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ABSTRACT

Scattering from man-made objects in SAR imagery often exhibit aspect and frequency dependences which are not well
modeled by standard SAR imaging techniques. If ignored, these deviations may reduce recognition performance due
to model mismatch, but when appropriately accounted for, these deviations can be exploited as attributes to better
distinguish scatterers and their respective targets. Chiang and Moses! developed an ATR system that allows the study
of performance under various scatterer attributions. Kim et. al.? examined a nonparametric approach for exploiting
non-ideal scattering using a multi-resolution sub-aperture representation. Both of these works are extended here to
examine the effect of anisotropic scattering attribution for model-based ATR. In particular, predicted and extracted
peak scatterers are attributed with a discrete anisotropy feature. This feature can be obtained in a computationally
efficient manner by performing a set of generalized log-likelihood ratio (GLLR) tests over a pyramidal sub-aperture
representation. Furthermore, an approximate probabilistic characterization of the feature set allows for a natural
inclusion into the approach of Chiang and Moses which will be used to evaluate the benefit of our attribution to the
X-band MSTAR data and infer the phenomenology behind anisotropic scattering.
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1. INTRODUCTION

Scatterers composing a target in SAR imagery often exhibit nonideal scattering in the form of aspect and frequency
dependences. Standard SAR image formation ignores this variability resulting in unstable scintillating reflectivity
estimates complicating the recognition problem. These deviations from the ideal point scattering model should not
be viewed as a hindrance and approximated away, but instead, they should be seen as an attribute which can be
used to distinguish scatterers and thus their respective targets.

This paper is an extension of two separate works presented at Aerosense 1999. Chiang and Moses! presented
a full ATR system which allowed performance comparisons to be made between systems based on different feature
attributes. It was used to demonstrate the improvement in ATR performance achieved by using models based on the
Geometric Theory of Diffraction (GTD) with synthetic data. Kim et. al.? presented a classification technique that
utilizes aspect dependence by learning these dependences in a nonparametric fashion on a multi-resolution pyramid
of sub-apertures.

The work presented here uses the same sub-aperture structure introduced in by Kim et. al., but simplifies
the information conveyed into a single scalar parameter characterizing the azimuthal concentration of unimodal
scattering. Motivated by canonical scattering models, we conjecture that knowledge of the azimuthal duration of a
scatterer can be used to infer properties of its geometry. Scattering models such as the physical optics model or the
Geometric Theory of Diffraction (GTD) predict that for many physically large scatterers there is an inverse relation
between the size of the scatterer and the duration of its response in azimuth. Thus, knowing the anisotropy of a
scatterer allows one to infer properties of the physical structure of the object under investigation thereby aiding
the classification procedure. Incorporating the resulting anisotropy attribution into the feature based classifier and
applying it to real SAR data allows us to study the utility of and phenomenology behind azimuthal anisotropy.

The remainder of this paper is organized as follows. Section 2 presents the multi-resolution sub-aperture pyramid
used to represent the SAR data. Section 3 then describes the set of hypotheses that we will consider and develops the
hypothesis tests on the sub-aperture pyramid. Section 4 describes the matching algorithm that we use to evaluate
our anisotropy attribution on collected SAR data. Section 5 presents experimental results demonstrating the utility
of anisotropy attribution and discusses its underlying phenomenology. The paper concludes with a summary and
discussion in Section 6.
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2. SUB-APERTURE ANALYSIS

The foundation of our analysis is the sub-aperture pyramid which we present in this section. This structure is
motivated by the scattering physics involved in SAR and presents information in a way that allows for simple and
intuitively reasonable hypothesis tests. Because of the linear structure of the aperture, we will associate it with an
interval of the real line throughout this paper. In particular, the full-aperture will be denoted by the interval [0,1).

2.1. Definition

The intuitive idea of the sub-aperture pyramid is to generate an over-complete covering of the full-aperture with
sub-apertures that can be arranged on a pyramidal structure. These sub-apertures will be used to represent both our
set of candidate hypotheses and to form our reflectivity estimates. The prototypical sub-aperture covering that we
will use throughout this paper is the half-overlapping half-aperture pyramid shown in the lower portion of Figure 1.

We take as a sub-aperture pyramid a set S of sub-apertures with the following structure. The set S is partitioned
into smaller sets S,,, which correspond to a particular degree of anisotropy. For reasons which will become apparent,
we associate m with scale. Sy refers to the set consisting of the largest sub-apertures, and Sy, refers to the set of the
smallest sub-apertures. A second subscript on S denotes a specific sub-aperture at the given scale. To obtain the
necessary structure on the sub-aperture pyramid for what follows later, the following conditions are imposed on S:

(S1) VSm.i, Sm,i=la,b) for some 0 <a<b<1,
(82) VS, with m > 1, 35,,_1 ; such that S,, ; C Sy—1,;, and
(S3) VS, 3 a partition P(m, i) C Sy of Sp, ;.

The first condition simply restricts the sub-apertures to be a single connected interval. This is motivated by our
search for concentrated unimodal scattering in azimuth. The second condition asserts that each sub-aperture, except
those in Sy, has a parent which contains it. This allows us to construct a telescopic hypothesis test on a tree which
will not only afford computationally efficiency but also robustness. The third condition requires the existence of a
partition of each sub-aperture by coarsest scale sub-apertures. This will allow for the set of measurements given by
Sy to form a sufficient statistic for all the measurements in S. Herein, the term sub-aperture pyramid will always
refer to one satisfying conditions (S1)-(S3).

Any sub-aperture can be used to form a SAR image. The images formed with smaller values of m have a finer
cross-range imaging resolution because of their larger apertures. This is our motivation for associating scale with
m. Each sub-aperture S,, ; generates an associated reflectivity estimate g, ;. The collection of reflectivity estimates
from the sub-apertures in Sy, is denoted as q;;. The measured reflectivity g, ; is not normalized with respect to
the aperture length, i.e.

G = /S a(s) ds (1)

m,i

where a(s) is the azimuthal response of the scatterer*. Thus, when interested in the normalized reflectivity estimate,
one should divided gy, ; by the sub-aperture length L, ; = A(Sp,;), where A denotes Lebesgue measure.

2.2. Interpretation and Motivation

Different types and sizes of scatterers will yield different aspect dependencies. The motivation for using the sub-
aperture pyramid is that it is expected to reveal distinguishing aspect dependences in the scattering. For example,
a small metal sphere will have a strong response in all directions and thus produce a strong reflectivity estimate
from each of the sub-apertures. However, as depicted in Figure 1, a flat plate produces a significantly stronger
response when oriented broadside with respect to the radar as compared to off-broadside orientation. Thus, the
reflectivity estimates will vary across the sub-apertures with the largest estimate coming from the sub-aperture
oriented broadside to the plate. Furthermore, because various sized sub-apertures are used, the duration of the
broadside flash is captured in this representation. In particular, while the sub-aperture is contained within the main-
lobe of the response, the reflectivity estimate will be consistently large, but as the sub-aperture is expanded, the
additional energy received will be relatively insignificant and result in a lower reflectivity estimate when normalized

*By azimuthal response, we mean the 1-D cross-range uncompressed signal for a given down-range location. The signal a(s) is assumed
to have already been appropriately demodulated to have zero phase modulation for the inspected cross-range location.



with respect to the sub-aperture length. While this framework will capture general degrees of anisotropy, it is not
overly-sensitive to azimuthal dependencies in that slight deviations on the scatterer geometry are modeled. This
relieves of the burdens associated with such models that requires an excessive number of parameters.
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Figure 1. The response of a .bm x .bm flat plate and a depiction of the reflectivity estimate for each of the
sub-apertures. Lighter shaded sub-apertures convey larger reflectivity estimates.

A slightly different viewpoint of this sub-aperture feature set comes from considering the cross-range resolution
versus azimuthal® resolution trade-off. Recall that the cross-range resolution is inversely proportional to the aperture
length. Thus, at lower levels of the sub-aperture pyramid, spatial resolution has been exchanged for azimuthal
resolution, i.e. the ability to better observe anisotropic phenomena. This is the classic time—frequency resolution
tradeoff in Fourier analysis, and each level of the pyramid represents the data under a particular cross-range—azimuth
resolution. The presence of multiple resolutions is attractive because we expect the best representation for different
objects to be nonunique as the importance between resolution in the two domains is balanced.

3. ANISOTROPIC SCATTERING MODELS

Having presented the sub-aperture pyramid, we now proceed to formulate our hypothesis testing problem for
anisotropy. The hypotheses will be drawn directly from the sub-aperture pyramid. Two models will be presented
here. The first is a simple single scatterer model with an intuitive sufficient statistic. This test however is susceptible
to the influence of neighboring scatterers. This motivates the second model which explicitly accounts for the contri-
butions from neighbors. The tests presented in this section are for a fixed scattering location which we assume to be
specified. These locations could come from a peak extraction process or a pre-specified grid of points to produce an
image of anisotropy.

3.1. Single Scatterer Model

Each sub-aperture S,, ; defines an associated scattering hypothesis H,, ; over the aperture s via
Hpi: a(s) =1s,,, (s) (2)

where 14 () denotes the indicator function over the set A. Thus, our hypotheses correspond to scattering responses
that are uniform over the sub-aperture in question and zero elsewhere. Naturally, this is an idealization for anisotropic
scattering, but because we are only looking for a general characterization of anisotropy, it will serve our purposes here.
Although we will call this a test of anisotropy, the ideal isotropic scattering hypothesis is included in our hypothesis
set if the full-aperture is included in the sub-aperture pyramid. The set of all possible hypotheses associated with
the sub-aperture pyramid will be denoted as H.

TFor clarity, we will use the term “cross-range” when referring to the cross-range in the spatial (image) domain, and we will exclusively
use the term “azimuthal” when referring to the corresponding dimension in the sensor domain.



A reasonable choice of features to test these hypotheses would be all the measured sub-aperture reflectivities
{qm,i}- From the definition of the ¢y, ; in Eq. (1) and partition property (S3), it is sufficient to consider the subset
dar C {gm,} since all sub-aperture reflectivities ¢y, ; can be computed from g,, by summing all the g ,; Which form
a partition of Sy, ;. Thus, we will take q,, as our feature vector. The value of this feature vector under hypothesis
H,, ; is b(m, i) whose j*" element is given by

b(m, i), = /S s, (s) ds
M,j
= A(Su,5 N Sm,i), (3)

i.e. it is the portion of the response one expects to see over the j** sub-aperture at scale M. We now define our
scattering model conditioned on anisotropy hypothesis H,, ; as the signal plus noise model,

aM,j = / A]'S'm,,i (S> + 77(5) ds? (4)
S,

where A is the scattering amplitude of the signal and 7n(s) is circularly complex white Gaussian noise with spectral
density o2. This leads to the model

qyr = Ab(m, i) + €, with € ~ N(0,202A), (5)

where A is the noise covariance structure inherited from the sub-aperture pyramid. The noise in the measured
reflectivities in Eq. (5) are characterized as zero-mean circularly complex Gaussians with covariances dictated by the
amount of sub-aperture overlap. The elements of its covariance matrix A are given by [A]; ; = A(Sa,; N Swr,j), which
for the half-overlapping half-aperture pyramid in Figure 1 is

To classify the anisotropy of a scatterer from our vector of sub-aperture measurements q,,, we apply a log-
likelihood ratio (LLR) test to the model in Eq. (5) where each log-likelihood is compared to the full-aperture hy-
pothesis. Because there is the unknown reflectivity parameter A, we actually use a generalized LLR (GLLR) test
where for each hypothesis, we take A to be its maximum likelihood (ML) estimate under that hypothesis. Thus, for
H,, ;, we take A= Gm, i/ Lm,;. This produces the GLLR

1 1
gmi

2 2
= — i|“ — . 6
, 402 Lo |@m, il 190,0] (6)

Thus, the most likely sub-aperture in this case is the one whose average energy is largest. We note the similarity
here to the approach taken by Chaney et. al.® in which they replace, within the image, the standard reflectivity
estimate with the maximum sub-aperture reflectivity estimate gy, ;/Lm, ;, thus using normalized reflectivity (instead
of normalized energy) as their criterion for choosing anisotropy. Their approach however is based on intuitive
arguments and not a derived statistic.

Though simple and intuitive, the GLLR in Eq. (6) is susceptible to the effects of close proximity neighboring
scatterers which are not included in our model in Eq. (4). Recall that the images formed by the smaller sub-
apertures have a coarser resolution. Thus, if a scatterer were located outside the finest resolution cell but within a
coarser resolution cell, then the finest resolution reflectivities go,; would be 0, but g, ; would be large if the resolution
cell associated with scale m included the scatterer. We illustrate this with the example shown in Figure 2. Here a
scatterer with amplitude A is located outside the finest resolution cell of size  but is contained within the coarser
resolution cell of size 2 associated with half-aperture estimates. If this scatterer is isotropic, then its response is
the complex exponential illustrated. Integrating over the full aperture gives a 0 reflectivity estimate as expected,
but integrating over a half aperture produces a normalized reflectivity with magnitude A/v/2. Eq. (6) would then
classify the center of the resolution cell as anisotropic, even though no scatterer is present.
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Figure 2. Illustration of a scatterer not in the finest resolution cell that can produce a false anisotropy classification
in Eq. (6).

The problem above is a consequence of not modeling the influence of neighboring scatterers. One of the ways in
which the neighboring scatterer manifests itself is through its corruption of the estimated reflectivity as the size of
the resolution cell varies. Choosing A= Qm,i is the maximum likelihood reflectivity estimate for the resolution cell
associated with S, ;. Alternatively, we may instead choose the best reflectivity estimate constrained to lie in the
finest resolution cell which is the full aperture estimate ggo. Choosing A= go,o for all hypotheses can be shown to
produce the GLLR statistic

1 1

s = — | ——lamal?
m,i 402 Lm’i|Qm,z| Lm,i

90,0 = Gm.il* — |00/ |- (7)

This statistic is identical to that in Eq. (6) except for the extra term comparing the reflectivity estimates o o and g, ;.
Recall that Eq. (6) compared the average energy in a sub-aperture to the full-aperture. This new GLLR accounts
for the average energy outside the current sub-aperture as well. Viewed differently, under our scattering model in
Eq. (4), the values of L., ;go,0 and gy, ; should simply be noisy perturbations of each other. The new term penalizes
when this is not the case. Under the example in Figure 2, since the the contribution of each of the half-apertures
would be the same, the GLLR is equal to zero for all hypotheses, which is reasonable, since there is no underlying
scattering at the focused location.

3.2. Multiple Scatterer Model

The modification in Eq. (7) addresses the problem when a neighboring scatterer is isotropic, however, when the
neighboring scatterer is anisotropic, problems such as that illustrated by the example in Figure 2 can still arise as
its contribution will not integrate out over the full-aperture estimate. To alleviate this problem we generalize the
model in Eq. (4) to account for multiple scatterers.

First, we must generalize the sub-aperture scattering model to account for the modulations produced by neigh-
boring scatterer. Again, we assume that the sub-apertures have been formed while being focused on cross-range
location yo. The possibility of other scatterers are considered at discrete locations yo + kA,, where A, specifies
a cross-range sampling resolution. To model the effect of a scatterer at location yo + kA, on the measurements
at location yg, we simply modulate the focused response 1 (+) to account for the shift in the image domain. The
observed effect over the sub-apertures is then given by

o EOp
b (m, i), :/S 2RIy (s) ds (8)

where A, is the null-to-null resolution associated with the full aperture. Incorporation of the neighboring scatterers
is now modeled via superposition, i.e.

aur =Y Axb"(Hi) +€ 9)
k

where the noise model is the same as in Eq. (5). The summation over k in Eq. (9) should be over a range that at
least includes all scatterers contained in the largest resolution cell. Thus, if L, is the smallest aperture length, then
we need to consider k € {—K, ..., K} where

KA,

K= LLA*TAJ (10)

v
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= size of coarsest resolution cell




and k = 0 corresponds to the resolution cell under investigation. Rewriting Eq. (9) as a matrix equation we get

A_k
au=[0b""Hrk) | - | b HK)]| 1 | +e
Ax
—BA+e¢ (11)

where B and A are appropriately defined. Thus, we can use weighted least squares (WLS) to implicitly estimate
the values of the interfering Ay and account for their contribution to q,,. In order to have our least squared error
minimization correspond to ML, we need to have our inner product effectively whiten the noise. This is accomplished
by using the inner product weighted by the inverse of the noise covariance, i.e. (u,v) = ﬁuTAflv. We estimate
the hypothesis as the one which minimizes the norm of € when the WLS estimate of A is used. The ML estimate
for A is obtained from this model as

A= argmin {||e|l3- } = (B'AT'B) ' B'A gy (12)

which simplifies to Eq. (6) in the case of limiting the model order to K = 0.

Note that the hypotheses are now in a higher dimensional space. In particular, the hypothesis set is now H2%+1
since each location k£ has a scatterer associated with it. For the initial work presented in this paper, we will restrict
ourselves to hypotheses where only the & = 0 (the focused resolution cell) is allowed to vary. Thus, our hypothesis
space is effectively still . We note that this constraint will be relaxed in the future in order to appropriately take
into account the scattering of neighboring scatterers.

To classify the anisotropy of the k = 0 scatterer, we use ML, i.e. we choose the sub-aperture hypothesis which
minimizes the weighted norm of € in Eq. (9)

lellX-: = llaa — BAIR-
= 2—12q9\4 [A™'—AT'B(B'AT'B)'B'A Y] gy (13)
(o

where the weighting matrix in the last line is independent of the data and thus can be precomputed for each of the
candidate hypotheses.

The model in Eq. (9) is too unconstrained for the test given by the minimization in Eq. (13) to work. In particular,
if one chooses K sufficiently large to account for all scatterers in the coarsest resolution cell, then the model order is
greater than the number of sub-aperture measurements and &€ can be made zero for all hypothesis of £k = 0. Thus,
we need to regularize the model. In order for the error € to be made small under the incorrect model, many of the
values in A generally have to be made unreasonably large and result in an unrealistic scenario. Thus, we impose
a 2-norm regularization penalty in the estimation of A. In particular, instead of minimizing the weighted squared
error to estimate A, we take

: 2
A= arg min {llellz-1 + vA'RA}

= (B'A"'B+~R)"'B'A 'qy,
= Pqy (14)

where P is defined accordingly, v is the regularization parameter, and R is the regularization matrix that penalizes
the energy in all Ay other than k = 0, i.e.

R=1 - egey = diag(l,...,1,0,1,...,1).
This produces the following value for the weighted error norm as
leliz-+ = llars — BAIR-

1
= ﬁq'M [A™"—2A"'BP+ P'B'A"'BP] qy, (15)

which can be used for our hypothesis test.



3.3. Telescopic Testing

The sub-aperture pyramid which we use to form our measurements and base our hypotheses is convenient not only for
providing anisotropy information, but also for providing an efficient means of performing the hypothesis tests. We can
obtain an efficient approximation to the test by evaluating only a small subset of the candidate hypotheses. Due to
the nested structure of the sub-apertures (condition (S2) in Section 2), we can perform the tests in a telescopic fashion
by traversing down the tree of sub-apertures as depicted in Figure 3. We expect the likelihoods to increase as the
hypothesized sub-apertures “shrink down to” the correct sub-aperture, and then to decrease as the hypothesized sub-
apertures “shrink beyond” the correct sub-aperture. This motivates performing the hypothesis test in the following
manner:

step 1) Start with the set of largest sub-aperture(s) at scale m = 0. Find the most likely

hypothesis at that scale and denote it as H ;.

step 2) Consider those hypotheses at scale n = m+ 1 for which S,, ; C Sy, ;«. Find the one
which has the highest likelihood and denote it as H,, ;-.

step 3) If the parent is more likely (i.e. ¥ i+ > 7n ;- ), then stop and return H,, ;« as the

estimated hypothesis.
step 4) If m = M, we are at the bottom of the tree so stop and return H,, ;+ as the estimated

hypothesis. Otherwise, set m =n and ¢* = j* and goto step 2.

Figure 3. Illustration of how the anisotropy testing can be done in a decision directed fashion by starting with the
largest aperture and at each scale, inspecting only the children of the most likely sub-aperture.

The intuition described above can be justified under the single scattering models. In particular, consider the
expected value of £, ; when the true hypothesis is H,, ; and the proportion of overlap between .S, ; and Sy, ; is given

by a = % For Eq. (6) in which A= Gm.,; is used, the expected value is

1
E|:£n,j ‘ Hm,i:| = E{mhﬁt,jﬁ — |qo,0[?

Hm,i:|

Oz2
= ( — 1) |A]? + (2L, ; + 1)0?
L,

~ (;‘2 - 1) | A2 (16)

n,J

where the approximation is for high SNR. From this, we see the intuitive behavior described above. When S, ;
contains Sy, ;, the overlap is & = 1 and the GLLR increases with decreasing L,, ;. When the sub-aperture becomes
too small, i.e. S, ; C Sp i, the overlap is @ = Ly, j/Ly, ;, and thus the expected GLLR decreases when the sub-
aperture becomes too small.

For Eq. (7) in which A = g0, the expected value of the GLLR is

1 1
E[En,j ‘ Hm,i:| = E|:T|Qn,j|2 - r|£10,0 - qn,j|2 - |qo,0|2 ‘ Hmz]
n’j n’j
o () A (2 — 1) AP - 207 (17)
B L, ; L, ; '

Again, we see the intuitive behavior described above. In particular, when S, ; contains Sy, ;, the overlap a = 1 and
the GLLR increases with decreasing L,, ;. When the sub-aperture becomes too small, i.e. S;, ; C Sy, s, the overlap is
a = Ly, j/Ln;, and the GLLR can be written as

A7 4] +20°

—|A|? + 202
Lm,i Ln,j | |

B[t ) Hipi| =2



which is a decreasing function of L, ; for strong scatterers, i.e. |A|? > 202,

Because the difficult form of our regularized multiple scatterer log-likelihood given in Eq. (15), we have not yet
shown the same pattern for this extended test, however intuition leads us to believe it holds here too.

3.4. Boxcar Model Deviations

The hypothesis set defined in Eq. (2) are simplified models to which real scatterers will not exactly correspond. One
may question whether deviations from this model may drastically effect our hypothesis tests. For example, if the
scattering has a sinc(-) like dependence in azimuth, then the sidelobes will have a large response for a strong scatter
and cannot be well modeled as background noise. To address this issue, we incorporate deviations from the boxcar
response into our model. In particular, we start by assuming the underlying scattering pattern has been perturbed
by white Gaussian noise. For the single scatterer model, this changes the model response in Eq. (3) to

B(m, i); — /S s (5) +u(s) ds

where v(s) is a white Gaussian process with spectral density p? and is independent of the measurement noise 7(s).
Thus, our modeled measurement vector is now a random vector characterized as

b(m, i) ~ N(b(m, i), 2p*A).
This results in the new measurement model as
qy = Ab(m,i) + w, with w ~ N (0,2(|A]>p* + ?)A).

Thus, we have essentially the same model as in Eq. (5) except that the variance of the noise now depends affinely on
the square-magnitude of the underlying scatterer. The effect in Egs. (6) and (7) is a simple scaling of the GLLR’s of
all the hypotheses. For the multiple scatterer model, the extension is similar and has the same result.

4. BAYES CLASSIFICATION

With a method for anisotropy attribution in hand, we describe in this section a classifier based on Bayesian probability
theory. This matcher allows us to evaluate the utility and explore the phenomenology of anisotropy in SAR by
incorporating the labeled anisotropy of scatterers into the feature set. A more thorough description of this classifier
can be found in the paper by Chiang and Moses.!

4.1. Classification Problem Statement

The Bayes matching problem is given as follows. At the input to the classifier stage, we are given a set of n feature
vectors Y = [Y1,Ya,...,Y,]T extracted from a measurement, and for each candidate hypothesist H € H we are
given a set of m predicted feature vectors X = [X1, Xo,..., X,n]T (where m may vary with H). We wish to find the
hypothesis whose posterior likelihood of the observed features, Y, is maximum. From Bayes’ rule, we have

f(Y|H,n)P(n|H)P(H)
f(Y[n)P(n)
Since the denominator does not depend on hypothesis H, the MAP decision is found by maximizing the numerator

f(Y|H,n)P(n|H)P(H) over H € H. In this paper, we assume the priors P(H) and P(n|H) are uniform, so we need
only compute f(Y|H,n).

P(H|Y) =

We incorporate uncertainty in both the predicted and extracted feature sets, and assume the predict and extract
uncertainties are conditionally independent. This gives*

f(Y|H,n) = /f(Y|X,H, n)f(X|H,n)dX (18)

where f(X|H,n) models the feature prediction uncertainty, and f(Y|X, H,n) models feature extraction uncertainty.

fThe hypotheses in this section correspond to possible vehicle classifications. They are not the anisotropic hypotheses used in Section 3.



The computation of f (Y|X , H,n) requires a correspondence between the elements of ¥ and X , or equivalently
between Y and X. We consider two correspondence mappings. The first is a probabilistic many-to-many map, in
which we assume that

f(Y)X) = f(Y|H) :H (Y;|X,H) = H Bfra(y, ZDi(H)f(YﬂXi,H) (19)

where A is the average number of false alarms features present, fr4 models false alarm probability of a par-
ticular feature vector, Py(H) is the detection probability of the i** predicted feature under hypothesis H, B =
A[A+ > pw, Pe(H)]is the probability that an extracted feature is a false alarm, and D;(H) = (1-B)P;(H )/[Zk 1 Pu(H)]
is the probability that an extracted feature comes from the i*" predicted feature.

The second mapping considered is a deterministic one-to-one map, in which the correspondence is assumed to
be a deterministic nuisance parameter and the match score is maximized over the correspondence. In this case the
likelihood score is given by

f(YIT,H,n) = < P(npa false alarms) H fra(Y;)
{5:;=0}
I[I p@E - ryir=iHn [ -FRH) (20)
{j:T;=i>0} {i:T; 1,75}

where I' defines the feature correspondences, including the ng4 extracted features that correspond to no predicted
features (denoted {j : I'; = 0}) and the predicted features that correspond to no extracted features (denoted

{i:T; #1,Vj}).
For the case that P(npa false alarms) obeys an exponential rule P(ng4 false alarms) = ce 84 for constants c
and f3, the search for the correspondence that maximized the above likelihood can be efficiently implemented.*

To implement either Eq. (19) or (20), we require a probability model for f(Y|X,I‘,H, n). We assume that the
uncertainties of the X; are conditionally independent given H, and that the uncertainties of the Y} are conditionally
independent given H, X, and n. This yields

n
f(Y|T, H,n) :H (Y;|T, H,n).

Each extracted feature Y; either corresponds to a predicted feature or is a false alarm. If Yj is a false alarm, we
assign I'; = 0, and we model the feature attribute as a random vector with probability density function

f(¥5I05 = 0, H,n) = fra(Y;).

If Y; corresponds to a predicted feature X;, we write I'; = ¢ (for ¢ > 0) and compute the feature match score from
Eq. (18). In particular, from Eq. (18) it follows that for ¢ > 0,

FY[T; = i, H,n) = / Y510, H,n) (X X, H) dX. (21)

For the special case of Gaussian uncertainties, we have f(Y; | Xi, H,n) ~ N(X;, %), and f(Xi|Xs, H,n) ~ N(Xi,5,),
so from Eq. (21) we obtain
FVIT; =i, Hyn) = £(Y;] X5, Hyn) ~ N(X:, 5, + Be). (22)

Similarly, for features whose attributes are discrete-valued, the likelihood is the sum

P(Y;| X, Hyn) = > P(Y;|X;, Hyn) P(X;|X;, H,n). (23)



5. RESULTS

Public release MSTAR data is used for the results presented here. These images have a resolution of 0.3m in both
range and cross-range. The transmitted signal had a bandwidth of 0.591GH z and a center frequency of 9.60GH z.

All of the results in this section are based on the three-level half-overlapping half-aperture pyramid depicted
in Figure 1. The multiple scatterer model will be used to characterize anisotropy. The number of neighboring
scatterers considered is set by K = 6. The value of the regularization parameter on neighboring reflectivities is set to
~ = 0.5. We incorporate a bias in our anisotropy test towards full-aperture scattering. In particular, to be declared
anisotropic, an anisotropic likelihood must be at least twice the full-aperture likelihood. The purpose of this higher
threshold is to aid in protecting against the effects of neighboring scatterers whose reflectivities may not have been
estimated exactly, and will thus induce a modulation across the aperture which can be mistaken as anisotropy.

This paper is based on the idea of detecting anisotropic scattering in SAR imagery. To illustrate the anisotropy
assignments made by our model, we show in Figure 4 the results for a BMP2 (serial number c21) at 0°,20°,40°, 60°,
and 80° azimuths with a 17° depression. Even though the aperture associated with this data set is relatively small
(about 3°), we note that we are still able to detect anisotropic scattering. In particular, it usually appears to be
associated with the turret, barrel, or leading edge of the tank. We make particular note of the classifications at the
0° azimuth. Here we see many clutter pixels being classified as anisotropic. The cause of this error is the unmodeled
behavior of neighboring anisotropic scatterers. Recall that in our current formulation, we only consider the possibility
of neighboring scatterers which are isotropic. However, the front edge of the tank generates a strong anisotropic
response which is not accurately captured in our current model. Extending our model to account for such scattering
should alleviate problems such as this.

Figure 4. Anisotropy characterization of several instances of a BMP2. Top row: Log-magnitude reflectivity image.
Bottom row: Log-magnitude reflectivity image with pixel locations declared to be anisotropic masked out in white.

The images in Figure 4 show that scatterers are being classified as anisotropic, however it does not convey how
useful that information is in characterizing targets or explaining phenomenology. To address these issues, we consider
empirical confusion matrices of anisotropy based upon the MSTAR data set. In particular, we consider the data
set composed of the following vehicles: 251 (b01), BMP2 (c21), BRDM2 (E-71), D7 (92v13015), T72 (132), ZIL131
(E12), and ZSU23-4 (d08) where truth is taken to be the empirical results from 17° depression data and test data is
taken from the 15° depression data at the same azimuth as the truth. For each pair of training and testing images
at the same azimuth, a set of peaks are extracted from each image and a correspondence match based on relative
location is performed and taken as truth. The empirical confusion matrices are then computed from the anisotropy
attributions of these peaks. For the remainder of this section, the use the term “confusion matrix” will refer to one
computed in this fashion.

The confusion matrix for this data set is given in Table 1. One noticeable property from the confusion matrix
is that regardless of the conditioned training anisotropy, the full-aperture hypothesis is the most likely testing
anisotropy. We give the following reasons for this. First, recall that we bias our anisotropy decision towards the



full-aperture hypothesis which partially accounts for this. The bias in the confusion matrix may also be attributed
to incorrect correspondences. It is widely believed that anisotropic scatterers are less stable than isotropic scatterers
and therefore are not always extracted as peaks.® If an anisotropic training scatterer is not extracted in the testing
data and there is a nearby isotropic scatterer, then our correspondence will incorrectly match the two. We also note
that there is the unmodeled dependence on depression.

Another prominent aspect of this confusion matrix is the apparent independence of testing anisotropy and training
anisotropy which would support the argument that anisotropy is not a stable feature. Under the model that anisotropy
is caused by irresolvable interfering scatterers, this is reasonable especially when one considers that the depression
angle has been changed. However, this result counters intuition gained from the canonical scatterer model. To
further evaluate the source and stability of anisotropic phenomena, we partition the data set into those images at
a near-cardinal azimuth (£2.5° of a cardinal angle) and those at off-cardinal azimuths. The motivation being that
for near-cardinal azimuths, we expect the influence of canonical scatterers to be most pronounced because of the
natural rectangular shape of vehicles. Thus, near-cardinal azimuths should exhibit canonical anisotropic scattering
associated with flat plates and other large simple scatterers oriented orthogonal to the impinging radar signal.

The confusion matrices for the near-cardinal and off-cardinal azimuths are given in Table 2. Here, we see striking
differences. There is still a tendency to favor the full-aperture hypothesis, which we explain by the same reasoning
as for the confusion matrix in Table 1. One significant difference in the near-cardinal confusion matrix from the
other two is that there is a noticeable presence along the diagonal, signaling that anisotropy is more stable at
these near-cardinal angles as expected for canonical scatterers. The off-cardinal confusion matrix however shows
that training anisotropy is independent of testing anisotropy. This leads us to believe that there are at least two
fundamental sources of anisotropy. The first is canonical scattering which dominates at cardinal azimuths and not
much at other azimuths. The second is an unstable source of anisotropy which is more commonly exhibited at
off-cardinal azimuths. A likely candidate for this unstable anisotropy is the scintillation produced by irresolvable
interfering scatterers. Anisotropy arising from such interference is highly variable and changes unpredictably with
depression, which may account for lack of correlation in the anisotropy classifications between the 15° and 17° data
in the off-cardinal confusion matrix.

Table 1. Anisotropy confusion matrix for 251, BMP2, BRDM2, D7, T72, ZIL131, and ZSU23-4.
| Training \ Testing || full-aperture | half-aperture | quarter-aperture |

full-aperture 0.88 0.09 0.03
half-aperture 0.83 0.13 0.15
quarter-aperture 0.81 0.12 0.07

Table 2. Anisotropy confusion matrix for vehicles at near-cardinal and off-cardinal angles.

Near-cardinal Off-cardinal
Training \ Testing || full-ap. | half-ap. | quarter-ap. || full-ap. | half-ap. | quarter-ap.
full-ap. 0.82 0.11 0.07 0.89 0.08 0.03
half-ap. 0.72 0.26 0.02 0.83 0.12 0.05
quarter-ap. 0.61 0.09 0.30 0.83 0.12 0.05

To explore how anisotropy attribution might help the recognition problem, we use anisotropy as a feature in the
matcher described in Section 4. The confusion matrices in Table 2 are used to characterize uncertainty in anisotropy.
Our experiments involve detection of the BMP2 and T72 from a test set composed of BMP2’s, T72’s, T62’s, and
BTR70’s. In particular, for the predict data, we use peak extractions from the BMP2 (c21) and T72 (132) at a 17°
depression. The extract data consists of the following vehicles at a 15° depression angle: BMP2 (9563 and 9566), T72
(812 and s7), BTR70 (c71), and T62 (ab1). For the BMP2 detection statistic, we compare the likelihood ratio of the
test vehicle under the BMP2 model to the T72 model, where we are treating the T72 as our model for “non-BMP2”
vehicles. Similarly, we take the reciprocal for the detection statistic of the T72 letting BMP2’s serve as the model
for “non-T72” scatterers. We recognize that modeling the “other” class with a single vehicle is simplistic and crude,



however it is not our current goal to build a full classifier, but to setup a framework where we can study anisotropic
phenomena. The T62 and BTR70 are used in the testing set because they are well known to be difficult confusers.
The resulting ROC’s are displayed in Figure 5 for three different sets of scatterer features:

(F1) location
(F2) location and anisotropy
(F3) location and anisotropy (while restricting predict scatterers to be full-aperture).

Each feature set uses the top 10 amplitude scatterers, except the third set which uses the top 10 amplitude scatterers
which are declared to be full-aperture in the predict stage. The motivation behind the conditioning in (F3) is that
if anisotropic scatterers are unstable, then they are unlikely to match in the extract data, so we remove them from
consideration.
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Figure 5. ROC curves for the BMP2 (left) and T72 (right) using features (F1)-(F3).

At first glance of the ROC’s in Figure 5, it appears that all the tests perform equally well and the anisotropy is
not useful as an attribution. However, these vehicles contain quite complex scattering phenomena and many of the
anisotropy declarations may be due to volumetric interference between irresolvable scatterers which would change
unpredictably with depression. With this in mind, we examine the ROC’s for the test vehicles at near-cardinal (£2.5°)
azimuths. These ROC’s are shown in Figure 6. Although there is less statistical significance in these numbers due
to the relatively small number of test vehicles at these orientations, there does appear to be a separation between
each of the tests. The feature set using both location and anisotropy appears to perform the best which is what we
would expect since the scattering at near-cardinal azimuths is heavily influenced by canonical scatterers. The worst
performer of the three feature sets is (F3) which uses location and anisotropy, but only considers predicted scatterers
which are full-aperture. Thus, this test is discarding the anisotropic scatterers it observed on the model, which is
valuable information since the anisotropy exhibited from these canonical scatterers should be stable.
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Figure 6. ROC curves for the BMP2 (left) and T72 (right) at near-cardinal angles using features (F1)-(F3).



6. SUMMARY AND DISCUSSION

We have proposed a general characterization of anisotropy based on a sub-aperture pyramid. The sub-aperture
pyramid generates a tree of multi-resolution images at a variety of cross-range versus azimuthal resolution trade-
offs allowing for the detection of anisotropic phenomena. With each sub-aperture in the pyramid, we associate a
hypothesis that the azimuthal scattering is confined to and uniform over that sub-aperture. This then leads to a
sequence of hypothesis tests to classify the anisotropy for a pixel which can be approximated with an efficient pruning
algorithm due to the tree-structure over the sub-apertures.

This characterization of anisotropy allows us to explore the underlying phenomenology of anisotropic scattering.
In particular, our results show that while apparent at all orientations, there seems to be markedly different sources for
anisotropy. At near-cardinal azimuths, anisotropic scatterers are stable as we would expect under canonical scattering
models. However, at off-cardinal angles, anisotropy is erratic and difficult to predict from a different depression. This
suggests that there is a different source of anisotropy at these intermediate azimuths. A likely candidate for this
anisotropy is the scintillating scattering produced by volumetric scattering. Such a group of irresolvable scatterers
would exhibit anisotropic behavior due to their interference and would be unpredictable with changes in depression
like we observed in our experiments.

As demonstrated by the ROC curves, these different sources of anisotropy will need to be addressed separately
in order to fully utilize the information contained in each. The classification approach here used here is useful at
near-cardinal angles where anisotropy is stable, but not at off-cardinal angles. The sub-aperture models used here
are in their elementary stages and as they develop, they should further aid in the studying of anisotropic scattering
in SAR. Even though they are motivated by canonical scattering, they detect anisotropic behavior regardless of the
source and can be used to study the phenomenon in general.
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