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ABSTRACT

We have developed linear subspace detectors that de-
tect targets in a background of both noise and tree
responses. We consider the background clutter as
stochastic noise, and we model the tree responses as
a deterministic signal with unknown amplitude and
unknown parameters. We develop a family of target
detectors based on different assumptions on what is
known about the taget and the tree families, and what
is known about the noise statistics. We compare per-
formance under several scenarios.

1 INTRODUCTION

Ultra-WideBand (UWB) radar sensors show promise
for enhancing the situational awareness of army
Brigades. UWB radars have been proposed for
surveillance and target acquisition in high-clutter
environments such as heavy foliage, providing en-
hanced situational understanding. UWB radar sys-
tems also have application in mine detection to pro-
vide improved situational awareness and improved
soldier and Brigade safety. Thus, development of
UWB technology is aimed at providing a more robust
sensor suite with higher capabilities than is currently
available to the Brigade. In this paper we develop
improved target acquisition algorithms for UWB sys-
tems operating in severe clutter environments.

Constant False Alarm Rate (CFAR) detectors are of-
ten employed for object detection from measured
radar imagery. CFAR detectors attempt to find points
of interest whose amplitude or energy is large in com-
parison to local scatttered energy in the region of the
point. As an example, a two-parameter Gaussian
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CFAR detector estimates the mean and variance of
pixels in the neighborhood of a point under consider-
ation, and tests if the amplitude of that point is more
thanc standard deviations from the mean, wherec is
a user-selected constant that controls the false alarm
rate.

For object detection from Ultra-WideBand (UWB)
radar imagery, alternatives to Gaussian CFAR detec-
tion are often sought. There are a number of rea-
sons for this. First, the clutter in high resolution
radar imagery obtained at low frequencies, such as
the UWB imagery measured by the ARL UWB sen-
sor, is not well-modeled as Gaussian noise in many
cases. Some studies have suggested that the clutter is
more accurately modeled as a heavy-tailed distribu-
tion, such as a K-distribution or anα-stable random
process. CFAR detectors that employ these models
have been developed [1, 2]. For imagery in forested
areas, CFAR detectors give high false alarm rates for
a given desired probability of detection of objects of
interest. The reason for this is that tree trunk scatter-
ing appears as a locally bright region, and passes the
CFAR detection test. CFAR detectors that assume a
heavy-tailed distribution are only marginally helpful
in reducing the false alarm rate.

In this paper we take a different approach to the de-
tector problem. We assume the radar signal is a com-
bination of objects of interest, of clutter modeled as
a random “noise”, and of interference terms of un-
known amplitude. The interference will be used to
model tree scattering. This signal model has been
used in multi-user communication applications [3] as
well as other detection and estimation applications in
the presence of structured interference [4, 5].

We assume the tree scattering is dominated by a sig-
nal structure that lies in a low-dimensional subspace
of the measured data. Different assumptions can be
made about what is known or unknown about tree



scattering, leading to subspaces of different dimen-
sion. At one extreme, for example, we can take a Ge-
ometric Theory of Diffraction (GTD) approximation
to tree scattering, and arrive at a one-dimensional in-
terference subspace. At the other extreme we can as-
sume the interference class has an arbitrary isotropic
scattering response. Between these two extremes
lie the cases in which one has partial knowledge of
tree scattering, such as might be known from low-
frequency tree scattering predictions.

The detection problem considered in this paper has
some relationship with detection of anisotropic scat-
tering by subaperture processing of radar imagery
data [6, 7, 8]. Subaperture processing can be con-
sidered a special case in which one assumes the in-
terference term is isotropic. Our approach provides
some advantages and flexibility: we can incorporate
as much or little structured knowledge of both the in-
terference term and the desired signal term to improve
detection performance, and we have explicit expres-
sions for the detectors and detection performance us-
ing the subspace-based approach. By incorporating
partial knowledge of the signal and interference, we
improve detection performance.

2 Signal Model

We assume a radar measurement vectorY of dimen-
sionK×1 is given. The measurement can be thought
of as a vectorized version of a radar image chip about
a candidate point of interest. The signal model we
assume is

Y = Hθd + Sθt + σN (1)

whereH is aK × p matrix whose columns span the
desired signal subspace andS is aK×t matrix whose
columns span the interference signal subspace. The
matricesH andS encode partial knowledge of the
signal and interference, respectively. The vectorsθd

and θt are unknown amplitudes for the signal and
interference, and the vectorsHθd and Sθt are the
K × 1 signal and interference components ofY , re-
spectively. The vectorN is aK × 1 vector of noise,
which is modeled as zero mean Gaussian noise with
covarianceR. We assume bothH andS are known,
but θd andθt are completely unknown; in this way

we encode partial knowledge of the signal and inter-
ference components.

3 Detector Structures

The signal detection problem can be formulated as
the following hypothesis testing problem:

H0 : Y = Sθt + σN (2)

H1 : Y = Hθd + Sθt + σN (3)

Thus, underH0 the signal is absent, orθd = 0,
whereas underH1 we testθd 6= 0. We will further
assume that the noise covarianceR = σ2I, although
extensions to generalR are straightforward.

Two GLRT detector structures are analyzed for the
cases of knownσ and unknownσ.

Case 1 : Known σ When the noise variance is
known, the decision rule is given by

L1(Y ) =
H1
>
<
H0

η1 (4)

where

L1(Y ) =
Y T P+

s PGP+
s Y

σ2 (5)

Here, theK × K matrix Ps = S(ST S)−1ST is the
projection operation onto the interference subspace

〈S〉 4
=span(S), andP+

s = I − Ps is its orthogonal
complement. Similarly,PG = H(HT H)−1HT and
P+

G = I − PG project onto and orthogonally to the
signal subspace〈H〉. The thresholdη1 is selected by
the user, and is usually chosen to specify a desired
false alarm rate for the detector.

The likelihood ratio statistic is distributed as a chi-
squared distribution:

L1(Y ) ∼ χ2
p(0) underH0 (6)

L1(Y ) ∼ χ2
p(λ

2) underH1 (7)



wherep is the signal subspace dimension and

λ2 =
µ2

σ2 (Hθd)T P+
s (Hθd) (8)

is the effective signal-to-noise ratio (SNR). Equa-
tions 6 and 7 give an analytical expression for the
performance of the detector; in particular, equation 6
can be used to determine the thresholdη1 needed for
a given false alarm rate.

Case 2 : Unknown σ When σ2 is unknown,
it is estimated (to within a known constant) by
Y T P+

s P+
G P+

s Y . This estimate is the variance es-
timate obtained by projectingY to the null space of
〈H ∪ S〉. In this case, the resulting decision rule is
given by

L2(Y )
H1
>
<
H0

η2 (9)

where

L2(Y ) =
Y T P+

s PGP+
s Y

Y T P+
s P+

G P+
s Y

(10)

This likelihood ratio statistic is F-distributed:

L2(Y ) ∼ Fp,k−(p+t)(0) underH0 (11)

L2(Y ) ∼ Fp,k−(p+t)(λ
2) underH1 (12)

where

λ2 =
µ2

σ2 (Hθd)T P+
s (Hθd) (13)

is the effective SNR in this case. Note that the like-
lihood ratio depends on the dimensions of the signal
and interference subspaces in this case. Similarly
to Case 1, equations 11 and 12 give an analytical
expression for the performance of the detector, and
equation 11 can be used to determine the threshold
η2 needed for a given false alarm rate.

3.1 Properties of the DetectorsThe above detectors
are GLRT detectors, which in general are not optimal.

However, these two detectors can be shown to be op-
timal detectors under the class of invariant detectors
that correspond to the unknown parameters [5, 4]. In
particular,

1. The tests are Uniformly Most Powerful(UMP),
as the test-statistics’ distributions are monotone
in the non-centrality parameter.

2. The test statistics are invaiant to any translation
of the received vector (this includes scaling and
rotation) in the interference subspace,〈S〉.

3. The test-statistics are also invariant to scaling
under rotations in the subspace orthogonal to the
interference subspace〈S〉.

4. For Case 2, the test-statistic is also invariant to
the scaling ofY , because it utilizes the angle
which Y makes with the signal subspace,〈H〉,
after it has been projected orthogonal to〈S〉.

4 Performance Analysis

In this section we evaluate the performance of the de-
tectors synthetically generated radar-data using the
scattering models in [9]. The signal subspace,〈H〉,
is the space of all dihedral images, for a quantized
set of values of the dihedral lengthL and orientation
angleφ0. The images are converted into vectors by
stacking pixel values into columns. An SVD anal-
ysis of all these vectors yields the eigenvectors and
the corresponding singular values for this subspace.
All the image-chips are of size 33x33 ( hence K =
1089). The dimension ofH used is varied in the
experiments. If one were looking for a single dihe-
dral length and orientation,p would be equal to one.
In the examples,p is varied from 10 to 55, where
p = 55 corresponds to90% of the total energy in the
subspace containing all the quantized dihedrals we
considered. The interference subspace,〈S〉 , consists
of a tree image generated by using the simple model,
(T (f, φ) = A

√
f ), for the tree response in the fre-

quency domain. For this model, the dimension of
〈S〉 , is t = 1. We have also used higher interference
dimensions using an SVD analysis of available low
frequency scattering predictions of trees; the results
are similar to those presented. The received data vec-
tor is generated by adding together vectors in each of



the two subspaces, and adding white Gaussian noise
to the result.

Figure 1 shows performance as a function of SNR,
for various values ofp (p is the dimension of〈H〉).
Performance is measured as probability of detection
(Pd) of a desired scattering center for a probability
false alarm fixed atPfa = 0.01. From the plot, we
observe that the performance improves asp decreases
- this is because asp increases the class of desired
signals increases, and noise rejection is lower. We
thus observe a trade-off between better modeling of
〈H〉( largep) and better performance (smallp). Also,
we see very little difference between the performance
of the two detectors. This is because of the large
dimension of the image-chip, yielding an extremely
accurate estimate forσ in case of the second detector.
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Figure 1: Probability of Detection for Dihedrals as a
function of SNR. Here,Pfa = 0.01 andp represents
the dimension of the desired signal subspace.

Figure 2 shows the ROC curve for the two detectors,
for various values ofp, when the signal-to-noise ratio
is fixed at 10 dB.Again, a similar behavior is observed
with respect top.

5 Future Directions

We are currently applying these detectors to measured
UWB SAR data collected byARL. Our goal is to eval-
uate the performance of the detectors on measured
data. We are also currently investigating the the val-
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Figure 2: ROC curve for subspace detectors when
SNR=10 dB.

ues of SNR and image-chip sizes which would be
meaningful for measured data.
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