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ABSTRACT

We consider a method for estimating classification performance of a model-based synthetic aperture radar (SAR)
automatic target recognition system. Target classification is performed by comparing an unordered feature set
extracted from a measured SAR image chip with an unordered feature set predicted from a hypothesized target
class and pose. A Bayes likelihood metric that incorporates uncertainty in both the predicted and extracted feature
vectors is used to compute the match score. Evaluation of the match likelihoods requires a correspondence between
the unordered predicted and extracted feature sets. This is a bipartite graph matching problem with insertions and
deletions; we show that the optimal match can be found in polynomial time.

We extend the results in1 to estimate classification performance for a ten-class SAR ATR problem. We consider
a synthetic classification problem to validate the classifier and to address resolution and robustness questions in the
likelihood scoring method. Specifically, we consider performance versus SAR resolution, performance degradation
due to mismatch between the assumed and actual feature statistics, and performance impact of correlated feature
attributes.

Keywords: synthetic aperture radar; model-based target recognition; scattering centers; structural matching; Bayes
classification; performance estimation

1. INTRODUCTION

Synthetic Apterture Radar (SAR) classification problems are often characterized by the combined complexity of
a high-dimensional observation space and a large set of multi-modal candidate hypotheses. Pattern recognition
from measured imagery is characterized by a high dimensional observation space. A typical image may comprise a
256×256 array of pixels, yielding an observation vector in RN , where N = 216. For both computational simplicity
and performance robustness, feature extraction is used to reduced the data to lower dimension. In addition, pattern
recognition problems in general, and SAR ATR problems in particular, are characterized by a complex hypothesis
space. The hypothesis set consists of M classes, or objects. The complexity arises in that each object may be
observed in a variety of poses, configurations and environments, thereby resulting in an intractable density function
for the measurement conditioned on the object. The number of enumerated subclasses explodes exponentially; a
typical application for 10 ≤ M ≤ 50 object classes might dictate 1012 subclasses.2

To address hypothesis complexity, a staged, coarse-to-fine classification strategy is used to efficiently search the
hypothesis space. In addition, a sensor data model is combined with object models to predict features conditioned on
a hypothesis. The on-line prediction of features eliminates the need for measurement and storage of a prohibitively
large catalog of image templates. The classification approach is summarized in Figure 1. A state of nature is
characterized by the hypothesis of an object class or subclass, Hk, from which a measurement U is drawn. A Feature
Extraction stage serves to reduce the dimensionality of the measured data; parameters are estimated from imagery
and used as low-dimensional surrogates for sufficient statistics. The uncertainty in these parameters is given as a
density function, f(Y |U), and reflects the sensitivity of parameter estimates, Y , to noisy sensor data, given the
measured data, U .

The complexity of the hypothesis space is addressed in a coarse-to-fine approach. An Index stage provides a list
of candidate hypotheses, Hk, k = 1, . . . , K, based on a coarse partitioning of the hypothesis space. Evaluation of
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Figure 1. A staged approach to manage high-dimensional observations and complex hypothesis sets encountered
in classification of radar images.

the candidate hypotheses then proceeds using a model for the observations. A Feature Prediction stage computes a
predicted feature set by combining the sensor data model from the Feature Extraction stage and a computer-aided
design (CAD) representation of a hypothesis Hk. The predicted feature set, Xk, has an associated uncertainty
f(X|Hk) acknowledging error in the modeling and variation among objects in the subclass. The predicted and
extracted feature sets are combined in a fine classification, or Bayes Match, stage to compute the posterior probability
of a candidate hypothesis, Λ(Hk). The top hypotheses, and their likelihoods, are reported as the output of the
classification system. Computation of the likelihood scores requires a correspondence between extracted and predicted
features and an integration over feature uncertainty.

Inexact feature matching, and the related inexact graph matching problem, have been the subject of much work
in the pattern recognition community.3–6 Recent work on Bayesian structural matching considers subgraph matches
and edit distances.5,6 These structural match problems typically have a large number of nodes that are not fully
connected by edges, and the research emphasis has been on computationally efficient search solutions that exploit the
edge structure. In contrast, we consider a problem in which the graphs are fully connected, and seek Bayes optimal
matches that incorporate prior probabilities of node deletions and extraneous nodes.

This paper focuses on the application of model-based Bayesian classification approach to recognition of vehicles
using synthetic aperture radar (SAR) images. We consider a model-based Bayesian matcher derived from the
MSTAR matcher.7–9 We adopt an electromagnetic scattering model for use in both the Feature Extraction and
Feature Prediction stages. The feature set used for classification is based on an attributed scattering center model
for target scattering.10,11 We present synthetic classification performance predictions using class means estimated
from measured X-band SAR imagery of ten vehicles. We also consider sensitivity of classification performance to the
assumed feature uncertainties and priors. The results illustrate that the Bayes approach to model-based classification
is tractable given priors and feature uncertainties. The examples also illustrate how one can use the Bayes classifier as
a simulation tool to explore performance as a function of sensor parameters or to explore sensitivity of classification
performance to assumed priors and feature uncertainties.

This paper extends earlier work1 and uses the same feature set and classifiers. We briefly present the attributed
scattering center features in Section 2 and the Bayes classifiers in Section 3. In Section 4 we present recent classifi-
cation performance results using this scattering center model and classifier. Section 5 concludes the paper.

2. ATTRIBUTED SCATTERING CENTER MODEL

We adopt a parametric data model which is based on approximate radar scattering physics.11 From the geometric
theory of diffraction, if the wavelength of the incident excitation is small relative to the object extent, then the
backscattered field from an object consists of contributions from electrically isolated scattering centers. The total



scattered field from a target is modeled as the sum of p individual scattering centers11
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where fc is the center frequency of the radar and c is the speed of propagation. Each of the p scattering centers is
characterized by six attributes: (Rxk, Ryk) denote the scattering center location, Ak is the amplitude, Lk is a length,
φ̄k is a pose angle, and the discrete parameter αk characterizes curvature of the scattering center. The feature set
{θ1, . . . , θp}, where

θk = [Rxk, Ryk, Ak, αk, Lk, φ̄k], k = 1, ..., p (3)

forms the set of features used for classification. Note that the features θk are unordered, but the feature attributes
(the elements of θk) are well-ordered.

The model in (1)–(2) is based on geometric theory of diffraction and physical optics approximations for scattering
behavior and allows compression of the high-dimensional measured image into a low-dimensional feature space.
Primitive scattering geometries, such as dihedrals, corner reflectors and cylinders, are distinguishable by their (α, L)
parameters.11

3. BAYES CLASSIFICATION

3.1. Problem Statement

The Bayes matching problem is given as follows (see Figure 1). At the input to the classifier stage, we are given a
vector of n features

Y = [Y1, Y2, . . . , Yn]T (4)

extracted from a measurement, U . Each feature Yi is an ` × 1 vector of ordered attributes, either θi given by (3) or
an ordered subset of the attributes. We are also given a set H = {Hk, k ∈ [1 . . . K]} of K candidate hypotheses,
along with their prior probabilities P (Hk). The set H typically is provided by the preceding Index stage, as depicted
in Figure 1.

We assume available a feature prediction function which maps a hypothesis Hk to a set of mk predicted features

Xk = [Xk
1 , Xk

2 , . . . , Xk
mk

]T (5)

Each feature Xk
i is an ordered attribute vector whose attributes match those of the Yi vectors. Finally, we assume

a known probability model for the uncertainty of the attributes for any predicted or extracted feature, as well as
models for appearance of a given feature in Y and for the feature attributes if Yi is a false-alarm feature (i.e., Yi

does not correspond to a predicted feature). We seek to compute the posterior likelihood of the observed features,
Y , under each of the K hypotheses in the set H.

Λk = P (Hk|Y ), Hk ∈ H (6)

The most likely hypotheses and their corresponding likelihoods are reported at the output of the classifier.

To compute the posterior likelihood in (6), we apply Bayes rule for any H ∈ H to obtain†

P (H|Y ) = P (H|Y, n) =
f(Y |H, n)P (H|n)

f(Y |n)
=

f(Y |H, n)P (n|H)P (H)
f(Y |n)P (n)

(7)

†We drop the subscript on the hypothesis Hk in the sequel, and consider a general H ∈ H Correspondingly, we drop the k
on Xk and mk in (5).



Since the denominator of (7) does not depend on hypothesis H, the MAP decision is found by maximizing
f(Y |H, n)P (H)P (n|H) over H ∈ H. The priors P (H) and P (n|H) are assumed to be known or are provided by the
Index stage.

To compute f(Y |H, n) we incorporate uncertainty in both the predicted and extracted feature sets. Assume the
object being measured has a true feature vector X̂. We measure that object with a sensor and obtain a feature
vector Y . The measured feature vector differs from X̂ due to noise, sensor limitations, etc. We write this difference
notionally as Y = X̂ +Ne where Ne is a feature extraction error described by a probability density function f(Y |X̂).
In addition, if we suppose a hypothesis H, we can predict a feature vector X that differs from X̂ because of modeling
errors. We express this difference as X̂ = X + Np where Np is a prediction error with probability density function
f(X̂|X) = f(X̂|H). Note that X is completely determined from the hypothesis H. Therefore, to determine the
conditional uncertainty of Y given hypothesis H, we have

f(Y |H, n) =
∫

f(Y |X̂, H, n)f(X̂|H, n) dX̂ (8)

where f(X̂|H, n) models the feature prediction uncertainty, and f(Y |X̂, H, n) models feature extraction uncertainty.
The computation of f(Y |X̂, H, n) requires a correspondence between the elements of Y and X̂, or equivalently
between Y and X. The correspondence must also account for unmatched features in both X and Y .

3.2. Feature Correspondence

Computation of the likelihood f(Y |X̂, H, n) requires a correspondence map Γ between extracted and predicted
features. The correspondence map is a nuisance parameter that arises because an extracted feature vector is not
ordered with respect to the predicted feature vector. The correspondence also accounts for extracted features that
are not in the predicted vector (false alarms) as well as predicted features that are not extracted (missed features).

3.2.1. Random versus Deterministic Correspondences

We consider two correspondence mappings, probabilistic and deterministic. These two correspondence mappings
lead to two different expressions for the posterior likelihoods Λk.

We denote by G the set of all admissible correspondence maps. For a probabilistic correspondence model the
Bayes likelihood is

f(Y |H, n) =
∑
Γ∈G

f(Y |Γ, H, n)P (Γ|H, n) (9)

where, similarly to (8),

f(Y |Γ, H, n) =
∫

f(Y |X̂, Γ, H, n)f(X̂|Γ, H, n) dX̂ (10)

The conditioning on n, the number of extracted features, is required in (9)–(10) because Γ is a correspondence
between m predicted features and n extracted features.

If the correspondence Γ is assumed to be deterministic but unknown, then Γ is a nuisance parameter in the
classification problem, and we seek uniformly most powerful (UMP) or UMP-invariant decision rules.12 In this case,
no uniformly most powerful classifier exists.13 Therefore, we adopt the Generalized Likelihood Ratio Test (GLRT)
classifier,

f(Y |H, n) ≈ max
Γ∈G

f(Y |Γ, H, n) (11)

where f(Y |Γ, H, n) is computed using (10). The GLRT approach in (11) avoids the summation in (9), but requires
a search for the best correspondence Γ.

3.2.2. Conditional Feature Likelihood

To implement either (9) or (11), we require a probability model for f(Y |X̂, Γ, H, n). We assume that the uncertainties
of the Xi are conditionally independent given H, and that the uncertainties of the Yj are conditionally independent
given H, X, and n. Note that the features need not be independent; only the feature uncertainties are assumed con-
ditionally independent. Independence is assumed because separate features are often physically unrelated. Further,



even if the physical features contain some common attribute, the physical processes that result in feature uncertainty
may be unrelated. The independence assumption significantly simplifies computation of the likelihood to yield

f(Y |Γ, H, n) =
n∏

j=1

f(Yj |Γ, H, n) (12)

In (12), each term in the product is a feature likelihood conditioned on a correspondence Γ and hypothesis H.

Each extracted feature Yj either corresponds to a predicted feature or is a false alarm. If Yj is a false alarm, we
assign Γj = 0, and we model the feature attribute as a random vector with probability density function

f(Yj |Γj = 0, H, n) = fFA(Yj) (13)

If Yj corresponds to a predicted feature Xi, we write Γj = i (for i > 0) and compute the feature match score from
(10). In particular, from (10) it follows that for i > 0,

f(Yj |Γj = i, H, n) =
∫

f(Yj |X̂i, H, n)f(X̂i|Xi, H) dX̂i (14)

For the special case of Gaussian uncertainties, (14) admits a closed-form solution. If the extracted feature attributes
has Gaussian uncertainty, f(Yj |X̂i, H, n) ∼ N (X̂i,Σe), and if the predicted feature has uncertainty f(X̂i|Xi, H, n) ∼
N (Xi,Σp), then from (14) we have

f(Yj |Γj = i, H, n) = f(Yj |Xi, H, n) ∼ N (Xi,Σp + Σe) (15)

For features whose attributes are discrete-valued, the likelihood is the sum

P (Yj |Xi, H, n) =
∑
X̂i

P (Yj |X̂i, H, n)P (X̂i|Xi, H, n) (16)

3.2.3. Correspondence Match Scores

We consider two ways to compute a likelihood match score between two sets of features from equation (9) or (11): a
probabilistic many-to-many score in which every predicted feature may correspond to every extracted feature with
some probability, and a one-to-one score in which we adopt a deterministic unknown correspondence assumption and
maximize (11) over all one-to-one maps Γ.

Many-to-Many Likelihood Score

Two main difficulties are faced when implementing a probabilistic correspondence in (9): (i) knowledge of the priors
P (Γ|H, n), and (ii) the high computational cost of summing over all possible correspondences. The derivation of
correspondence prior probabilities appears intractable for this application.

The sum over all correspondences in (9) can be simplified if the correspondence priors P (Γj = i) are independent of
j. Following,8,13,1 let λ be the average number of false alarm features present in Y , and let Pi(H), 1 ≤ i ≤ m denote
the probability of detecting the ith predicted feature under hypothesis H. It follows that8 B = λ/[λ +

∑m
k=1 Pk(H)] is

the probability that an extracted feature is a false alarm and Di(H) = (1−B)Pi(H)/[
∑m

k=1 Pk(H)] is the probability
that an extracted feature comes from the ith predicted feature. With these assumptions, the probabilistic many-to-
many likelihood score is

f(Y |X) = f(Y |H) =
n∏

j=1

f(Yj |X, H) =
n∏

j=1

[
BfFA(Yj) +

m∑
i=1

Di(H)f(Yj |Xi, H)

]
(17)

where f(Yj |Xi, H) is the likelihood that extracted feature Yj corresponds to predicted feature Xi under hypothesis
H.



One-to-One Likelihood Score

For a given one-to-one correspondence map Γ (in such a map each extracted feature maps to at most one predicted
feature and conversely), the likelihood score is given by

f(Y |Γ, H, n) =


P (nF false alarms)

∏
{j:Γj=0}

fFA(Yj)




·



∏
{j:Γj=i>0}

Pi(H)


 ·


f(Yj |Γj = i, H, n)

∏
{i:Γj 6=i,∀j}

(1 − Pi(H))


 (18)

where Pi(H) is the detection probability of the ith predicted feature under hypothesis H. Note that Γ defines
the feature correspondences, determines a set of nF extracted features that correspond to no predicted features
(false alarms), and identifies predicted features that correspond to no extracted features (missed features). The first
braced term in (18) models the likelihood of false alarm features, the second term gives the likelihood of corresponding
predict-extracted feature pairs, and the third term penalizes the missed predict features.

The GLRT hypothesis selection rule in (11) finds the correspondence Γ that maximizes f(Y |Γ, H, n) in (18) for
each candidate hypothesis H ∈ H. For the case that P (nF false alarms) = ce−βnF for some constants c and β,
the search can be implemented in O((m + n)3) operations (where m and n are the lengths of the predicted and
extracted feature vectors, respectively) using the Hungarian algorithm.14 The Hungarian algorithm finds, in O(k3)
computations, the one-to-one correspondence between the elements of the k×1 vectors [x1, . . . , xk]T and [y1, . . . , yk]T

that minimizes the cost of the correspondence, where the cost of corresponding xi with yj is given by the ijth entry
of the k × k matrix C. The correspondence is equivalent to selecting exactly one element from each row and column
of the array such that the sum of the selected entries is minimized.

The Hungarian algorithm can be modified to find the optimal correspondence between [X1, . . . , Xm]T and
[Y1, . . . , Yn]T that includes both insertions and deletions in the correspondence. To do this we employ the (m +
n) × (m + n) cost matrix C given in Table 1. From (18) we observe

− log f(Y |X, Γ, H, n) = −
∑

{j:Γj=0}
log[βfFA(Yj)] −

∑
{j:Γj=i>0}

log[Pi(H)f(Yj |Γj = i, H, n)]

−
∑

{i:Γj 6=i,∀j}
log[1 − Pi(H)] + constant (19)

The elements on the right hand side of (19) appear in the cost matrix in Table 1. From this table we see that
the Hungarian algorithm thus finds the correspondence that minimizes the log-likelihood score (19) in O((m + n)3)
computations. By exploiting the structure of the cost matrix in Table 1, the computational cost can be further
reduced to O(max(m, n)3) operations.

Y1 · · · Yn misses
X1 c11 · · · c1n M1 ∞
...

...
. . .

...
. . .

Xm cm1 · · · cmn ∞ Mm

false F1 ∞ 0 · · · 0

alarms
. . .

...
. . .

...
∞ Fn 0 · · · 0

Table 1. The cost matrix for the one-to-one matcher in equation (18). Here, cij = − log[Pi(H)f(Yj |Γj = i, H)],
Fj = − log[βfFA(Yj)], and Mk = − log[1 − Pk(H)].



4. PERFORMANCE ESTIMATION

In this section we present synthetic classification performance predictions by applying the Bayes matcher to a ten-class
vehicle recognition problem using X-band synthetic aperture radar imagery. We use synthetic feature vector means
based on measured SAR imagery, coupled with an assumed feature perturbation model. We compare performance
when using five feature attributes (Rx, Ry, |A|, α, and L) and when using subsets of these attributes. The experiments
illustrate that the Bayes classifier is tractable for problem sizes encountered in SAR target recognition, and that it
permits estimation of the Bayes error given a model for priors and feature uncertainties. The experiments also
illustrate how one can explore classification performance as a function sensor parameters (e.g., bandwidth, signal-
to-noise ratio, extracted feature sets), and how one can explore the sensitivity of the performance to the assumed
priors and feature uncertainties.

To synthesize the class means, we extract location and amplitude features for ten targets in the MSTAR Public
Targets data set.15 The data set contains 0.31 ft × 1 ft resolution SAR images of ten targets at 17◦ depression angle.
Each image is 128×128 complex-valued pixels. For each target, approximately 270 images are available covering
the full 360 degree aspect angles, for a total of 2747 images. The targets are the 2S1, BMP-2, BRDM-2, BTR-70,
BTR-60, D-7, T-62, T-72, ZIL-131, and ZSU-23-4.

From each image, downrange and crossrange locations and amplitudes of peaks are extracted from each image
chip by finding local maxima in the SAR image. We keep the ten largest amplitude peaks. The remaining parameters
are not provided by publicly available prediction modules, so are generated synthetically. The nominal values of the
type attribute are generated as α ∼ N (0.5, 0.25). The length parameter is quantized to one bit for this study, and
the nominal values of the length attribute are generated using a Bernoulli random variable with P (L > 0) = 0.3. We
quantize L to avoid the computational expense of evaluating likelihoods for a non-Gaussian, mixed distribution. The
γ and φ parameters in (2) are not used in the experiments because no strong evidence exists that these parameters
can be predicted and extracted with low enough uncertainty to substantially improve classification performance.
These form the 2747 class mean vectors for the 10 composite target classes. The uncertainty models for the feature
attribute means, and the false alarm feature density function, are:

• Predict Feature Uncertainties f(X̂i|H) − Xi:
Rx, Ry ∼ N (0, 1 ft2); log10(|A|) ∼ N (0, 0.25); no uncertainty on α and L.

• Extract Feature Uncertainties f(Ŷj|H) − X̂i:
Rx, Ry ∼ N (0, 1 ft2); log10(|A|) ∼ N (0, 0.25); α ∼ N(0, 1/4);
Probability of incorrectly estimating L = 0 or L > 0 is 0.2.

• False Alarm Features: fF A(Yj):
Number: Poisson with rate λ = 3 per image chip: P (nF false alarms ) = e−λλnF /(nF !);
(Rx, Ry) ∼ uniform over the image;
log10(|A|) ∼ N (µ, 0.25), with µ = log10(median amplitude of predicted scattering centers);
α ∼ N (0.5, 1); L: Bernoulli with P (L > 0) = 0.3

Each feature vector Xi or Yi is the vector [Rxi, Ryi, log10 |Ai|, αi, Li] or a subset of these attributes, depending on
the particular experiment. We assume a Gaussian uncertainty for the first four of these attributes, so the covariance
matrix for the first four attributes is given by Σp + Σe = diag[2, 2, 0.5, 0.25]. Nondiagonal uncertainty covariance
matrices are considered in the third example below. The discrete parameter Li is characterized by the confusion
matrix [

P (L̂ = 0|L = 0) P (L̂ > 0|L = 0)
P (L̂ = 0|L > 0) P (L̂ > 0|L > 0)

]
=

[
0.8 0.2
0.2 0.8

]
(20)

We emulate the Index stage in Figure 1 as follows. For each of the 2747 target image chips, we find the five
image chips in each of the 10 target classes that have the highest correlation. The target classes and poses (pose is
in this case azimuth angle) corresponding to these 50 image chips form the initial hypothesis list generated by the
Index stage. For each class mean vector, we generate a predict feature vector for each of the 50 hypotheses from
the Index stage by randomly perturbing the mean vector using the predict uncertainty model above. We similarly
generate an extracted feature vector from the mean vector. The extracted feature vector assumes each scattering
center has a probability of detection of Pd = 0.5, so not all scattering centers are present in the extracted feature



vector. We also add clutter scattering centers to the extract feature vector. We then compute the match scores
and posterior likelihoods assuming equally likely priors (P (n|H)P (H) = constant) on the 50 Index hypotheses. We
record the target class corresponding to the one of the 50 hypotheses with the highest likelihood score. We repeat this
experiment 10 times for each class mean vector; this gives a total of 27,470 classifications from 27,470×50 matches.

The CPU time needed to compute likelihood scores are summarized in Table 2. Shown are the average com-
putation times for 1000 matches using the many-to-many and one-to-one match scores, for the case m = n = 10.
The matchers are implemented in unoptimized Matlab code on a 333 MHz Pentium processor. Note that O(mn)
computations are needed for the many-to-many match score, and O((m+n)3) computations for the one-to-one match
score. For this case, the computation of the entries in The computation of the entries in equation (17) and (19)
comprise a significant fraction of the total compute time for this example.

One-to-one Many-to-many
Using (Rx, Ry) 73.28 14.78

Using five attributes 92.00 32.02

Table 2. Average CPU time (msec) to compute correspondences and likelihood scores for m = 10 predict and
n = 10 extract features. Shown are results using only two feature attributes (Rx, Ry), and using all five feature
attributes.

Below we present three experiments that illustrate how one can explore classification performance as a function
sensor parameters and how one can explore the sensitivity of the performance to the assumed priors and feature
uncertainties. The first example considers classification performance as a function of sensor resolution, and the
second and third examples consider performance sensitivity due to scattering center instability and correlated feature
attributes.

Performance versus Resolution

Figure 2 presents probability of correct classification results as a function of both the number of feature attributes
and the system bandwidth. First we compare the use of location features with location features coupled with other
attributes. The amplitude attribute provides only modest improvement (1-2 dB) in the probability of error, due
to its relatively high uncertainty. The addition of the frequency dependence and length attributes provides more
significant improvement in classification performance, especially for the higher resolutions considered.

Figure 2 also presents results of an experiment in which we predict classification performance as SAR sensor
resolution changes; we consider SAR image Rayleigh resolutions of 2, 1, 1

2 , and 1
4 ft. We assume decreasing uncertainty

in the location, frequency dependence, and length attributes as Rayleigh resolution becomes finer, as shown in Table 3.
From Figure 2 we see that classification performance improves significantly as radar bandwidth and integration angle
increase. Specifically, the error probability 1−Pc decreases by about 15 dB as the SAR Rayleigh resolution improves
from 2 ft to 1

4 ft. We see a clear benefit of increased bandwidth because it results in decreased feature uncertainty.

Performance Sensitivity due to Scattering Center Scintillation

Figure 3 examines the effect of mismatch on the detection probability and clutter rate of scattering centers. In
this experiment the true detection probability is Pi(H) = 0.5 and on average λ = 5 false alarm scattering centers,
all constrained to lie within a vehicle mask. All five attributes were used in the classification. The experiment
simulates the effect of scattering center scintillation (which is hypothesized to result in a scattering center detection
probability significantly lower than 0.9) and explores the sensitivity of classification performance to the assumed
detection probability. We estimate classification performance using the true detection and false alarm rates, and
also using Pi(H) = 0.9 and λ = 1. We see the classification performance degrades significantly compared to the 1 ft
baseline case in Figure 2 (in Figure 2 there are on average 3 false alarm scattering centers that lie anywhere in the
image, whereas in Figure 3 there are 5 false alarm scattering centers all in close proximity to the vehicle scattering
centers). On the other hand, the classification performance appears to be robust to uncertainty mismatch in this
case, as the performance in the mismatched experiment is less than 0.6 dB lower than the performance when the
correct uncertainties are used in the match score.
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Figure 2. Classification performance as a function of number of feature attributes and radar bandwidth. The top
figure shows average probability of correct classification (Pc); the bottom figure shows the same data plotted as
average probability of error (1 − Pc) in dB.

Table 3. Sum of prediction and extraction feature attribute uncertainties and misdetection costs used in the Bayes
classifier example.

SAR Rayleigh Resolution
Feature Attribute 2 ft 1 ft 1/2 ft 1/4 ft
locations x, y
N (0, σ2) σ = 2 ft σ = 1 ft σ2 = 1/2 ft σ = 1/4 ft
amplitude
log10(|A|) ∼ N (0, σ2) σ2 = 0.5 σ2 = 0.5 σ2 = 0.5 σ2 = 0.5
frequency dependence
α ∼ N (0, σ2

α) σα = 1 σα = 1/2 σα = 1/4 σα = 1/8
length[

P (L̂ = 0|L = 0) P (L̂ = 0|L > 0)
P (L̂ > 0|L = 0) P (L̂ > 0|L > 0)

] [
0.7 0.3
0.3 0.7

] [
0.8 0.2
0.2 0.8

] [
0.9 0.1
0.1 0.9

] [
0.95 0.05
0.05 0.95

]

Performance Sensitivity to Correlated Feature Attributes

This example considers the effect on classification performance of attributes with nonzero cross-correlation. We
assume a non-zero correlation coefficient of ρ = 0.5 or 0.9 between the downrange and crossrange location features;
thus, the 2 × 2 top left submatrix of Σp + Σe becomes

[Σp + Σe]1:2,1:2 = 2
[

1 ρ
ρ 1

]
(21)
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Figure 3. Classification performance using correct (left) and erroneous (right) detection probabilities and false
alarm rates in the one-to-one match score.

We also perform a similar experiment in which the location features are uncorrelated features with downrange and
crossrange feature variance equal to (1+ρ, 1-ρ); these are the eigenvalues of the matrix in (21). For both cases we apply
two match metrics; one matcher uses the true uncertainty information and the other assumes [Σp + Σe]1:2,1:2 = 2I2.

Figures 4 and 5 show the simulation results and for for ρ = 0.5 and ρ = 0.9, respectively, using the one-to-one
matcher; the results for the many-to-many matcher are similar. The first two bars are for the correlated feature case,
and show performance estimates for the matched (left) and mismatched (right) classifier; the second pair of bars
give performance estimates for the uncorrelated but unequal uncertainty variance case, again with a matched and
mismatched classifier. We see that the Bayesian classification performance for correlated features is nearly identicaly
to classification performance for the uncorrelated attribute uncertainties if the uncertainty eigenvalues are equal in
the two cases. We also see that the two mismatched classifiers give similar performance. Thus, the “rotation” of the
covariance matrix has little effect on performance. In addition, the Bayesian classification performance for correlated
attribute uncertainties using a mismatched matcher (that is, the matcher assumes uncorrelated attribute uncertain-
ties with the same feature variances) is nearly identical to the Bayesian classification performance for uncorrelated
attribute uncertainties with the same variance. We conclude that without knowing the mutual correlation on corre-
lated attribute uncertainties and adopting a matcher designed for uncorrelated attribute uncertainties results in the
same performance if those attribute uncertainties are actually uncorrelated, while knowing the correlation information
on correlated attribute uncertainties helps to improve the ATR classification performance. This improvement can be
significant for highly correlated attribute uncertainties. Furthermore, we can predict this improvement by evaluating
the classification performance under uncorrelated attribute uncertainties with attribute uncertainty variances equal
to the eigenvalues of the covariance matrix of the correlated attribute uncertainties.

5. CONCLUSIONS

We have considered a method for estimating classification performance for a model-based ATR system that employs
attributed scattering center features. The classifier is based on a Bayes match between unordered sets of predicted
and extracted scattering features. Feature uncertainty is included in the match metric. The match requires estimating
the correspondence between extracted and predicted features, and the correspondence must take into account both
false alarm and missed scattering centers in the extracted feature vector. We considered two match correspondence
strategies, a one-to-one match and a computationally simpler many-to-many match.
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Figure 4. Classification performance results for correlated location attributes with ρ = 0.5 using the best one-to-one
match score. The top figure shows average probability of correct classification (Pc); the bottom figure shows the
same data plotted as average probability of error (1 − Pc) in dB.
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Figure 5. Classification performance results for correlated location attributes with ρ = 0.9 using the best one-to-one
match score.



Examples presented show that a Bayesian formalism leads to tractable hypothesis testing in model-based object
recognition using unordered feature sets. We presented classification performance predictions based on scattering
centers extracted from measured SAR imagery of ten targets. Complexity of the Bayes matching is polynomial in the
problem size. Tractability of the likelihood calculations in the Bayes approach requires only conditional independence
assumptions. These are mild assumptions, much weaker than feature independence, and are reasonable for many
physically-motivated feature sets.

In addition to providing a decision engine for M -ary hypothesis testing, the Bayes approach provides a structured
method for predicting classification performance as a function of feature uncertainties and sensor physics. The
probabilistic Bayes approach allows principled management of uncertainty in both measured data and class models.
Significantly, the Bayes hypothesis testing reports normalized belief values — likelihood scores — which may be used
for either maximum a posteriori probabilistic decisions or soft decisions.
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