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ABSTRACT

We present a method for estimating classi�cation performance of a model-based synthetic aperture radar (SAR) au-
tomatic target recognition (ATR) system. Target classi�cation is performed by comparing a feature vector extracted
from a measured SAR image chip with a feature vector predicted from a hypothesized target class and pose. The
feature vectors are matched using a Bayes likelihood metric that incorporates uncertainty in both the predicted and
extracted feature vectors. We adopt an attributed scattering center model for the SAR features. The scattering
attributes characterize frequency and angle dependence of each scattering center in correspondence the geometry
of its physical scattering mechanism. We develop two Bayes matchers that incorporate two di�erent solutions to
the problem of correspondence between predicted and extracted scattering centers. We quantify classi�cation per-
formance with respect to the number of scattering center features. We also present classi�cation results when the
matchers assume incorrect feature uncertainty statistics.
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1. INTRODUCTION

SAR target recognition is a challenging M-ary classi�cation problem because of the high variation present in measured
imagery. SAR backscatter returns of targets can change substantially with only slight di�erences in target pose
(azimuth and elevation) or target articulation (position of a moving part on the target). As a result, each target
class is a multimodal composite class with a very large number of dissimilar subclasses. If classi�cation is attempted
using template matching, the number of test templates becomes prohibitive in practical problems.

To address the dimensionality of the SAR ATR problem, the classi�cation problem is subdivided into stages; a
typical three-stage system1 is shown in Figure 1. The stages employ successively more sophisticated data processing
on successively fewer regions of the data and classi�cation spaces. The �rst stage is a prescreener which performs
initial detection of regions of interest (ROI) that may contain targets of interest. The indexer stage operates on
regions of interest detected in the �rst stage. The indexer further reduces non-target false alarms, and estimates a
candidate list of potential targets hypotheses along with a coarse pose estimate for each target hypotheses, usually
using a coarsely tuned set of templates or features. The coarse estimation is designed to reduce the search space for
the classi�er stage. The classi�er is the most computationally intensive process, and estimates the �nal target class.

SAR  Images
Classifier

ROI
Indexer

Target
Class  Index

Prescreener

Target
Hypothesis
List

Figure 1. A typical SAR ATR system

To address the problem of a very large number of classes, some ATR systems have adopted a model-based
approach. An example of such a model-based ATR system is the Moving and Stationary Target Acquisition and
Recognition (MSTAR) ATR system.2{4 In model-based methods, classi�cation is performed by comparing a feature
vector extracted from a measured SAR image chip with a feature vector predicted from a hypothesized target class

�This research was supported in part by DARPA and the US Air Force Research Laboratory under Grant F33615-979191020.



and pose. The feature vectors are compared using a Bayes likelihood match metric that incorporates uncertainty in
both the predicted and extracted feature vectors. Generally, the predicted vector is computed on-line; the prediction
engine can be thought of as a black box whose input is the hypothesized target class and pose and whose output is
a predicted feature vector, along with feature uncertainty for the prediction. The predicted feature vector is then
compared with the feature vector extracted from the SAR region of interest to determine if there is a match. The
MSTAR classi�cation output is computed by iteratively re�ning initial hypotheses (target and pose) generated at
the output of the indexer. These features are matched using a Bayesian classi�er which computes the likelihood of
an extracted feature set given a predict hypothesis.3

In this paper we consider a model-based Bayesian matcher similar to the MSTAR matcher.2{4 In our work, we
consider an alternate set of features for SAR ATR. The feature set is based on an attributed scattering center model
for target scattering.5{7 In this model, the backscattered energy present in SAR imagery is modeled as a collec-
tion of scattering centers, each characterized by parameters that relate to the physical properties of the scattering
mechanism. We develop a Bayesian matcher for the attributed scattering center features, and presents classi�ca-
tion performance results using these features. The goal of performance estimation is to quantify the classi�cation
performance improvement realized by incorporating additional scattering attributes in a model-based SAR ATR
system.

An outline of the paper is as follows. In Section 2 we present the attributed scattering center model that is used
for classi�cation. Section 3 presents the proposed Bayesian classi�er. In Section 4 we present classi�cation results
using this scattering center model and classi�er. Section 5 outlines conclusions and future research plans.

2. ATTRIBUTED SCATTERING CENTER MODEL

In this paper we employ a physically-based model for backscattered responses from objects measured at high frequen-
cies.6 The model approximates the scattering response by a sum of responses from individual scattering centers; each
scattering center response is modeled using the dominant terms of monostatic scattering solutions from both Physical
Optics and the Geometric Theory of Di�raction. The model incorporates both frequency and aspect dependence of
scattering centers. Each scattering center is characterized by a set of parameters describing its location, amplitude,
shape, and orientation angle. The model generalizes the common point scattering model8,9 which assumes scattering
centers are isolated points whose responses are identical to one another (except for amplitude), and are independent
of frequency and angle. The attributed scattering center model provides a richer, physically relevant description of
scattering behavior.

The attributed scattering center model parameterizes the total scattered �eld as a function of frequency f and
aspect � as a sum of p individual scattering center components:

Es(f; �) =

pX
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Here, (xk; yk) denote the scatterer location, Ak is its amplitude, �k is its frequency dependence. Each scattering
center is either localized or distributed; for localized scattering centers Lk = ��k = 0 and 
k characterizes the
(mild) aspect dependence of the scattering center. For distributed scattering centers 
k = 0, and scattering aspect
dependence is described by the physical length Lk and orientation angle ��k). The scattering model is thus described
by a subset of the parameter set (Ak ; xk; yk; �k; 
k; Lk; ��k) for k = 1; :::; p.

The attributed scattering center model incorporates di�erences in scattering due to di�erent object geometries.
For example, trihedral (corner re
ector) scattering is characterized by � = 1; L = 0, dihedral by � = 1; L > 0,
and spherical surfaces by � = 0; L = 0. The point scattering model is a degenerate case of this model with

k = Lk = ��k = �k = 0. The point scattering model contains no aspect and frequency dependence description of
scatterers, and one cannot discriminate between di�erent physical scattering mechanisms from its model parameters.

Algorithms for estimating the scattering model parameters from measured SAR imagery are presented in.6,7,10,11

Uncertainty of the scattering features has been considered in.6,11 The Cram�er-Rao bound for the features is presented



in,6 and initial comparisons of estimation algorithm performance to the CRB are presented in.6,10,11 Re�nement
of estimation algorithms and estimation uncertainty remain topics of ongoing research.

2.1. Feature Statistics

In order to match an extracted feature vector to a predicted one, we need a statistical model of features. In model-
based ATR, there is uncertainty in both extracted features and predicted features. In this section we develop a model
for feature uncertainty for both extracted and predicted features. The feature uncertainty model is based partly on
available theoretical and experimental performance results, and is partly motivated by computational simplicity of
the Bayesian matcher.

We denote a predicted feature vector for a given target hypothesis Hi (where Hi indicates both target class and
target pose) as a random vector X , and the corresponding extracted feature vector as Y . We see that

X = [X1; X2; : : : ; XNx
]T ; Y = [Y1; Y2; : : : ; YNy

]T (3)

where Nx; Ny are the number of predicted and extracted scattering centers, respectively. Each Xi and Yj is a vector
of scattering attributes given by a subset of (Ak; xk ; yk; �k; 
k; Lk; ��k).

In order to match feature vectors X and Y , we need a model for the probability density functions f(X jH) and
f(Y jX;H). We assume the Xi are conditionally independent given H , and that Yi are conditionally independent
given H and X . The independence of the Xi is based on the fact that prediction errors of separate scattering centers
would be due to variations in components on the target that make up that scattering center, and these variations
are generally not closely related. The independence of the Yi is supported by the near block diagonality of the
Cram�er-Rao bound matrix for well-separated scattering centers.6 We further assume that the individual parameters
that make up each Xi and Yj are independent. Again, the CRB matrix is diagonally dominant, supporting this
assumption. In addition, since little empirical information exists to either support or contradict an independence
assumption, and since the independence assumption simpli�es the Bayes matcher signi�cantly, we are inclined to
adopt the independence assumption until su�ciently compelling evidence becomes available to suggest otherwise.

The Bayes match metric developed below uses a subset of the available attributed scattering features that are
expected to provide the best improvement in class separability. We do not match the 
k and ��k parameters because
they are expected to have high uncertainty in practical systems. In addition, we quantize the information in the Lk
feature to one bit; that is we assume the the predicted and extracted Lk feature is either that Lk = 0 or Lk > 0.

For prediction we assume the following probabilistic feature uncertainty statistics. For the downrange and cross-
range location parameters (xk and yk), we assume the prediction uncertainty is Gaussian with zero mean and known
standard deviation. Similarly, we assume a Gaussian uncertainty for �k. The �k uncertainty assumption is conser-
vative, since �k is directly related to curvatures of the surfaces on the target that make up the scattering center, and
these should be known with almost no uncertainty. We assume Lk is predictable with no uncertainty. Finally, we
assume that the scattering amplitude is log normal distributed to model the high degree of uncertainty in predicting
scattering amplitude.

Some extracted features correspond to a scattering centers that are predicted for the target, and some are due
to clutter peaks and do not correspond to predicted features. For extracted scattering centers that correspond to
predicted features, we assume the same location, frequency dependence (�k), and amplitude uncertainty model as we
do for predict uncertainty, but with di�erent standard deviations. We assume nonzero uncertainty in the extracted
Lk parameter, which can be speci�ed as a 2� 2 confusion matrix.

In addition, extracted scattering features may arise from clutter peaks. We assume a uniform two-dimensional
Poisson model for clutter peak detection, with an average of � clutter peaks per pixel in the image. The location
of clutter peaks are uniformly distributed on the target chip. We assume the remaining extracted clutter attributes
have the same statistical model as target scattering attributes, but with di�erent parameters (di�erent standard
deviations, for example).

3. BAYESIAN MATCHERS

In this section we present the Bayes match function used in our analysis. From a given region of interest on the
SAR image, we assume the indexer generates an output list of candidate target classes and pose estimates. Using
the assumptions for feature priors in Section 2,



We compute the likelihoods of the extracted feature vector given the hypotheses from the indexer. We can also
compute the posterior probabilities of the hypotheses given the extracted feature. Then we apply either the maximum
likelihood or maximum a posteriori probability decision rule for classi�cation.

3.1. Feature Correspondences

Computing the Bayes likelihood requires that we form a correspondence between extracted and predicted features. An
extracted feature vector is not ordered with respect to the corresponding predict feature vector. The correspondence
must also account for extracted scattering centers Yj that are not in the predicted vector (extraction false alarms)
as well as predicted scattering centers Xi that are not extracted (missed extraction scattering centers). We consider
two correspondence mappings below, adapted from Ettinger, et. al.3 These two correspondence mapping lead to two
di�erent formations of the match likelihood functions. Let � denote a correspondence map. De�ne �j = 0 if yj is
mapped from clutter and �j = i if yj is mapped from xi.

3

Figure 2 shows a many-to-many correspondence map between a set of predicted scatterers and extracted scatterers.
Each extracted scattering center is mapped to each predicted scattering center or clutter with some probability. Let
Pi(H) denote the probability of detecting the ith predicted scattering center under hypothesis H and let jAj represent
the image unambiguous range. Following Ettinger, et. al.,3 we select

B =
�jAj

�jAj+
P

k Pk(H)
(4)

as the probability that the extracted scattering center comes from clutter, and

Di(H) = (1�B)
Pi(H)P
k Pk(H)

(5)

as the probability that the extracted scattering center comes from the ith predicted scattering center.
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Figure 2. A many-to-many correspondence map between predicted scatterers and extracted scatterers

Figure 3 shows a one-to-one correspondence map. Each extracted scattering center is mapped from either one of
the predicted scattering center or clutter.

3.2. Likelihood of a Single Scatterer

For a given extracted feature vector Y , we treat the feature vector for the independent scattering centers separately.
Since we assume scattering center features are conditionally independent given a hypothesis, the likelihood of an
extracted scattering center given a hypothesis H is the product of the likelihoods of its individual features given the
hypothesis:

f(yj jH) =
Y
�

f(yj�jH); (6)
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Figure 3. A one-to-one correspondence map between predicted scatterers and extracted scatterers

where � denotes the feature parameter. A feature vector Yj may arise from a target scattering center or may be
a clutter peak. If Yj results from clutter, its likelihood is governed by a clutter density. If Yj is mapped from a
predicted scatterer Xi, and if the feature has a Gaussian distribution (which is the case for the location parameters,
the log amplitude, or the simpli�ed type �), the likelihood is also Gaussian12:

f(yj�j�j = i;H) =
1q

2��2ij�

exp f(yj� � xi�)
2=2�2ij�g: (7)

Because of the independence assumption, the likelihood variance is the sum of the extraction uncertainty variance and
prediction uncertainty variance. A discrete random variable feature yj� 2 Yj (such as the discrete length statistic)
has likelihood given by a weighted sum of conditional mass functions

P (yj�j�j = i;H) =
X
�xi�

P (yj�j�xi� ; H) � P (�xi� jH) =
X
�xi�

P (yj�j�xi�) � P (�xi� jxi�): (8)

3.3. Feature Likelihood Function

The maximum likelihood matcher requires the computation of the likelihood f(yjH) for a many-to-many map, or
f(y;�jH) for a one-to-one map.

For the many-to-many map, we have

f(yjH) =
Y
j

f(yj jH) =
Y
j
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(9)

We use the independent scattering center assumption in the �rst equality, and the many-to-many mapping structure
(4){(5) in the second equality.

For the one-to-one map we adopt the following likelihood expression13

f(y;�jH) = e��jAj
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where f is the number of clutter scattering centers given by the correspondence map �, and m is the total number of
extracted scattering centers. The f(y;�jH) expression includes the number and permutations of clutter scattering
centers, density of extracted scattering centers given a correspondence map, and missing predicted scattering centers.



3.4. Maximum likelihood matchers

Let T denote the target class decision by the classi�er. The maximum likelihood (ML) match scores given by

T = ind max
Hi

f(yjHi); many-to-many map (11)

T = ind max
�;Hi

f(y;�jHi); one-to-one map (12)

The ML matcher for the one-to-one map requires the search of all possible correspondences �. This is computa-
tionally more expensive than the ML matcher for the many-to-many map.

y1 � � � yn

x1 D1(H)f(y1j�1 = 1; H) � � � D1(H)f(ynj�n = 1; H)
...

...
. . .

...
xm Dm(H)f(y1j�1 = m;H) � � � Dm(H)f(ynj�n = m;H)

FA1 Bfc(y1) 0

. . .
. . .

FAn 0 Bfc(yn)

Table 1. The likelihood matrix for the many-to-many matcher in equation (9). FAk denotes a false alarm corre-
sponding to the kth extract feature.

y1 � � � yn MI1 � � � MIm

x1 � log P1(H)f(y1j�1 = 1; H) � � � � log P1(H)f(ynj�n = 1; H) � log(1� P1(H)) 1
...

...
. . .

...
. . .

xm � log Pm(H)f(y1j�1 = m;H) � � � � log Pm(H)f(ynj�n = m;H) 1 � log(1� Pm(H))

FA1 � log �jAjfc(y1) 1 0 � � � 0
...

. . .
...

. . .
...

FAn 1 � log �jAjfc(yn) 0 � � � 0

Table 2. The cost matrix for the one-to-one matcher in equation (10). FAk denotes a false alarm corresponding to
the kth extract feature. MIk denotes that the kth predict feature was missed by the extracter.

Table 1 shows the likelihood matrix for the many-to-many matcher in equation (9) and Table 2 shows the cost
matrix for the one-to-one matcher in equation (10). Each element in the cost matrix is the negative of the logarithm
of a corresponding weighted likelihood. For the many-to-many matcher in equation (9) the likelihood scores of the
jth column in Table 1 are added to obtain the likelihood for the jth extracted scattering center, then the summed
scores are multiplied together to form the likelihood for the extracted feature vector y given hypothesis H . For
the one-to-one matcher in equation (10), only one cost entry for each column in Table 2 is selected as the cost for
the jth extracted scattering center. All such selected cost entries of columns must have di�erent row indices. The
matcher searches all possible correspondences to �nd the lowest cost. We use the Hungarian algorithm adapted from
combinatorial optimization14 to e�ectiently search for the best correspondence.

The one-to-one and many-to-many ML match scores can be related as follows. Let y be an extracted feature
vector of Ny scattering centers. Without loss of generality suppose yj ; j = 1; :::; Nt correspond to xi; i = 1; :::; Nt,
respectively, yi; i = Nt+1; :::; Ny correspond to clutter, and xi; i = Nt+1; :::; Nx are missed target predicted scattering
center. Assuming the estimation error is small enough such that

f(yj j�j = j;H) � f(yj j�j = k;H); 8j 2 f1; :::; Ntg; k 6= j; (13)

and
fc(yj) � f(yj j�j = k;H); 8j 2 fNt + 1; :::; Nyg; 8k 2 f1; :::; Nxg (14)



and also assuimng the correct correspondence map is adopted, then the one-to-one likelihood f(y;�jH) in equation
(10) can be approximated as

f1(yjH) � e��jAj
(�jAj)Ny�Nt
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and the many-to-many likelihood f(yjH) in equation (9) can be approximated as

fm(yjH) � BNy�Nt

0
@ NyY
Nt+1

fc(yk)

1
A  

1�BPNx

j=1 Pj(H)

!Nt
 

NtY
k=1

Pk(H) f(ykj�k = k;H)

!
: (16)

The ratio of f1(yjH) to fm(yjH) is
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Equation (17) is independent of y. The di�erence between these two matchers thus depends on Ny, Nx, Nt and
Pk(H); k = 1; :::; Nx in (17). The simulations in Section 4 compare their performance and computation time empiri-
cally.

3.5. Maximum A Posteriori Probability Matching

Let P (Hi) denote the priors of hypotheses from Index.
P

i P (Hi) = 1. By Bayes rule we have

f(Hijy) =
f(yjHi)P (Hi)P
k f(yjHk)P (Hk)

(18)

The maximum a posteriori probability matcher for a many-to-many map is

T = ind max
Hi

f(Hijy) (19)

For one-to-one map, we can use

T = ind max
Hi

(max� f(y;�jHi))P (Hi)P
k (max� f(y;�jHk))P (Hk)

(20)

While a maximum a posteriori probability match gives more insight on how to set the threshold value for false
alarm rejection than does a maximum likelihood matcher. On the other hand the maximum a posteriori computation
requires additional prior information from the indexer.

4. PERFORMANCE EVALUATION

In this section we estimate the classi�cation performance results from the Bayesian matcher, and compare classi�ca-
tion performance in a variety of scenarios. We establish a simulation using feature vector means based on measured
SAR imagery, coupled with an assumed feature perturbation model. The perturbation model is in some cases
matched to the classi�er, and in some cases mismatched. We compare performance when using two features (loca-
tion, amplitude) to performance when using four features (location, amplitude, �, L). We also compare classi�cation
performance with respect to the number of scattering center features in one scenario.



4.1. Data and Experimental Procedure

Our simulations are based on features extracted from ten targets in the MSTAR Public Targets dataset. These are
X-band image chips with 128x128 pixels at 0.3m�0.3m resolution, and at 17 degree depression angle. There are
a total of 2747 images; for each of the ten targets approximately 270 images are available covering 360 degrees in
azimuth. Target classes 1 to 10 are the 2S1, BMP2, BRDM2, BTR70, BTR60, D7, T62, T72, ZIL131, and ZSU 23 4,
respectively.

Peak features (down/cross range locations and magnitude of peak amplitudes) are extracted from each image
chip using a peak extraction routine which essentially �nds local maxima in the SAR image. The nominal values of
the type attribute are generated using a Gaussian random variable with mean 0.5 and standard deviation 0.5. The
nominal values of the length attribute are generated using a Bernoulli random variable with a probability of 0.1 that
L > 0. These form the 2747 class mean vectors for the 10 composite target classes.

We generate both predicted feature vectors and the extracted feature vectors by perturbing the above class mean
vectors. The noise perturbations we use on the feature attribute means are:

� Predicted features:
down-range and cross-range locations: N(0; 1) image pixel
amplitude: log10(jAj) is N(0; 0:5)
type: � is N(0; 0:5)

length: no uncertainty, so the L confusion matrix is

�
1 0
0 1

�

� Extracted features:
down-range and cross-range locations: N(0; 1) image pixel
amplitude: log10(jAj) is N(0; 0:5)
type: � is N(0; 0:5)

length: P (error) = 0:2, so the L confusion matrix is

�
0:8 0:2
0:2 0:8

�

� Clutter statistics:
locations: 2D Poisson with a rate 3 clutter peaks per image chip
amplitude: log10(jAj) is N(�; 0:5), with �= logarithm of the median amplitude of target scattering centers.
Clutter type: � is N(0:5; 1)
Clutter length: L is Bernoulli with P (L > 0) = 0:1 or 0:3.

We emulate the prescreener and indexer as follows. For each of the 2747 target image chips, we �nd the 5 image
chips in each of the 10 target classes that have the highest correlation with it. The targets and poses (pose is in this
case azimuth angle) corresponding to these 50 image chips form the initial hypothesis list that is provided to the
Bayes classi�er.

Classi�cation performance is measured as follows. For each of the 2747 test feature vectors, we generate 50
hypotheses from the indexer, and generate 10 predicted scattering centers for each hypotheses by randomly perturbing
the class means as described above. We similarly generate 10 extracted scattering centers from the hypothesis class
mean vector. The extract feature vectors assume each scattering center has a probability of detection that ranges
from Pd = 0:5 to 0:9 depending on the experiment; thus, not all scattering centers are present in the extracted
feature vector. We also add clutter scattering centers to the extract feature vector. We then compute the one-to-one
likelihood function in equation (10) and the many-to-many likelihood function in equation (9) for the extracted
scattering center given each hypothesis, and choose the one of the 50 hypotheses with the highest likelihood score.
This gives a total of 27,470 classi�cations from 27,470�50 match scores.

Figure 4 shows an example of the SAR image data we used. The circles in Figure 4 indicate the scattering center
locations.
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Figure 4. An example of the SAR image data used for simulation studies.

4.2. Baseline Performance Results

As a baseline experiment we considerd classi�cation performance for both the one-to-one and many-to-many classi�er
using a scattering center detection probabilities of of 0:5, 0:7, and 0:9. We considered two cases for the feature vector,
one using only location and amplitude features of scattering centers (the \two attributes" case) and one using location,
amplitude, frequency dependence (�), and length (the \four attributes" case). Table 3 is a typical confusion matrix
result from the test. We see that classi�cation errors for all targets are fairly evenly spread over the other targets.
This result is typical in the other experiments considered. We summarize the confusion matrix results in this and
all other experiments by an average probability of correct classi�cation for all 27,470 matches, as shown in Figure 5.

One-to-One Map, Four attributes with Pd = 0:5

C4 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 Total

T1 2872 13 9 23 9 6 19 12 15 12 2990

T2 18 2233 7 11 10 7 8 11 14 11 2330

T3 11 13 2852 17 16 11 17 14 9 20 2980

T4 12 15 9 2255 7 5 4 6 11 6 2330

T5 14 8 4 11 2485 6 6 9 6 11 2560

T6 11 12 13 10 14 2874 14 13 11 18 2990

T7 16 13 19 13 8 21 2859 13 13 15 2990

T8 17 14 8 6 8 3 9 2235 9 11 2320

T9 16 11 16 11 11 9 12 8 2882 14 2990

T10 13 18 11 16 15 14 10 12 9 2872 2990

Table 3. Confusion matrix for one-to-one classi�cation experiment using four scattering attributes. The overall
correct classi�cation rate is 96.17%.

From Figure 5 we see that additional type and length attributes reduces classi�cation errors by about a factor of
two. We also �nd that the classi�cation performance using a many-to-many matcher is only slightly lower that the
classi�cation performance using a one-to-one matcher in this scenario. The one-to-one matcher requires the search
for the best correspondence which introduces more computational complexity than the many-to-many matcher which
only averages the likelihood scores pointwise. Table 4 shows the total time to compute likelihood scores for 500 pairs
of (predict,extract) feature vectors in this experiment.
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Figure 5. Classi�cation performance using four and two attributes

Pd=0.5 Pd=0.7 Pd=0.9

2 Attributes One-to-One 33.6 38.4 47.3

4 Attributes One-to-One 47.4 61.1 69.1

2 Attributes Many-to-Many 9.5 11.4 13.4

4 Attributes Many-to-Many 24.8 30.6 36.3

Table 4. the total CPU time (sec) to compute likelihood scores for 500 pairs of (predict,extract) feature vectors

4.3. Match Statistic Modeling Errors

In this experiment we generate predict and extract feature vectors whose feature uncertainty di�ers from the uncer-
tainty assumed by the Bayes match. The uncertainty errors considered are in the scattering center location standard
deviations. We perform a classi�cation experiment assuming an actual location standard deviation of 2 pixels for
both the predicter and extracter. In the Bayes matcher, we assume a location standard deviation of 1 pixel and 3
pixels. All the other feature uncertainties are as before, and are correct in the matcher.

Figure 6 shows the classi�cation performance using one-to-one matcher, where Matcher 1 uses the correct standard
deviation, Matcher 2 assumes the standard deviation is 1 pixel, and Matcher 3 assumes the standard deviation is 3
pixels. We see that using the incorrect location uncertainty does not substantially a�ect classi�cation performance.
We see that underestestimating location uncertainty results in lower degradation of classi�cation performance than
does overestimating uncertainty for this example. Also, the performance loss is smaller when four scattering attributes
are used.

4.4. Classi�caton Performance versus Number of Scattering Attributes

In this experiment we compare classi�cation performance using one attribute (location), two attributes (location and
amplitude), three attributes (location, amplitude, and � or location, amplitude, and length), and four attributes
(location, amplitude, �, and length). We use ten scattering centers with the same perementers as in Section 4.2, but
we �x Pd = 0:5 and P (yjL = 0) = 0:7. Both one-to-one and many-to-many matchers are employed.

The results are shown in Figure 7. We see that the classi�cation rates increase from 87:60% (86:15%) to 96:20%
(96:19%) for the one-to-one (many-to-many) matcher as we increase the number of scattering attributes from one
to four. The results also show that the computationally inexpensive many-to-many matcher gives nearly the same
performance as the one-to-one matcher for this case.
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Figure 6. Classi�cation performance for a one-to-one matcher using errorous location uncertainties in the Bayes
matcher. Matcher 1: correct uncertainty used; Matcher 2: location uncertainty assumed is 0.5 times true uncertainty;
Matcher 3: location uncertainty assumed is 2 times true uncertainty.
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Figure 7. Classi�cation performance versus number of scattering attributes used. The attributes used are: 1:
location; 2: location and amplitude; 3: location, amplitude, and � (left), or location, amplitude, and length (right);
4: location, amplitude, �, and length. Classi�cation results are shown for the one-to-one (light gray) and many-to-
many (dark gray) matchers.

5. CONCLUSIONS

We have developed a method for estimating classi�cation performanc for a model-based ATR system that employs
attributed scattering center features. The classi�er is based on a Bayes match between vector of extracted scattering
features and a vector of predicted features. Uncertainty in both extracted and predicted features are included in
the match metric. The match requires estimating the correspondence between extracted and predicted features, and
the correspondence must take into account both false alarm and missed scattering centers in the extracted feature
vector. We considered two match correspondence strategies, a one-to-one match and a computationally simpler
many-to-many match.



We presented classi�cation performance predictions based on scattering centers extracted from measured SAR
imagery of ten targets. A total of 2747 images were used to obtain classi�caton performance results. The results
indicate that additional scattering attributes reduce classi�cation errors by about a factor of two for the feature
uncertainty models we considered. In addition, we found that the the many-to-many matcher performs only slightly
worse than the one-to-one matcher, but is computationally much less expensive than the one-to-one matcher.

The actual classi�cation performance will be highly dependent on the actual feature uncertainty encountered in
practice. Our uncertainty model attempts to provide a reasonable estimate of anticipated feature uncertainty, but
more work is needed to understand the nature of both prediction and extraction uncertainties of scattering attributes.
Studies on feature uncertainty bounds and on feature uncertainties of extraction algorithms show that most features
have lower uncertainty as SAR resolution increases, so the relative bene�t in classi�cation performance improvement
realized by additional scattering attributes may change substantially as resolution changes. This is a topic of current
research by the authors.
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