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Abstract

We present a model for classification performance esti-
mation for synthetic aperture radar (SAR) automatic target
recognition. We adopt a model-based approach, in which
classification is performed by comparing a feature vector
extracted from a measured SAR image chip with a feature
vector predicted from a hypothesized target class and pose.
The feature vectors are compared using a Bayes likelihood
match metric that incorporates uncertainty in both the pre-
dicted and extracted feature vectors. The feature vectors
parameterize dominant scattering centers on the target, and
include attributes that characterize frequency and angle de-
pendence of scattering centers. We develop Bayes matchers
that incorporate two different feature correspondence meth-
ods. Finally, we compare performance using measured SAR
imagery for a 10-class problem under various match oper-
ating scenarios.

1. Introduction

We consider the problem of Automatic Target Recogni-
tion (ATR) from synthetic aperture radar (SAR) imagery.
SAR target recognition is challenging because of the high
variation present in measured imagery. SAR backscatter
returns of targets can change significantly with only slight
differences in target pose (azimuth and elevation) or target
articulation (position of a moving part on the target). As
a result, each target class is a highly multimodal compos-
ite class with a very large number of dissimilar subclasses.
If classification is attempted using template matching, the
number of test templates becomes prohibitive in practical
problems [4].
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To address the dimensionality of the SAR ATR problem,
the classification problem is subdivided into stages; a typical
three-stage system [6] is shown in Figure 1. The first, pre-
screener stage performs initial detection of regions of interest
(ROIs) that may contain targets of interest. The prescreener
is computationally fast and eliminate regions which obvi-
ously contain no target. The second, indexer stage operates
on regions detected in the first stage, and further reduces
non-target false alarms. In addition, the indexer generates
a list of candidate target hypotheses, along with a coarse
pose estimate for each, often using a coarsely tuned set of
templates or features. The coarse estimation is designed to
reduce the search space for the final classifier stage. The fi-
nal classifier is the most computationally intensive process,
and estimates the final target class.
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Figure 1. A typical SAR ATR system

The SAR dimensionality problem is also addressed by
adopting a model-based approach. In model-based meth-
ods, classification is performed by comparing a feature vec-
tor extracted from a measured SAR image chip with a feature
vector predicted from a hypothesized target class and pose.
The feature vectors are compared using a Bayes likelihood
match metric that incorporates uncertainty in both the pre-
dicted and extracted feature vectors.

The predicted vector is often computed on-line; the pre-
diction engine can be thought of as a black box whose input
is the hypothesized target class and pose and whose output
is a predicted feature vector, along with feature uncertainty
for the prediction. The predicted feature vector is then com-
pared with the feature vector extracted from the SAR region



of interest to determine if there is a match. An example
of such a model-based ATR system is the Moving and Sta-
tionary Target Acquisition and Recognition (MSTAR) ATR
system [2, 8].

In this paper we consider a model-based Bayesian
matcher that uses an alternate set of features for SAR ATR.
The feature set is based on anattributed scattering center
model for target scattering [7, 3]. In this model, the backscat-
tered energy present in SAR imagery is modeled as a col-
lection of scattering centers, each characterized by param-
eters that relate to the physical properties of the scattering
mechanism. This paper develops a Bayesian matcher for
the attributed scattering center features, based on the work
in [2], and presents classification performance results using
these features.

2. Attributed Scattering Center Model

At high frequencies, the scattering response of an object
is well approximated as a sum of responses from individual
scattering centers. These scatterers provide a concise, phys-
ically relevant description of the object and are thus good
candidates for use in target recognition, radar data compres-
sion, and scattering phenomenology studies. We therefore
adopt a scattering center-based feature vector for classifica-
tion.

We use the physically-based attributed scattering model
parameterization developed in [3]. The model uses the dom-
inant terms of monostatic scattering solutions from both
Physical Optics and the Geometric Theory of Diffraction.
The attributed scattering center model assumes that the total
scattered field as a function of frequencyf and aspectφ is a
sum ofp individual scattering terms:

Es(f, φ) =
p∑

k=1

Es
k(f, φ) (1)

Each scattering center is modeled as
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where(Rxk, Ryk) denote the scatterer location,Ak is its
amplitude,αk is its frequency dependence,Lk andφ̄k are
the length and orientation of distributed scatterers, andγk is
the aspect dependence of localized scatterers. The scattering
model is thus described by the parameter set

(Ak, Rxk, Ryk, αk, γk, Lk, φ̄k), k = 1, ..., p (2)

Each scattering center is either localized or distributed. For
localized scattering centersLk = φ̄k = 0 andγk character-
izes the (mild) aspect dependence of the scattering center; for
distributed scattering centersγk = 0 and aspect dependence
is described by the pair(Lk, φ̄k). The frequency dependence
parameterαk discriminates between flat surface scattering
(α = 1), singly- or doubly-curved surfaces (α = 1/2 or
α = 0), and diffraction scatteringα <= 0 [3].

The point scattering model can be seen as a special case of
the attributed scattering center model withγk = Lk = αk =
0. The attributed scattering model generalizes the common
point scattering model (which assumes scattering centers
are isolated points whose responses are all identical, and are
independent of frequency and angle), and thus provides a
richer, physically relevant description of scattering behavior.

Algorithms for estimating the scattering model parame-
ters from measured SAR imagery, as well as feature uncer-
tainty and Cram´er-Rao uncertainty bounds, are presented in
[3, 5].

3. Bayesian Matchers

In this section we derive the Bayes match function used
in our analysis. At the input to the classifier stage, we have
a given region of interest (a SAR image chip), along with a
setH of candidate target hypothesesH = {H1, . . . , HM},
where each hypothesis contains target class and pose. From
the image chip we extract a feature vectorY , and from a
candidate hypothesisH we predict a feature vectorX, where

X = [X1, X2, . . . , XNx ]T , Y = [Y1, Y2, . . . , YNy ]T

(3)
and whereNx, Ny are the number of predicted and extracted
scattering centers, respectively. EachXi andYj is a vector
of scattering attributes; in this paper we consider a reduced
set of features given by

(Ak, Rxk, Ryk, αk, Lk), k = 1, ..., p (4)

We do not includeγ andφ̄ attributes in the model, because
we expect these features to have a minor role in target dis-
crimination capability.

3.1. Bayes Likelihoods

The classification goal is to maximizef(H|Y ). By Bayes
rule we have

f(H|Y ) =
f(Y |H)f(H)

f(Y )
(5)

We assumef(H) andf(Y ) are constant, and seek to maxi-
mizef(Y |H). To do so, we model this likelihood by relating
Y with its predicted counterpartX. An extracted scattering



centerYj will either correspond to a predicted scattering cen-
ter Xi, or be a “false alarm” scatterer due to clutter in the
SAR image. IfYj corresponds toXi, we findf(Yj |H) as∫

f(yj |xi, H)f(xi|H) dxi; otherwise we computef(Yj |H)
from the clutter density functionfc(Yj). Thus, we need to
have models forf(Y |X, H), f(X|H), andfc(Yj).

We assume theXi are conditionally independent given
H, and thatYj are conditionally independent givenH and
X. The independence of theXi is reasonable because the
prediction errors of separate scattering centers would be due
to variations in components on the target that make up that
scattering center, and these variations can be assumed to
be unconnected. The independence of theYi is supported
by the near block diagonality of the CRB matrix for well-
separated scattering centers [3]. We further assume that the
individual parameters that make up eachXi andYj are inde-
pendent. There is little empirical information exists to either
support or contradict an independence assumption, but since
the independence assumption simplifies the Bayes matcher
significantly, we choose to adopt it until sufficiently com-
pelling evidence becomes available to suggest otherwise.
Under these independence assumptions, it suffices to model
each feature separately; we denote the “θ” feature inXi or
Yj , whereθ is one of the parameters in equation (4), asxiθ

andyjθ, respectively.

3.2. Likelihood of a Single Feature

For the performance estimation study in this paper, we
assume a particular form for the density functionf(xiθ|H).
We assume that the location parameters are Gaussian random
variables, and that the amplitude parameters are log-normal.
We also assumeα is Gaussian. We simplify theL parameter
as a binary detection ofL = 0 versusL > 0.

The density functions for extracted features that are due
to clutter are modeled as follows. We assume a uniform 2-
d Poisson model for clutter location, with an average ofλ
clutter scattering centers per pixel. The location is uniformly
distributed on the target chip. We assume the remaining ex-
tracted clutter attributes have the same statistical distribution
as target scattering attributes.

Each parameterθ in extracted scattering center feature
vector Yj that corresponds to a predicted scattering cen-
ter feature vectorXi has a conditional likelihood model
f(yjθ|xiθ, H) as follows. Ifθ is a location, log amplitude,
or α parameter, its conditional likelihood is assumed to be
Gaussian, so

f(yjθ|xiθ, H) ∼ N (xiθ, σ
2
jθ, (6)

For a discrete random variable feature (such as the discrete
length statistic), the likelihood is a weighted sum of condi-

tional mass functions

P (yjθ|H) =
∑
x̄iθ

P (yjθ|x̄iθ, H) · P (x̄iθ|H)

=
∑
x̄iθ

P (yjθ|x̄iθ) · P (x̄iθ|xiθ) (7)

Further discussion of the uncertainty assumptions can be
found in [1].

3.3. Feature Correspondences

In order to compute the likelihood, we must correspond
the extracted and predicted feature vectors in some way. An
extracted feature vector is not ordered with respect to the
corresponding predicted feature vector. In addition, the ex-
tracted feature vector may not contain the same number of
scattering centers as a predicted feature vector, because the
extraction algorithm may fail to detect a scattering center
or detect a clutter peak in the SAR image as a scattering
center. Missing and spurious scattering centers can hap-
pen. This fact increases the difficulty for developing SAR
feature-based matchers. We consider two commonly used
correspondence mappings below [2]. These two correspon-
dence mappings lead to two different formations of the match
likelihood functions.

Many-to-Many Correspondence: Figure 2 shows a cor-
respondence map between a set of predicted scatterers and
extracted scatterers. Each extracted scattering center is
mapped from every predicted scattering center or clutter with
some probability. LetPi(H) denote the probability of de-
tecting theith predicted scattering center under hypothesis
H, and letλ denote the average number of Poisson clutter
scattering centers per chip. Following [2] we have
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Figure 2. A many-to-many correspondence
map between predicted scatterers and ex-
tracted scatterers

B =
λ

λ +
∑Nx

k=1 Pk(H)
(8)



as the probability that the extracted scattering center comes
from clutter, and

Di(H) = (1 − B)
Pi(H)∑Nx

k=1 Pk(H)
(9)

as the probability that the extracted scattering center comes
from theith predicted scattering center.

For the many-to-many map, we have

f(y|H) =
Ny∏
j=1

f(yj |H) (10)

=
Ny∏
j=1

[
Bfc(yj) +

Nx∑
i=1

Di(H)f(yj |xi)

]
(11)

=
∏
j

[
B

∏
θ

fc(yjθ)

+
∑

i

Di(H)
∏
θ

f(yjθ|xiθ)

]
(12)

We use the independent scattering center assumption in
equation (10), use the many-to-many mapping structure de-
scribed before in equation (11), and use the independent
scattering attributes assumption in equation (12).

One-to-One Correspondence: Figure 3 shows a one-to-
one correspondence map. Each extracted scattering center
can only be mapped from either one of the predicted scatter-
ing center or clutter. LetΓ be such a correspondence map.

In this case,Γ can be treated as a random variable which
we maximize over, andf(y, Γ|H) expression includes miss-
ing predicted scattering centers and permutation of clutter
scattering centers as

f(y, Γ|H) = exp−λ λf

Nx!

∏
{j:Γj=0}

fc(yj)

·
∏

{j:Γj 6=0}
PΓj

∫
f(yj |xΓj )f(xΓj )dxΓj

·
∏

{k:Γj 6=k,∀j}
(1 − Pk(H)) (13)

whereΓj = 0 if yj is mapped from clutter andΓj = i if
yj is mapped fromxi, f is the number of clutter scattering
centers given by the correspondence mapΓ.

3.4. Maximum likelihood Matchers

Let T denote the target class decision by the classifier.
The maximum likelihood (ML) matchers are

Tmm = ind max
Hi

f(y|Hi), (many-to-many) (14)

T11 = ind max
Γ,Hi

f(y, Γ|Hi), (1-1) (15)

wheref(y|Hi) in (14) is given by (12) andf(y, Γ|Hi) in
(15) is given by (13).

The ML matcher for the one-to-one map requires the
search of all possible correspondencesΓ. This is computa-
tionally more expensive than the ML matcher for the many-
to-many map. The many-to-many map has the interpretation
of averaging over the likelihoods of all possible one-to-one
maps [1]. If the likelihood of the best match is significantly
larger than the likelihood of all other matches, the two match-
ers can be shown to given nearly identical results [1].
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Figure 3. A one-to-one correspondence map
between predicted scatterers and extracted
scatterers

4. Performance Evaluation

In this section we compare the classification performance
results from the Bayesian matcher under a variety of condi-
tions. We propose an evaluation method using feature vec-
tor means based on measured SAR imagery, coupled with
an assumed feature perturbation model. . We compare per-
formance when using two features (location, amplitude) to
performance when using four features (location, amplitude,
α, L). We also consider the effect of different scattering
center detection probabilities.

4.1. Data and Experimental Procedure

Our simulations are based on features extracted from ten
targets in the MSTAR Public Targets dataset. These are
X-band image chips with 128x128 pixels and 0.3m×0.3m
resolution SAR data chips of ten targets at 17 degree depres-
sion angle. For each target approximately 270 images are
available covering the full 360 degree aspect angles. There
are a total of 2747 images.

Peak features (down/cross range locations and magni-
tude of peak amplitudes) are extracted from each image
chip using a peak extraction routine which essentially finds



local maxima in the SAR image. The remaining parame-
ters were not available, and were generated synthetically.
The nominal values of the type attribute are generated as
α ∼ N (0.5, 0.25). The nominal values of the length at-
tribute are generated using a Bernoulli random variable with
a P (L > 0) = 0.1 in (7). These form the 2747 class mean
vectors for the 10 composite target classes. The noise per-
turbations we use on the feature attribute means are:

• For Predicted feature vectors (f(xiθ|H)):
locations:N (0, σ2) with σ = 0.3 m
amplitude:log10(|A|) ∼ N (0, 0.25)
frequency dependence:α is N(0, 0.25)

length: confusion matrix=
[

1 0
0 1

]
(no uncertainty)

• For Extracted feature vectors (f(yjθ|xiθ, H)):
locations:N (0, σ2) with σ = 0.3 m
amplitude:log10(|A|) ∼ N (0, 0.25)
frequency dependence:α is N(0, 0.25)

length: confusion matrix=
[

0.8 0.2
0.2 0.8

]

• Clutter features
locations: 2D Poisson with rateλ = 3 per image chip
amplitude:log10(|A|) ∼ N (µ, 0.25), with

µ = log10(median ampl of tgt sc ctrs)
frequency dependence:α ∼ N (0.5, 1)
length:L is Bernoulli withP (L > 0) = 0.1

We emulate the indexer as follows. For each of the 2747
target image chips, we find the 5 image chips in each of the
10 target classes that have the highest correlation with it.
The targets classes and poses (pose is in this case azimuth
angle) corresponding to these 50 image chips form the initial
hypothesis list that is provided to the Bayes classifier.

For each test pattern, we find the 50 hypotheses from the
indexer, and generate 10 predicted scattering centers for each
hypotheses by randomly perturbing the class means as de-
scribed above. We similarly generate 10 extracted scattering
centers from each realization of the predicted feature vector.
The extract feature vectors assume each scattering center has
a probability of detection that ranges fromPd = 0.5 to 0.9
depending on the experiment; thus, not all scattering cen-
ters are present in the extracted feature vector. We also add
clutter scattering centers to the extract feature vector. We
then compute the one-to-one likelihood function in equation
(13) and the many-to-many likelihood function in equation
(12) for the extracted scattering center given each hypothe-
sis, and choose the one of the 50 hypotheses with the highest
likelihood score. This gives a total of 27,470 classifications
from 27,470×50 matches.
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Figure 4. Classification performance using
two and four attributes.

4.2. Number of Scattering Attributes

Figure 4 shows the one-to-one and many-to-many clas-
sification performance using four and two attributes with
Pd = 0.5, 0.7, 0.9. We can see that introducing the ad-
ditional type and length attributes does reduce classifica-
tion errors by about a factor of two. We also find that the
classification performance using a many-to-many matcher
is only slightly lower that the classification performance
using a one-to-one matcher in this scenario. The one-to-
one matcher requires the search for the best correspondence
which introduces more computational complexity than the
many-to-many matcher which only averages the likelihood
scores pointwise. The many-to-many matcher was 2-4 times
faster for this example, and the speed ratio increases linearly
with the number of scattering centers to be matched.
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Figure 5. Classification performance on sta-
bility of detecting target scattering centers

4.3. Scattering Center Stability

In this experiment we study the effects of stability of target
scattering centers. We use ten scattering centers per target
chip with aPd of 0.5 and on average 5 clutter scattering cen-
ters per chip. Clutter scattering centers are distributed only
on a rectangular target mask to emulate unmodeled scattering
on the target region. The low detection probability of scat-
terers emulates a situation in which scattering centers “scin-
tillate” and may not be detectable at slight pose offsets from
the predicted pose. We compare classification performance
using two matchers, each with different assumptions on the
scattering uncertainty. Matcher 1 use the correctPd = 0.5
and a clutter rate of 5/chip and Matcher 2 erroneously use
Pd = 0.9 and a clutter rate of 1/chip. Figure (5) summarizes
the simulation results.

Compared to the results obtained previously, the correct
classification rates are significantly lower in this case, even
if the matcher assumes the correct statistical model. This
result is expected, since on the target region the clutter scat-
tering centers are confused by target scattering centers by the

matchers, leading to higher classification error rates. In ad-
dition, the classification performance degrades significantly
when the matchers assumePd = 0.9 and a clutter rate of
1/chip. The reason is that the matcher puts too much con-
fidence in good matches of predicted scattering centers to
clutter scattering centers extracted from the target. Finally,
we see that when the matcher assumesPd = 0.9, many-to-
many classifier performed slightly better than the one-to-one
classifier. This may be due to a slightly increased robustness
of the classifier that results from the averaging over all fea-
ture correspondence maps.

5. Conclusions

Our simulation studies show that additional attributes on
scattering features show promise for improved SAR clas-
sification performance using model-based ATR. The actual
degree of improvement depends on the estimation accuracy
of the additional features. We found that the the many-to-
many matcher performs only slightly worse than the one-
to-one matcher (and slightly better in one experiment), but
is computationally much less expensive than the one-to-one
matcher. Future work is focused on examining the effects of
resolution versus performance, and on coupling uncertainty
models with prediction and extraction module performance.
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