power beam to a source [2].

In this paper we consider an approach to array self-
calibration using calibration sources in the field. A
number of signal sources are deployed in the same
region as the sensors (see Figure 1). Each source gen-
erates a unique signature that is acquired by the sen-
sors. From the time-of-arrival (TOA) and direction-
of-arrival (DOA) of each source signal, we compute
the unknown locations and orientations of the sensors.
We consider four related problems:

(a) the source locations and emission times are
known,

(b) the source locations are known and emission
times are unknown,

(c) the source locations are unknown and emission
times are known,

(d) the source locations and emission times are un-
known.

An outline of the paper is as follows. In Section 2
we present a statement of the problem and justify
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Figure 1: Array self-calibration scenario.

our assumptions. In Section 3 we first consider nec-
essary conditions for a self-calibration solution and
present methods for solving the self-calibration prob-
lem with a minimum number of sensors and sources.
These methods provide initial estimates for a maxi-
mum likelihood self-calibration method we develop
next. Expressions for the calibration uncertainty are
also derived. Section 4 presents numerical examples
to illustrate the approach, and Section 5 presents con-
clusions and directions for future work.

2 THE SELF-CALIBRATION PROBLEM

Assume we have a set of A sensor arrays, each with
unknown location {a; = (z;,;)}7, and unknown
orientation angle #; with respect to a reference direc-
tion (e.g., North). We consider the two-dimensional
problem in which the sensors lie in a plane and the
unknown reference direction is azimuth; an extension
to the three-dimensional case is straightforward.

In the array field are also placed S source signals
at locations {s; = (ij,g]j)}f:j. The source loca-
tions may be known or unknown. Each source emits
an acoustic signal with emission time ¢;; the emis-
sion times may be known or unknown. We thus
consider four related subproblems, depending on the
prior knowledge of the source locations and emission

times.

We assume each emitted source signal is detected by
every sensor in the field, and that each sensor forms

an estimate of the TOA and DOA for that source.
Specifically, array ¢ estimates a time-of-arrival ;;
and direction-of-arrival 6;; from the signal emitted
by source j. The times of arrival are assumed to be
with respect to a known, common time base; this time
base needs to be accurate to within ~1-5 msec, as we
show in Section 4. A common time reference to this
accuracy could be obtained by synchronizing the sen-
sor processor clocks before deployment, or by elec-
tronically synchronizing their clocks using the array’s
electronic communication system. The directions of
arrival are relative to each array’s local orientation
reference; absolute directions of arrival are not avail-
able because the orientation angle of each array is
unknown.

The set of 2AS measurements are gathered in matrix
form as:

t11 t12 t1s
to1  too tos
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Each element of 7" and © has estimation uncertainty;
we assume the uncertainty to be Gaussian with known
variance o3 or o7, and the measurement errors are un-
correlated. Extensions to non-Gaussian or dependent
errors are straightforward.

Each array transmits its TOA and DOA estimates to
a central information processor, and these 2A4.5 mea-
surements form the data with which to self-calibrate
the array.

Define the parameter vectors

LA, YA, QA]T (3)
s, Us, ts)” 4)

B = [z1, 0, b1,
v = [&1, T, 1,

The self-calibration problem, then, is given the mea-
surement {7, ©}, estimate 3. Note that none, some,



or all of the parameters in v may be known, depending
on the particular subproblem of interest.

3 SELF-CALIBRATION SOLUTION

3.1 Uniqueness and Minimal Solutions

We first address the question of when unique solu-
tions exist, and we determine the minimum number of
sources and sensors needed for a unique solution. Al-
gorithms for finding (3 in the minimal case are outlined
for each of the four cases described above. These
algorithms provide initial estimates for the iterative
descent algorithm discussed in the next subsection.

In all four cases the number of measurements is 2A.5,
and determination of 8 involves solving a nonlinear
set of equations for its 3A unknowns. Depending on
the case considered, we may also need to estimate
the unknown nuisance parameters in +y; in fact, in all
cases, one obtains estimates for the v parameters for
free.

Case (a): Known source locations and emission
times. In this case a unique solution for § can be
found for any number of sensors, as long as there are
S > 2 sources. In fact, the location and orientation of
each sensor can be computed independently of other
sensor measurements. Briefly, the array location of
the ¢th sensor is found from the intersection of two
circles with centers at the source locations and with
radii (¢;; — t2)/c and (t;2 — t1)/c, where c is the
propagation velocity. The intersection is in general
two points; the correct location can be found using the
sign of 0;5 — 0;1. We note that the circle intersections
admit a closed-form solution.

Case (b): Known source locations, unknown emis-
sion times. Here we require S > 3 sources, but
again the location of each array can be computed in
closed form and independently of other array mea-
surements. The solution procedure is as follows.
Consider the pair of sources (s1,s2). Sensor array
1 knows the angle 0 = ;5 — ;1 between the sources.
The set of all possible locations for array ¢ is an arc
of a circle whose center and radius can be computed
from the source locations (see Figure 2). Similarly,
a second circular arc is obtained from the source pair
(s1, s3). The intersection of these two arcs is a unique
point, and can be computed in closed form.

Figure 2: A circular arc is the locus of possible array
locations whose angle between two known points is
constant.

A solution for Case (b) can also be found using S = 2
sources and A = 2 sensors. The solution requires a
one-dimensional search of a parameter over an inter-
val.

Case (¢): Unknown source locations, known emis-
sion times. In this case and the next, the calibra-
tion problem can only be solved to within an un-
known translation and rotation of the entire array-
source scene. Without loss of generality, we assume
the location and orientation of the first array is known;
thus, 1 = y; = 01 = 0. We solve for the remaining
3(A — 1) parameters in /3.

For the case of unknown source locations, a unique
solution for [ is available for A = S = 2. From
Sensor 1 the range to each source can be computed
from r; = (t1; — tj)/c, and its bearing is known,
so the locations of all the sources is known. The
locations and orientations of the remaining sensors is
then computed using the method of Case (a).

Case (d): Unknown source locations and emission
times. In this problem a unique solution exists for
A=2 §=3o0rA=3,5 = 2. Foreach case
a closed-form solution is not known, but an iterative
solution exists that requires only a two-dimensional
search over a rectangle in R2.

There are a number of ways to solve the self-calibration
problem in this case. We outline one such method for
A = 2 and S = 3. Assume the second array is at



known location (z2,y2). This information and the
time differences of arrival t; — ¢1; define a hyper-
bola on which each source s; mustlie; the intersection
with the hyperbola and the (known) direction of each
source with respect to Array #1 gives the source lo-
cations; these can be computed in closed-form. The
orientation angle 6o for Array #2 is then found from
the source locations. The algorithm requires iteration
over (z2, y2); an equivalent polar parameterization is
(rg, ¢2), where 0 < ry < oo and 0 < ¢y < 27.
But 3 can be lower bounded by R,,,;,, which is com-
puted from the maximum time difference of arrival;
reparameterizing 7 = 1/ry gives a compact interval
79 € [0,1/Ryin] over which to search for 7. This
interval, combined with the compact interval for ¢o,
yields a solution search over a rectangle in R?.

Table 1 summarizes the properties of the minimal self-
calibration solution techniques for the four cases dis-
cussed above.

3.2 MAXIMUM LIKELIHOOD SOLUTION

In this section we derive a maximum likelihood (ML)
estimator for the unknown array location and orienta-
tion parameters. The algorithm involves the solution
of a set of nonlinear equations for the unknown pa-
rameters (and the unknown nuisance parameters in
7). The solution is found by iterative minimization
of a cost function; we use estimates obtained in Sec-
tion 3.1 to seed initialize the iterative descent. In
addition, we compute the Cramér-Rao Bound (CRB)
for the variance of the parameters in (3; the CRB also
gives high-SNR parameter variance of the ML param-
eter estimates.

Under the assumption of independent Gaussian mea-
surement errors for the elements in 7" and O, the like-
lihood function is

1
f(T,0;0) = (2ro109)S
~eXp{—;Q(T,9;a)} ©)
where
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In the above equations, o = [37,~47]7 is the set of
all sensor and source parameters, and

(N
(®)

tj+ [lai — sjll/c
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pij(a) =

where || || is the standard Euclidean norm and / (&, n)
is the angle between the points &,7 € R2.

By stacking the elements of 7" and © into a single
2AS x 1 vector that we denote X, correspondingly
stacking the elements of 7;;(c) and ¢;;(c) into a
2AS x 1 vector function g(«), and putting o7 and o5
into the appropriate diagonal elements of a 245 X
2AS diagonal matrix X we can write equation (6) as

Q(T,0;a) = [X — g(a)]" S X — g(@)] (9)

In the four cases considered in Section 3, some of the
parameters in « are known (or assumed to be zero to
admit a unique solution), and the remaining are un-
known. We denote «; to be the unknown parameters
in a and a9 to be the known parameters for the partic-
ular case of interest. Using this notation along with
equation (5), the maximum likelihood estimate of ay
is

ay ML = arg max f(T,08;a)

= argminQ(T,6; ) (10)
ar

The solution of (10) involves solving a nonlinear least
squares problem. A standard iterative descent proce-
dure can be used, initialized using one of the solutions
in Section 3.1.

The CRB can be computed from the Fisher Informa-
tion Matrix of a. The Fisher Information Matrix is
given by [3]

Io = E{[Valn f(T,0;0)] [VaIn f(T,6:0)]"}



Table 1: Summary of Minimal Solutions for Array Self-Calibration Problem

Case # Unknowns Minimum A4, S Comments
Known Loc?atlons 3A A=1,5=2 closed-form solution
Known Times
Known Locations 3A+ S A=1 5=3 closed-form solution
Unknown Times 3A+ S A=2 5=2 1-D iterative solution
Unknown L(?catlons 3(A—-1)+28 A=2,5=2 closed-form solution
Known Times
Unknown Locations A=2 5=3or . . .
Unknown Times 3(A+S-1) A—2 =3 2-D iterative solution

The partial derivatives are readily computed from equa- 20 uncertainty of array A6 is 0.2135 m in the radial

tions (5), (7), and (8); it can be shown that

I = [G"(a)]" 271G (@) (11)
where G'(«) is the 245 x dim(«) matrix whose 7;jth
element is 0g; (o) /Oa;.

To compute the CRB matrix for i, we first eliminate
all rows and columns in I, that correspond to ele-
ments in ae, then invert the remaining submatrix [3]:

= [Io,]7! (12)

The nonlinear least squares estimate & sz, has pa-
rameter uncertainty given by the CRB for high signal-
to-noise ratio; that is, as max; >;; — 0.

4 NUMERICAL EXAMPLE

We present an example of the self-calibration pro-
cedure. Fifteen sensor arrays and ten sources are
randomly placed in a 3km X3 km region; the sen-
sor orientations are also randomly chosen. Figure 3
shows the locations of the sensors and sources. We
compute the 20 location uncertainty ellipses for both
the sources and sensors assuming only the location
of array Al is known. These ellipses are shown in
the figure; most look like small diagonal lines. We
find that the error is small compared to the distance
between arrays; in this case, the average distance er-
ror is about 20.34 m. We not that the location un-
certainty is highly correlated and seems to be due to
a rotation uncertainty in the scene; for example, the

direction and 15.3993 m in the tangential direction,
with respect to a circle centered at (0,0). If the angle
uncertainty oy is reduced, the tangential uncertainty
reduces accordingly.

If the source locations are assumed to be known, the
CRB uncertainty ellipses around the arrays reduce
dramatically in size, to under 0.5 m in all cases. For
example, the maximum 20 uncertainty for array A6
becomes 0.2710 m when the sensor locations are un-
known.

5 CONCLUSIONS

We have presented a method for self-calibration of an
array of unattended ground sensors. The calibration
procedure involves placing a number of source sig-
nals in the scene, and computing array and source un-
knowns from estimated time-of-arrival and direction-
of-arrival estimates obtained for each source-sensor
pair. We present solutions to four variations on this
problem, depending on whether the source locations
are known or unknown and on whether the source sig-
nal emission times are known or unknown. The algo-
rithm comprises an initialization step which is seeded
using a minimal number of sources and sensors, fol-
lowed by an iterative descent solution of a nonlinear
system of equations. An analytical expression for
the sensor location and orientation error covariance
matrix is also presented for each of the four prob-
lem variations. The algorithm has low computational
cost; calibration solutions require a few seconds of
CPU time on a standard PC.
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Figure 3: Array and source location and array orien-
tation for the example considered. Arrays are denoted
by stars and sources by circles.

Future work is directed toward generalizing the anal-
ysis to expand the set of practical applications ad-
dressed. Specific topics are: (1) extend the problem
solution to a three-dimensional scenario; (2) include
acoustic propagation models to develop more accu-
rate estimates of source detection probability and of
TOA and DOA estimation errors in practical deploy-
ments; and (3) develop principles for source place-
ment that minimize the resulting array location un-
certainties.
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