
Relative Information in Phase of Radar Range Pro�les

Brian Rigling , Lee C. Potter and Randolph L. Moses

The Ohio State University

Department of Electrical and Computer Engineering

2015 Neil Avenue, Columbus OH 43210-1272 USA

ABSTRACT

In this paper, the phase of a radar range pro�le is shown to contain valuable information for inverse scattering
problems. A physics-based high-frequency parametric model is adopted for the radar backscatter, and information is
quanti�ed using the variance of parameters estimated from noisy radar range pro�les. Through analysis of the Fisher
information matrix, phase is observed to yield up to a factor of ten increase in achievable resolution; moreover, phase
is shown to allow reliable discrimination of frequency-dependent scattering behaviors. Results are con�rmed using
measured radar imagery from a 2-inch resolution X-band system.
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1. INTRODUCTION

Advances in technology have steadily increased radar fractional band width, de�ned as band width divided by center
frequency. Consequently, a point-scattering theory, while an excellent approximation for narrow band systems, has
become a tenuous assumption for systems with high percent band width. Therefore, signal processing and image
analysis techniques based on point-targets fail to provide the full inference available from wide band scattering
measurements.

In this paper, we attempt to address the question, \what information is available in the phase of a radar range
line?" This question is posed by Rihaczek,1 who reported a factor of two loss in functional resolution by discarding
range line phase. This observation presented a \con
ict with conventional thinking"1{ namely, that after coherently
computing the Fourier transform of a phase history, the phase of the range line is a noninformative nuisance parameter.
We further investigate the information in phase. Our approach is to adopt an electromagnetic model for linear phase
scattering mechanisms and estimate model parameters from a noisy range line or synthetic aperture radar (SAR)
image. An estimation theoretic approach using Fisher's information matrix2 provides a quanti�able measure of
information loss. Further, the probabilistic approach allows analysis of the e�ect of noise.

1.1. A Physical Scattering Model

In this paper we focus on phase information as a function of radar fractional band width; thus, we consider down-
range resolution only. The results apply to high range resolution real aperture radar with simple extension to SAR
imagery. We adopt an electromagnetic scattering model based on the geometric theory of di�raction3,4 to write a
radar phase history as a superposition of linear phase scattering terms

S(f) =
X
i

Ai

�
jf

fc

��i

exp

�
�j

4�f

c
xi

�
+ n(f) (1)

where c is the propagation speed, fc is the center frequency, and n(f) is an additive complex white Gaussian noise
process with variance �2. A two-dimensional extension to SAR data is given by Gerry et al.5 In Equation (1), xi
is the location of the target phase center relative to a phase reference point, and the parameter �i characterizes
frequency dependence. Example values of � are given in Table 1 for canonical target geometries. Values of � less
than zero correspond to di�raction, � = 0 characterizes an ideal point target, � = 0:5 characterizes a singly curved
surface, such as a tophat, and � = 1 characterizes 
at plate scattering, such as from a trihedral corner re
ector.

The amplitude parameter Ai in Equation (1) is real-valued for a perfect electrical conductor (PEC) and is well-
approximated as real-valued for dielectric layers above PEC, provided the layer is a small fraction of c=fc.
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1.2. On the Point-Scattering Assumption

The physical model in Equation (1) provides insight to the applicability of a point scattering assumption for a narrow
band radar system. Consider, for example, fc = 30GHz and 1 meter Rayleigh resolution (150MHz). The 1m2 image
resolution cell may contain many scattering objects, which leads to a behavior well-approximated by a pixel value
with random phase10 (and a beta distribution on pixel amplitude). Further, for the 0.5% factional band width,

jf0j � jf�j (2)

for � 2 (�1; 1); this approximation is quanti�ed by Chiang.7{9 Thus, a point scattering model with uniform random
phase is a justi�able assumption for data processing in this narrow band case. Indeed, the peak of the Fourier
transform yields the maximum likelihood (ML) estimate for the location of a single, random phase target.11

In contrast, with increasing band width and �xed center frequency, the � = 0 point target approximation becomes
increasingly worse for frequency dependent responses, and the number of scattering targets in a Rayleigh resolution
cell decreases.

1.3. A Measure of Information

We seek to characterize the information about the parameter vector fA;�; xg carried in the range pro�le phase.
Bruzzone and Kaveh12 o�er a measure of relative information, R

R =
jM j

jI j
(3)

where jI j is the determinant of Fisher's information for the parameters given the complex data and jM j is the
determinant of Fisher's information for the parameters given only the magnitude. The inverse of the Fisher's
information matrix gives the Cram�er-Rao lower bound (CRLB) for the error covariance of any unbiased parameter
estimator.2 Therefore, R = jI�1j=jM�1j, and we choose to report relative information by comparing parameter
estimation error variances. More generally, location estimation variance provides a principled de�nition of radar
resolution.5,13

The phase of a signal contains no useful information if it can be recovered uniquely from the signal magnitude
via nonparametric techniques. In the absence of noise, the phase of a maximum phase signal is uniquely recoverable,
up to ��, from the magnitude of the transform.14 The signal model in Equation (1) is maximum phase for � � 0;
however, in the inevitable presence of measurement noise, the sampled signal S(f) is not maximum phase, and the
signal cannot be perfectly recovered.

2. ANALYSIS OF ESTIMATION VARIANCE

To e�ectively measure the information in the complex-valued range pro�le and its magnitude, in relation to the
scattering model parameters, we construct three curves as functions of signal-to-noise ratio (SNR) and band width.
These curves are: (1) the CRLB using the complex data, (2) the parameter error variances obtained using maximum
likelihood (ML) estimation with the complex data, and (3) the observed parameter error variances obtained from
estimation using the magnitude data. We de�ne

SNR = 10 log10
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Table 1. Alpha values for canonical scatterers.

� Example scattering geometries

1 
at plate at broadside; dihedral; trihedral
0:5 singly curved surface re
ection; tophat
0 point; sphere; straight edge specular

�0:5 edge di�raction
�1 corner di�raction



where E is the average energy of the N frequency domain samples of the backscattered signal and �2 is the noise
variance from Equation (1). This de�nition of SNR is related to the commonly used peak-to-noise ratio (PSNR) in
the range pro�le by PSNR = SNR + 10 log10N . Note that N increases with band width, if the frequency sample
spacing, and hence unambiguous range, are held constant. An unwindowed discrete Fourier transform (DFT), with
zero padding, is used to obtain a range pro�le from the phase history samples.

2.1. A Variance Bound Using Complex Data

The CRLB provides a lower bound on the estimation error variance for any unbiased estimator. The CRLB is given
by the inverse of the Fisher's information matrix2

Iij = E
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where log p(Sj�i) is the log-likelihood function of the sampled data S given the parameter vector element �i. For
the scattering model in Equation (1), � = fA; x; �g, and each element of the 3 � 3 matrix I is a function of �, �2,
fc, and band width. The second and third diagonal elements of I�1 lower bound the error variances for x and �,
respectively. Derivation of the CRLB for the model in Equation (1) is straightforward.15,8

2.2. Maximum Likelihood Estimation

We estimate the error variances for estimated x and � using Monte Carlo simulation. Given �, fc, band width and
N , a simulated radar phase history is computed from Equation (1). An X-band center frequency, fc = 10GHz, is
used in all cases reported. For each trial, noise of variance �2 is added, and a ML estimate is computed for �. In
each trial, the location parameter x is randomly selected, with uniform distribution over a range gate, to remove
any dependence on the target location within the time-domain sampling interval. Two sets of trials are conducted.
First, � = 1 is assumed known, and x is estimated. Second, both x and � are randomly chosen, where � is equally
likely from f0; 0:5; 1g; the model parameters are then estimated from the noisy complex-valued range lines. For each
choice of band width and SNR, parameter estimation variance is averaged from 1000 trials.

2.3. Estimation Variance with Phase Discarded

To evaluate the e�cacy of signal analysis when the range line phase is discarded, we again estimate error variances
via Monte Carlo simulation. The experiment design follows the complex-valued data study in Section 2.2, except
that the noisy range lines are replaced by their magnitudes. The resulting N data points, without zero padding,
have an uncorrelated Rician joint probability density given by

fv(v) =
v
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�v�v
�2

�
(6)

where �2 is the noise variance in the complex sample, �v is the mean of the magnitude sample, and I0 is the zeroth-order
modi�ed Bessel function of the �rst kind. Zero padding yields correlated samples.

The density in Equation (6) apparently makes evaluation of the CRLB intractable. In addition, the numerical in-
stability of the ML estimator prompts the use of a non-linear least-squares (NLLS) estimator instead. Asymptotically,
errors for the NLLS estimator converge in probability to the ML estimation error distribution.16

3. SIMULATION RESULTS

The results of three performance simulations discussed in Section 2 are presented in Figures 1, 2 and 3, shown as
mean absolute error (MAE) versus SNR. In all cases, the ML estimates lie very close to the CRLB for the complex-
valued data, indicating that the estimates are nearly e�cient. For estimation errors using magnitude only, results
are shown for zero padding to length 1:5N ; less zero padding impairs estimation performance and additional zero
padding does not signi�cantly improve estimation performance.

In Figure 1, the frequency dependence, �, is assumed known; the amplitude and location are estimated. The
curves show that discarding phase spoils achievable resolution by over a factor of 10.
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Figure 1. Average x estimation error curves for 4 inch (upper) and 2 inch (lower) Rayleigh resolution, with known
� and 1:5N DFT oversampling.
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Figure 2. Average x estimation error curves for 4 inch (upper) and 2 inch (lower) Rayleigh resolution, with unknown
� and 1:5N DFT oversampling.
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Figure 3. Average � estimation error curves for 4 inch (upper) and 2 inch (lower) Rayleigh resolution, with unknown
x and 1:5N DFT oversampling.

In Figure 2, � is unknown and the triple fA; x; �g is estimated. We observe that absence of prior knowledge of
� lessens this resolution gap; here, the resolution loss by discarding the phase is less than a factor of two. Retention
of the phase provides the resolution gain equivalent to approximately 2 dB improvement in SNR.

The relative information between magnitude pro�les and complex-valued range pro�les is more striking in Figure 3,
where the mean absolute error is shown for � estimates. In the curve, consider a SNR of 10dB and a 3GHz band
width, corresponding to 5 cm (2 inch) Rayleigh resolution. We observe a mean absolute error of approximately 0.1
using the phase information, in contrast to a MAE of 2.0 when the phase is discarded. Given a physical range of
[0; 1] for nondi�ractive scattering, the loss of phase renders the frequency dependence unobservable from the noisy
data. Indeed, even a 30dB SNR level yields a MAE of 0.2 when phase is discarded. In summary, accurate estimation
of frequency dependence, �, requires either large fractional band width or high SNR, and loss of phase leaves �
inaccessible when processing data from existing radar systems.

4. INTUITIVE VIEW

An intuitive explanation can be o�ered for the increased error in estimating � without phase. Figure 4a shows the
magnitude pro�les for � = f0; 0:5; 1g, and Figure 4b shows the phase pro�les for the same selection of � values.
Under noiseless conditions, the magnitude pro�les are extremely similar, making them virtually indistinguishable in
the presence of noise. However, signi�cant di�erences show in the phase pro�les. These di�erences are due to the j�

term in Equation (1).

5. MEASURED SAR DATA

In this section, we analyze measured SAR data to test the performance trends predicted by simulation. Complex-
valued spotlight SAR images of 40 trihedrals and 40 tophats are taken from the Grayling, Michigan Ultra-�ne
resolution SAR (GUS) data collection. The 3GHz band width of the X-band system provides 5 cm Rayleigh resolu-
tion. From each image, we extract a down-range pro�le through the target. Estimation performance is investigated by
constructing histograms of estimates for frequency parameter, �, and of estimation errors for the location parameter,
x.

For estimation of �, we calibrate a 2-3 dB variation in antenna gain17 and an unspeci�ed side lobe windowing
by normalizing trihedral phase histories by the mean magnitude of observed top hat responses. From Table 1, the
predicted frequency dependence of the normalized trihedral signatures is therefore f1=f0:5 = f0:5. In Figure 5
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Figure 4. The e�ect of the � frequency dependence parameter is seen primarily in the phase of the range pro�le.

0 1 2 3
0

0.2

0.4

0.6

Estimated α

D
is

tr
ib

ut
io

n

(a)

0 1 2 3
0

0.2

0.4

0.6

Estimated α

D
is

tr
ib

ut
io

n

(b)

0 1 2 3
0

0.2

0.4

0.6

Estimated α

D
is

tr
ib

ut
io

n

(c)

0 1 2 3
0

0.2

0.4

0.6

Estimated α

D
is

tr
ib

ut
io

n

(d)

Figure 5. Estimation of � from GUS range pro�les at 2-inch resolution, using the complex pro�le yields � estimates
which allow discrimination of scattering frequency dependence, but using the magnitude does not. (a) 2-inch complex,
(b) 2-inch magnitude, (c) 4-inch complex, (d) 4-inch magnitude.

estimation results using the 40 normalized trihedral signatures are shown for four cases. In Figure 5a, � is estimated
from the 2 inch resolution phase history (using magnitude only of the frequency samples, owing to the lack of antenna
phase calibration). The frequency dependence is correctly identi�ed for all 40 trihedrals; the mean absolute error
is only 0.05. In Figure 5c, the resolution is spoiled to 4 inches. Estimation accuracy is degraded, as expected, but
nonetheless provides a 0.37 standard error { less than the 0.5 di�erence distinguishing 
at surfaces from singly curved
targets. Figure 6a and 6c are computed from the magnitude only of the phase histories and are therefore conservative
predictors of estimation performance possible if the calibrated complex range lines were available.

In contrast, Figures 5b and 5d show, for the 2 inch and 4 inch data sets, histograms of estimated � parameters
when phase is discarded from the range pro�les. Here, only 1 of 80 image chips is correctly identi�ed as containing
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Figure 6. Relative error in estimating x with GUS magnitude range pro�les at 2-inch resolution.
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Figure 7. Relative error in estimating x with GUS complex range pro�les at 4-inch resolution.

a target with f0:5 frequency dependence. Thus, the importance of phase in the range line data is strongly con�rmed
by this one limited empirical study.

Next, we consider the accuracy of location estimates. In the absence of ground truth, we use the 2 inch resolution
complex data to estimate nominal locations, and for lesser band width or magnitude data sets report location variance
relative to these nominal values. Figure 6 shows the distribution of relative location errors using 2 inch resolution
magnitude only range pro�les. Figure 7 shows the distribution of relative location errors using 4 inch resolution
complex range pro�les. The ratio of the two MSE values is approximately 8.0 in agreement with the performance
prediction in Figure 2.



6. CONCLUSIONS

In SAR images and range pro�les, the phase is informative. Fisher's information, combined with physical scattering
models, provides a method to quantify and predict the information carried by the phase. Further, estimation accuracy
provides a useful de�nition of radar resolution, incorporating scattering behavior, band width, and SNR. For targets
of unknown frequency dependence, the range pro�le phase provides the equivalent of 2 dB improvement in the phase
history SNR and over 10 times resolution improvement if the target frequency response is known. More strikingly,
the phase information makes possible the estimation of frequency dependence. These theoretical predictions are
con�rmed in measured X-band SAR imagery.

The conclusions presented here assume a stationary phase center for a PEC target, and hence linear phase
responses in the frequency domain. Rihaczek and Hershkowitz18 postulate an empirically motivated cubic phase
scattering model and demonstrate the essential role of image phase in the associated parameter estimation task.
Alternatively, electromagnetic modeling of scattering mechanisms on man-made targets15 can be used in conjunction
with parameter estimation to detect and analyze image features arising from multi-bounce and other non-linear phase
mechanisms not adequately addressed by the conventional point-target processing methods.

ACKNOWLEDGMENTS

The authors thank Dr. Robert Hummel of the Defense Advanced Research Projects Agency and Dr. John Gorman of
Veridian-ERIM International for access to the Grayling ultra-�ne resolution SAR imagery. This work was sponsored
by the US Air Force Materiel Command under contract F33615-97-1020. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the o�cial policies or endorsements,
either expressed or implied, of the Air Force Research Laboratory or the US Government.

REFERENCES

1. A. W. Rihaczek, \Radar resolution of ideal point scatterers," IEEE Trans. Aerospace and Electronic Systems,
32, 842{845, 1996.

2. H.L. Van Trees, Detection, Estimation, and Modulation Theory Part I. New York, NY: Wiley, 1968.
3. J. B. Keller, \Geometrical theory of di�raction," J. Opt. Soc. Am., 52, 116{130, 1962.
4. L.C. Potter, D.-M. Chiang, R. Carriere and M.J. Gerry, \A GTD-based parametric model for radar scattering,"

IEEE Trans. Antennas Propagation, 43, 1058{1067, 1995.
5. M. J. Gerry, L. C. Potter, I. J. Gupta, and A. van der Merwe, \A parametric model for synthetic aperture radar

measurements, IEEE Trans. Antennas and Propagation, 47, 1179{1188, 1999.
6. C. A. Balanis, Advanced Engineering Electromagnetics. New York, NY: Wiley, 1989.
7. L. C. Potter and R. L. Moses, \Attributed scattering centers for SAR ATR," IEEE Trans. Image Processing, 6,

79{91, 1997.
8. Da-Ming Chiang, Parametric Signal Processing Techniques for Model Mismatch and Mixed Parameter Estima-

tion. PhD dissertation, The Ohio State University, Columbus OH, 1995.
9. M. L. Walker and J. W. Helton, \Application of signal subspace algorithms to scattered geometric optics and

edge-di�racted signals," IEEE Trans. Signal Processing, 42, 2217{2226, 1994.
10. David C. Munson and Jorge L. C. Sanz, \Image reconstruction from frequency-o�set Fourier data," Proc. IEEE,

72, 661-669, 1984.
11. Steven M. Kay, Modern Spectral Estimation: Theory and Application, Prentice Hall, Englewood Cli�s, 1988.
12. S. P. Bruzzone and M. Kaveh, \Criterion for selecting information-preserving data reductions for use in the

design of multiple parameter estimators," IEEE Trans. Information Theory, 29, 466{470, 1983.
13. H.-C. Chiang, R. L. Moses, and L. C.Potter, \Model-Based Classi�cation of Radar Images," to appear in IEEE

Trans. Information Theory, 2000.
14. M. H. Hayes, J. S. Lim, and A. V. Oppenheim, \Signal reconstruction from phase and magnitude," IEEE Trans.

Acoustics, Speech, and Signal Processing, 28, 672{680, 1980.
15. B. Rigling, MS thesis, The Ohio State University, Columbus OH, 2000.
16. H. White, \Maximum likelihood estimation of misspeci�ed models," Econometrica, 50, 1{25, 1982.
17. John Gorman, personal correspondence, 2000.
18. A. W. Rihaczek and S. J. Hershkowitz, \Man-made target backscattering behavior: Applicability of conventional

radar resolution theory," IEEE Trans. Aerospace and Electronic Systems, 32, 809{824, 1996.


