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ABSTRACT

High-frequency models for radar backscatter can include
components with different structures that correspond to dif-
ferent physical scattering mechanisms on an object. We
consider the problem of structure selection for an attributed
scattering center model that includes both localized and dis-
tributed scattering terms. We propose three structure clas-
sification algorithms, and compare their performance. We
show that a threshold test on the estimated length parameter
performs as well as a GLRT test, but is computationally more
efficient. A computationally fast image-based test is shown
to perform as well as the GLRT and length-based tests for
scattering center lengths greater than twice the crossrange
resolution of the measurements.

1. INTRODUCTION

Synthetic aperture radar (SAR) provides all-weather, day-or-
night remote sensing for mapping, search-and-rescue, mine
detection, and target recognition {1]. For SAR data pro-
cessing applications, it is of interest to represent the high-
dimensional image data by a low-dimensional model. The
low-dimensional model has application in data compression
for storage or transmission of SAR data; in addition, the
model parameters can serve as features for use in object de-
tection and classification.

We consider an attributed scattering center model as a
representation of object backscatter in high frequency SAR
imagery [3, 4, 6]. The model includes both frequency and
aspect dependence, allowing discrimination among a num-
ber of scattering primitives. The set of parameters differ for
localized and distributed scattering structures. We focus on
the structure selection problem. We propose three methods
for classifying a scatterer as localized or distributed. The
presented techniques are analyzed in terms performance and
computational cost.
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2. THE PARAMETRIC SCATTERING CENTER
MODEL

We adopt a parametric model for the sensor data based on
high frequency approximation of electromagnetic scatter-
ing [2, 3, 7]. In this model the backscattered electric field
from an object can be approximated as the sum of the re-
sponses from its electrically isolated scattering centers [4, 6]
in additive noise
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The parameters ; and y; are the downrange and crossrange
locations, A; is the scattering center amplitude, and o; €
[-1,-0.5,0,0.5, 1] describes the frequency dependence. In
addition, k € {¢,d} distinguishes between a localized or
distributed scattering center, with
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Thus, 8ie = [2i,yi, Ai, i, %] and 0;.0 = [T4, s, Ay, 0,
L;, ¢,]. The structure determination problem is to determine
whether the ith scattering center is localized or distributed.

The parameters a and {£, d} distinguish-among several
scattering geometries. The a parameter relates to the cur-
vature of the scatterer; localized scatterers have energy con-
centrated near a point in the image, whereas distributed scat-
terers have energy concentrated along a line segment whose
length is approximately L in the SAR image.

2.1. Image Formation and Parameter Estimation

The measured backscatter data is- typically collected on a
polar segment in the ( f, ¢) plane. The data are resampled to
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a rectilinear grid, windowed, and inverse 2-D Fourier trans-
formed to obtain a complex-valued image I(z,y) on a sam-
pled grid of (z,y) locations. Since the imaging process is
linear, the noise N(z,y) in the image domain is also Gaus-
sian with known covariance.

We estimate the parameter vector 6 as follows. We ex-
ploit the property that the energy of a given scattering center
is localized in the image. We segment high energy regions
Ry in the image [5], and to each region obtain approximate
maximum likelihood (AML) estimates of the parameters of
a low-order scattering center model. Because the noise is
Gaussian, AML estimates are found by solving a nonlinear
minimization problem of the form

Ok amL arg min J(9)

= arg rnein[d - s(0))7="d - 5(8)) (5)

where d is a vector of image pixels in the region Ry, s(6) is
the scattering model vector for these image pixels, and ¥ is
the covariance matrix of the noise vector for this region. The
algorithm is approximate maximum likelihood because we
apply the minimization algorithm locally to a subset of the
parameters on a subset of the pixels. By estimating model pa-
rameters on regions, we decouple the high-order parameter
estimation problem into a set of smaller estimation problems,
providing a large gain in computational speed with only a
slight degradation in estimation performance.

The Cramér-Rao bound (CRB) on estimator variance for

the parameters of the attributed scattering center model has

been derived [2]. The image-domain nonlinear least squares
algorithm has been applied to both synthetic and measured
imagery, and is shown to give parameter estimates that are
close to the CRB [5].

3. STRUCTURE SELECTION

Each scattering center is described by one of two possible
models as shown in equation (2). In this section we address
the question of how to choose between the two structures.
Previous parameter estimation algorithms [2, 5] either as-
sume the structure is known or estimate the structure from the
image segmentation. We propose three different approaches
for structure selection: a GLRT approach, a test based on
the estimated length, L in the distributed model, and a com-
putationally fast image-based approach.

‘We assume two possible hypotheses for the structure cor-
responding to a region Ry, in the SAR image: either Hy if
the scattering center is a single localized response, or Hy if
the scattering center is a single distributed response. We de-
fine the probability of false alarm P4 as the probability of
selecting a distributed scattering center when the true scatter-
ing center is localized, and define the probability of detection

Pp as the probability of correctly selecting a distributed scat-
tering center. Because the localized and distributed models
coincide for L; = v; = 0, structure selection will be diffi-
cult for scattering centers with parameters near these values,
even for high SNR.

3.1. GLRT-Based Structure Selection

The GLRT-based test involves computing the AML estimate
of the parameter vector @ for an image region under both
H, and H,, and forming a likelihood ratio test using the
estimated parameters; thus:

f(d|Hy,04) Ho
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Since the noise on d is additive Gaussian, the log-likelihood
of d under each hypothesis reduces to a quadratic function
given by (to within a constant)

log f(d|H,0) = ||d — s(8)llq

where () is the inverse of the noise covariance for the vector
d.

3.2. L-Based Structure Selection

In this test we find the parameter vector estimate by =

[Z,9, A, &, L, §] that best fits a distributed scattering model
for a selected region in the image. The hypothesis test is
then given by
} Ha
LZn (M
H,
where the threshold 7, is selected by the user.
The decision rule in equation (7) is computationally more
attractive than the one in (6) because it avoids estimating ée
under hypothesis Hj.

3.3. Image-Based Structure Selection

A computationally fast structure selection test can be derived
by exploiting the shape of the scattering center response in
the SAR image. In particular, distributed scattering centers
have widths that are larger than the width of a localized
scattering center.

The algorithm we propose is as follows. We extract the
crossrange pixel samples in the selected region for the down-
range distance corresponding to the peak value in the region.
This results in a small number of samples (usually between
3-20) d[k] indexed on crossrange location. We then fit a
parabola, ak? 4 bk + c to the samples using a least-squares
criterion to estimate the parameters (a, b,c). We compute
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the 3dB width W of the parabola. The image-based hy-
pothesis test for a localized or distributed scattering center
is given by

. Ha

w z nw

H,

where nw is a user-selectable threshold. The test is com-
putationally very fast, because the parabola coefficients are
estimated by solving a system of three linear equations and
the 3 dB width is found with simple algebra.

A parabola is chosen because for localized scatterers,
the crossrange response is well-approximated by the point
spread function of the radar imaging process in the cross-
range direction, and for most windows used in radar image
formation, this response is well-modeled by a parabola. For
a distributed scattering center, the parabola is not as good a
fit, but still gives an estimate W which is above any threshold
nw chosen for practical false alarm probabilities (see Sec-
tionA4). In addition, the parabola gives areal-valued estimate
of W (not quantized by pixel samples); this gives robustness
to the center location (x;, y;) of the scattering center.

(®)

4. NUMERICAL RESULTS

In this section we evaluate the performance of the three pro-
posed structure detection tests presented in the previous sec-
tion.

Figure 1 shows the difference in fit error when a dis-
tributed and alocalized model are used to model a distributed
scattering center with true length L., measured in crossrange
resolution units. Foreach value of L. we generate 20 realiza-
tions of the scattering center with different center locations
(z and y) to account for estimation differences as a function
of location. For each realization we obtain a data vector d
in the high-energy region, estimate 6, from d, and form the
reconstructed image pixel vector s(6¢). We compute the nor-
malized difference ||s(6,) — dJ|/||d|l, where d is the vector
of pixels corresponding to the true model. We also compute
lInfl/1|d|l, where nis a vector of noise pixels corresponding to
a scattering center with SNR of 20 dB. Here, SNR is defined
as the ratio of the peak amplitude of the scattering center to
the noise standard deviation in the image domain. We plot
the minimum, mean, and maximum of these norm ratios for
several values of L.. We expect to be able to discriminate
a localized from a distributed scattering center only when
the differences in the model norms become greater than the
noise component of the norm. As seen in Figure 1, for a
signal-to-noise ratio of 20 dB, an L, value greater than 1.8
is required to reliably detect a distributed scatterer.

Figure 2 shows Pp versus Pr4 for SNR=20dB and for
the three structure hypothesis tests proposed in Section 4.
The GLRT and the L tests perform nearly identically for
all values of L.; we thus prefer the L for structure selec-
tion because it has lower computational cost than the GLRT.
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Figure 1: Normalized error norm between localized and dis-
tributed scattering model for a distributed scattering center
with length L.. Also displayed is the normalized norm of
the noise component for 20 dB SNR value. The minimum,
mean, and maximum norm for 20 realizations are shown.

All three tests perform similarly, and not much better than
chance, for L, < 0.5; this is consistent with predictions
based on Figure 1. For L. € [0.5,2] times the crossrange
resolution, the the GLRT and L tests perform significantly
better than the image-based test. For L, > 2, all three tests
give very few errors in structure selection. The critical val-
ues of L, = 0.5 and L, = 2 change only slightly as SNR
changes, but otherwise the above comments apply for other
SNR values as well. Thus, one can use the computationally
fast image-based test to discriminate between scattering cen-
ter structures if the distributed scattering centers have greater
than about two times the crossrange resolution.

5. CONCLUSIONS

We have presented three methods for structure detection of a
scattering center using the attributed scattering center model
in [3]: a GLRT-based test, a simpler test based on the scat-
terer length estimate assuming a nonzero-length scattering
center, and a computationally fast test based on the width of
the scattering center line segment in the image plane. The
computationally less expensive length-based test gives the
same detection performance as the GLRT test for all scatter-
ing center lengths. None of the structure detectors was effec-
tive for scattering center lengths below about 0.5 times the
SAR image crossrange resolution. For lengths greater than
about two times the crossrange resolution, all three structure
selection algorithms were able to almost perfectly select the
correct model structure. The GLRT and the L tests per-
form nearly identically, and have better performance than
the computationally much faster image-based test only for
distributed scattering center lengths in the range of 0.5-2



times the crossrange resolution. The price paid for the in-
creased performance is increased computation to implement
these tests.
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Figure 2: Detection versus false alarm probabilities of the
three proposed structure selection algorithms
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