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ABSTRACT Several approaches that exploit forest clutter structure 

We investigate the use of subspace-based detectors for dis- 
criminating vehicles from trees in low frequency synthetic 
aperture imagery. We model tree scattering as structured 
isotropic interference responses and model dominant vehicle 
scattering as dihedral responses. We form linear subspaces 
of tree and target responses, and apply subspace-based detec- 
tion methods developed by Scharf and Friedlander. Analysis 
on synthetic tree and target models show the viability of this 
approach. Preliminary results on measured imagery provide 
lower performance, suggesting the need for improved data 
calibration and improved scattering models of trees at low 
frequencies. 

1. INTRODUCTION 

Constant False Alarm Rate (CFAR) detectors are often em- 
ployed for object detection in radar imagery. CFAR detectors 
attempt to find points of interest whose amplitude or energy 
is large in comparison to scattered energy in the neighbor- 
hood of the point. A two-parameter Gaussian CFAR detector 
is often used, in which one assumes the clutter statistics to 
be Gaussian with unknown mean and variance. 

CFAR detectors often give unacceptably high false alarm 
rates in forested areas for a desired probability of detection. 
For low-frequency radar imagery, one reason is that forest 
clutter is often not well modeled as Gaussian noise; tree trunk 
scattering appears as a locally bright region and passes the 
CFAR detection test. CFAR detectors have been developed 
that employ a heavy-tailed clutter distribution, such as the 
K-distribution or an 0-stable random process [2, 31; these 
methods give some improvement, but still yield high false 
alarm rates. 

have been proposed for target detection in FOPEN-SAR 
environments. Many of these techniques make use of the 
radar’s angle diversity to discriminate between target and 
tree responses. Allen and Hoff [4] demonstrated the use 
of a physics based model for both targets and trees, and 
used a matched filter detector to reduce the number of false 
alarms. Chaney e r d .  [5] proposed an adaptive image forma- 
tion procedure in order to enhance man-made scatterers in 
FOPEN-SAR images. Kim e t d .  [6] apply a non-parametric 
density estimator to characterize the behavior of data using 
distributions of signal energy over subapertures at different 
resolutions, and then use these densities for discrimination 
of target, tree, and clutter classes. Marble and Gorman [7] 
use phenomenology based features derived from scattering 
physics predictions combined in a quadratic classifier to 
discriminate between targets and trees. Finally, Nguyen 
e t d .  [8] fit ellipsoid templates to differentiate between tree 
clutter and target responses. 

In this paper we consider a hypothesis testing approach 
to the object detection problem, treating tree scattering as 
a structured interference component. We assume that the 
radar signal is a combination of objects of interest, of back- 
ground clutter modeled as random noise, and of a structured 
interference term of unknown amplitude to model tree scat- 
tering. We model the structure in the interference as a low- 
dimensional linear subspace which we determine using prin- 
cipal components analysis. In a similar way, targets are also 
modeled as elements in a linear subspace. By selecting dif- 
ferent dimensions and bases of the subspaces, we can encode 
more or less prior information about targets and interference. 
Subspace modeling also results in closed-form expressions 
and analytical expressions for detection performance [ 11. 
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2. DETECTION PROBLEM 

The detection processing system is shown in Figure 1.  A 
thereon. full scene SAR image is first passed through a conventional 
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Figure 1: System Model 

CFAR prescreener, which identifies subset image regions 
for further processing. The output of the prescreener stage 
is a set of point-of-interest (POI) chips, which are gener- 
ally comprised of tree and target responses. These chips are 
then passed through an interference rejection stage, which 
attempts to reduce false alarms due to tree scattering while 
maintaining a desired detection probability. The output of 
the interference rejection stage is sent to a target classifier, 
which performs additional processing on the image chips to 
classify detected targets. This paper focuses on algorithms 
for the interference rejection block. 

2.1. Signal Model 

The input to detector is an m x 1 data vector, 5, which is 
obtained by stacking the columns of the point-of-interest 
(POI) image chip obtained from a prescreener. We model 
this signal vector as 

. 

where H is an m x p matrix whose columns span the desired 
signal subspace and S is an m x t matrix whose columns 
span the interference signal subspace. The matrices H and 
S encode partial knowledge about the signal and interfer- 
ence, respectively. The vectors 8 and 6 are the coordinates 
of the signal and interference components in their respective 
subspaces. The vector f i  is an m x 1 noise vector, which is 
modeled as additive, zero mean, white Gaussian noise with 
unit variance. The noise power is given by u2. We assume 
both H and S are known, while 8 and 6 are deterministic un- 
knowns. The noise variance u2 may be known or unknown. 

2.2. Detector Structures 

The signal detection problem can be formulated as the fol- 
lowing hypothesis testing problem, after [ 11: 

H o :  g =s$+aofi (2) 
H I :  a =HB+S$+a1fi  (3) 

Optimal detectors for this problem are derived in [l]. These 
detectors estimate the desired signal energy after projecting 
5 in a direction orthogonal to the interference subspace, and 
compare it to the noise energy present in this direction. The 
test statistic, which is the ratio of these two energies, is then 
compared to a threshold to make a decision. These detectors 

have been shown to be UMP among the set of all detectors 
which have certain desired invariances [l]. 

We consider two scenarios: the noise variance u2 known, 
and the noise variance u2 unknown. For the known variance 
case, the test statistic is a generalized likelihood ratio given 
by 

(4) 

where, PG is a projection operator into the subspace (G) and 
P$ is a projection operator projectirig orthogonal to the sub- 
space (S). The subspace (G) represents the subspace where 
the signal component H8 lies after being operated upon by 
P;. The likelihood ratio in Equation (4) can be easily seen 
to be a ratio of two energies. Hence the detector can be 
viewed as a generalized energy detector, which first projects 
the input vector orthogonally to tha interference subspace, 
then projects the residual (P,”ji) onto the signal subspace 
and compare the energy of this final residual (PG(P$~) )  
with the known noise power. 

For the unknown variance case, the test statistic is given 
by 

(5 )  

Again, we can see that the test statistic is a ratio of two 
quadratic forms. In this case, the numerator term is the same 
as that in Equation (4). The denominator term represents the 
estimated noise power, obtained by projecting the input sig- 
nal orthogonal to both the desired signal and the interference 
subspaces (P& (Pks)). 

The probability distributions of t!he test statistics are mono 
tone as a function of the signal-to-noise ratio (SNR), and the 
corresponding detectors are UMP [ 11. 

3. PERFORMANCE ANALYSIS 

Experiments from measured FOPEN-SAR data [4, 5 ,  6, 71 
suggest a property which can be used for distinguishing be, 
tween the target and interference classes at low frequencies. 
Trees are modeled as isotropic reflectors because most of 
the scattered response emanates from the top-hat reflector 
formed between the tree trunk and p u n d .  Thus, tree trunk 
responses do not change significantly as a function of aspect 
angle of the radar. On the other hand, targets often exhibit 
strong anisotropic responses and are modeled as dihedrals 
191. 

3.1. Tree Models 

We consider two choices for the interference subspace. At 
one extreme, we consider a one-dimensional approximation 
of a tree response as predicted from the geometric theory of 
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Figure 2: 
A(jf)'12 response 

Comparison of FDTD-model response with 

diffraction (GTD). The GTD tree response in the frequency- 
aspect domain (f, e) is given by [12] 

Here, A is the amplitude and 0 is the aspect angle at which the 
radar views the tree with respect to broadside. The response 
is isotropic (i.e., it does not depend on 8). The interference 
subspace, (S), consists of a tree image generated by using 
Equation (6). For an arbitrary, amplitude A, the response 
lies in a one-dimensional subspace (t = 1). 

The GTD approximation (6) has been compared to a 
more elaborate Finite DifferenceTime Domain (FDTD) scat- 
tering prediction model of a tree trunk response [ 1 11. Fig- 
ure 2 shows that the model provides a good fit to the FDTD 
response (the mean square error value for the above fit is 
1.4%). The oscillatory behavior of the FDTD prediction at 
low frequencies is largely due to scattering from the top of 
the truncated tree trunk model -the model tree is truncated 
to a height of 7 m for computational reasons. Thus, this os- 
cillatory behavior is not characteristic of field measurements. 

The second interference subspace we consider is an isotropic 
basis model. We choose a set of basis vectors that spans the 
space of all isotropic responses which are time-limited (in 
a user-specified time-interval) and also nearly bandwidth- 
limited to the radar system bandwidth. The subspace dimen- 
sion is given by the time-bandwidth product and is t M 20 
for this application [ 111. These basis vectors are transformed 
into images using an image simulator [ 101 and used as the 
basis set for the isotropic interference subspace. 

I 
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Figure 3: Cumulative percent energy in principal singular 
values from dihedral training set images chips. 

3.2. Target Model 

The signal subspace, (H) is modeled by the set of dihedral 
responses. The frequency response of a dihedral is given 
by P I  

where 00 is the orientation of the dihedral with respect to 
broadside and L is the dihedral length. 

The set of dihedral responses form a two-dimensional 
nonlinear manifold in Rm parameterized by (L, 00). We ap- 
proximate this two-dimensional nonlinear manifold with a 
p-dimensional linear subspace. This is done by sampling the 
non-linear manifold at several points of (L, eo), performing a 
principal component analysis of the sampled set, and select- 
ing the singular vectors corresponding to the p largest singu- 
lar values. As an example, Figure 3.2 shows the percent en- 
ergy captured in the first p singular values for dihedrals with 
lengths 0 5 L 5 2 m and orientations -45O i 80 5 45O, 
for a UWB radar system [ 1 I]. 

3.3. Effect of Image Shifts 

The above tree and target models assume perfect knowledge 
of the location of a scattering object. In practice these loca- 
tions are not known, but can be estimated to  within 1-2 pixels. 
The subspace detectors can be made robust to location un- 
certainty by including shifted versions of tree and dihedral 
scattering vectors in forming the respective subspaces. Sub- 
space designs for f 2  pixel shifts are developed in [l 11 and 
shown to be effective; for the cases considered, the subspace 
dimensions increased by approximately 60%. 
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3.4. Performance Analysis 

In this subsection we analyze detection performance for the 
tree and target subspaces modeled in Sections 3.1 and 3.2. 
We use a 2 mx  2 m image chip, which has m = 1045 pixels, 
and consider two interference subspace models, the GTD 
tree model with dzm((S)) = t = 1 and the generalized 
isotropic interference model with dzm((S)) = t = 20. 
For each case we consider two target subspace dimensions, 
p = 10 and p = 55, which from Figure 3 models about 
60% or 95% of dihedral scattering energy. Detection perfor- 
mance results are obtained using the analytical expressions 
presented in [ 11. 

Figure 3.4 presents ROC curves showing Pd versus Pfa. 
For each case, both the known noise variance and unknown 
noise variance detector performance is shown, and the tar- 
get S N R  = 20dB. These results show good detection per- 
formance at low Pfa (- O.l), which suggests that they are 
capable of reducing false-alarms while maintaining good de- 
tection performance. 

4. EXPERIMENTS ON MEASURED DATA 

We have applied the subspace-based detection procedure to 
measured UWB radar imagery containing trucks located in a 
forested region. The radar has an operating frequency range 
of 200-1300 Mhz and images are formed from an aspect 
aperture of approximately 90’ [8]. Imagery is formed us- 
ing a backprojection algorithm. Importantly, no calibration 
for nonideal antenna characteristics is implemented yet, so 
frequency and aspect variations of the antennas are included 
in the imagery. In particular, the image of an isotropic scat- 
tering object appears as anisotropic due to nonideal antenna 
responses. 

We have applied the subspace processing method using 
several sources from which to develop an interference sub- 
space. First, both the GTD model and the isotropic subspace 
model in Section 3.1 is used. Second, a small number of 
power poles in the scene were used as “ideal” tree trunk re- 
sponses, and used to form the interference subspace. Finally, 
a set of measured images of trees in the scene were used. 

Performance of the resulting detectors, when applied to 
the measured S A R  imagery, was significantly lower than 
predicted by synthetic data experiments. The main reason 
is the inadequate modeling of the interference component 
in the test vectors by a low-dimensional subspace. Figure 4 
shows an example of the modeling. In the figure, we use 
power poles to construct an interference subspace, and plot 
the fractional residual norm metric [(y) = as a func- 
tion of subspace dimension. In the figure we plot the frac- 
tional residual norm of four data sets: the power poles (used 
to generate the subspace), vehicles in the scene, trees in the 
scene, and synthetic ideal dihedral response image chips. 
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Figure 4: ROC curves for dihedral detection in the presence 
of tree interference. 
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We see that the residual fractional iiorm of the power poles 
decreases with increasing subspace dimension, with 30% 
fractional norm remaining (meaning more than 90% of en- 
ergy modeled) for p 2 76. On the other hand, trees showed 
a markedly higher residual norm, and the residual norm of 
trees and vehicles show no difference. Experiments with 
other interference subspaces [ 113 giive similar results. 

There are two hypothesized reasons for the relatively 
poor modeling of the tree scattering in a low-dimensional 
subspace. One possible reason is that available imagery is 
not calibrated to remove antenna frequency and aspect re- 
sponses. We attempted a simple calibration procedure to 
remove some effects of nonideal antenna responses, using 
the average magnitude of the frequency-aspect response of 
power poles. No phase Calibration was attempted. This sim- 



ple calibration procedure is known to have limitations; in par- 
ticular, it is known that the required calibration is spatially- 
variant [lo]. It is likely that this simple calibration is not 
adequate for good performance of the detectors, because the 
detectors are based on the assumption that tree scattering is 
isotropic. Improved antenna calibration of the imagery is a 
topic of current research, so testing of the subspace-based 
detection method on well-calibrated data should be possible 
in the near future. 

A second possible reason for poor performance is that 
scattering responses from trees in the scene are not well- 
modeled as isotropic scattering responses. Most trees in 
the scene are deciduous, and many have large branches that 
spread from the main trunk. Little published work (either 
analytical or empirical) has appeared on characterizing tree 
responses at low frequencies; analytical work to date has 
focused on tree trunk models, and empirical analysis has 
been limited by a relatively small amount of measured data at 
low frequencies and high resolution. Further work is needed 
to understand whether each of these hypothesized reasons for 
performance limitation are correct, and what relative impact 
each has on overall performance. 

Interference subspace using poles, test on trees : Image domain 
l . , , , , , , , .  r - ~  11 . . .  

. . .  . . . . . .  . . . . .  

O : i  10 .?U 30 40 50 MI 70 BO 90 100 

interference subspace dimension 

Figure 5: Residual fractional norm of scattering responses 
when projected orthogonally to an interference subspace 
formed from power poles. Shown are residual norms for 
vehicle chips (V), synthetic dihedral chips (D), tree chips 
(T), and power pole chips (svdE). 

5. CONCLUSION 

We investigated the problem of detecting vehicles in forested 
regions from low frequency, ultra-wideband radar imagery. 
We proposed the use of subspace-based detectors to discrim- 
inate image chips containing vehicles from those containing 

trees. We consider a detection problem with interference 
terms, where the interference represents scattering due to 
trees. We exploit the property that tree trunk responses, 
which are expected to dominate the backscattered energy 
from trees, are isotropic, whereas vehicle responses have 
strongly anisotropic dihedral-like characteristics. We model 
the tree and target responses elements of linear subspaces, 
and form the subspace basis vectors using models of isotropic 
tophat scattering centers, general isotropic scattering centers, 
and dihedrals. 

Analysis of synthetic data showed that both tree and 
target subspaces are well-modeled as subspaces of low di- 
mension, and that these subspaces are separated enough to 
provide desired detection performance at reasonable target 
signal-to-noise ratios. Detection performance was signifi- 
cantly worse when the detectors were applied to measured 
data. Two hypothesized reasons for the performance drop 
are 1) inadequate image calibration for effective use of these 
detectors, and 2) tree scattering is not well-modeled as an 
isotropic tree-trunk response. Current research aimed at im- 
proved data calibration and improved tree modeling should 
provide further insight and evidence to test these hypotheses. 
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