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Abstract

We present a parametric attributed scattering
model for Synthetic Aperture Radar imagery�
The model characterizes both frequency and
aspect dependence of scattering centers� We
present algorithms for estimating the model pa�
rameters from SAR image chips� and propose
model order estimation algorithms that exploit
nested model structures� We develop a Bayes
classi�er for the extracted model parameters�
the classi�er uses uncertainty in both extracted
and predicted features� Numerical results on
synthetic and measured SAR data validate the
model and show encouraging results in both
the ability to accurately extract scattering at�
tributes and the utility of these attributes for
improved discriminability of target classes�

� Introduction

This paper describes our research on the use of a
parametric scattering model for Synthetic Aper�
ture Radar �SAR� Automatic Target Recogni�
tion �ATR�� In this work we propose a para�
metric attributed scattering center model to de�
scribe the backscattered response from a region
measured by a SAR sensor�
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At high frequencies� the scattering response
of an object is well approximated as a
sum of responses from individual scattering
centers�Keller� �	
��� These scatterers provide
a concise� physically relevant description of the
object and are thus good candidates for use in
target recognition� radar data compression� and
scattering phenomenology studies�

The proposed scattering model incorporates
both frequency and aspect dependence of scat�
tering centers� The model is based on dom�
inant responses of monostatic scattering solu�
tions from both physical optics and the geo�
metric theory of di
raction� We model each
scattering center by a set of parameters describ�
ing its location� shape� orientation �pose� and
amplitude� This extends current SAR scatter�
ing center models� most of which implicitly as�
sume scattering centers are localized or isolated
points �Tu et al�� �		�� Sacchini et al�� �		���
The proposed model generalizes the point scat�
tering model� and provides a richer description
of scattering behavior�

We develop algorithms for estimating the model
parameters� or features� from measured SAR
image chips� The algorithms estimate param�
eters directly from high energy regions in the
image� this facilitates insertion into SAR ATR
data processing streams and also provides ro�
bustness to any assumed clutter model �for ex�
ample� it reduces degradation of estimates due
to a nearby tree in the image chip�� We have
developed an approximate maximum likelihood
algorithm that uses an iterative descent tech�



nique� and also a suboptimal but computation�
ally fast estimator� We characterize feature un�
certainty both by lower bounds and by simula�
tions on algorithm performance�

We also address the problem of model order es�
timation� We propose a computationally e��
cient and statistically consistent method that
exploits a nested model structure� such a struc�
ture appears in the scattering center models we
consider in this work�

We develop a Bayes classi�er that operates on
extracted model features� The classi�er as�
sumes uncertainty in both the extracted fea�
tures and the predicted catalog features� We
use the Bayes classi�er to predict ATR perfor�
mance� and we describe our initial ATR perfor�
mance estimation results using attributed scat�
tering features�

� Attributed Scattering Model

We have developed a parametric model that de�
scribes backscattering from objects measured
at high frequencies �Gerry� �		��� The model
attempts to achieve high �delity of scattering
while remaining su�ciently simple and parsimo�
nious to permit robust inference from estimated
parameters�

The attributed scattering model assumes that
the total scattered �eld as a function of fre�
quency f and aspect � is a sum of p individual
scattering terms�
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where �xk� yk� denote the scatterer location� Ak

is its amplitude� �k is its frequency dependence�
Lk and ��k are the length and orientation of

Table �� Parameters � and L serve to discrim�
inate many scattering geometries�

Example scattering geometries � L

dihedral � L �� �

corner re�ector � �

cylinder �

�
L �� �

sphere � �

edge broadside � L �� �

corner di
raction �� �

double corner di
raction �� �

distributed scatterers� and �k is the aspect de�
pendence of localized scatterers� The scatter�
ing model is thus described by the parameter
set �Ak� xk� yk� �k� �k� Lk� ��k� for k � �� ���� p�
Each scattering center is either localized or dis�
tributed� for localized scattering centers Lk �
��k � � and �k characterizes the �mild� aspect
dependence of the scattering center� For dis�
tributed scattering centers aspect dependence
is described by the pair �Lk� ��k� with Lk � ��
and we set �k � ��

The point scattering model can be seen as a
special case of the attributed scattering center
model with �k � Lk � �k � �� The point scat�
tering model contains no aspect and frequency
dependence description of scatterers� Sev�
eral canonical scattering geometries are� how�
ever� distinguishable by di
erences in frequency
and aspect dependence of their backscattered
response� example geometries distinguishable
by their ���L� parameters are shown in Ta�
ble �� The richer physical description a
orded
by these scattering attributes motivates an in�
vestigation of their utility for improved discrim�
inability of targets and improved ATR perfor�
mance�

� Feature Extraction

��� Estimation Algorithms

We have developed two algorithms for estimat�
ing the attributed scattering center model pa�
rameters from SAR image chips� One is an
approximate maximum likelihood �AML� algo�
rithm� and is based on weighted least squares



�tting of the model to regions of high energy
in the measured SAR image� The algorithm re�
cursively estimates and subtracts contributions
from small clusters of scattering centers� using
an iterative descent from initial parameter esti�
mates to minimize a nonlinear cost function� It
has the interpretation of being approximate ML
for a Gaussian clutter assumption on the mea�
sured imagery� The second algorithm is compu�
tationally faster than the approximate ML al�
gorithm at the expense of an increase in the
variance of estimated parameters� This second
algorithm is a variation of the initial estimation
stage of the AML algorithm�

Signi�cantly� both algorithms operate directly
on SAR image chips and �t models only on re�
gions of high backscattered energy� Processing
on image chips facilitates insertion into SAR
ATR data processing streams� because post�
detection processing is often applied to small
chips containing detected regions of interest� By
model �tting only on regions of the image� we
realize robustness to any assumed clutter model�
for example� we reduce uncertainty or bias in
feature estimates that might be caused by large
nearby clutter scattering that is not well mod�
eled as Gaussian noise�

To estimate parameters from image chip data�
we need a model of the SAR image formation
process� We assume scattering data is collected
as a function of frequency f and aspect � as
in equation ���� The data are interpolated to
a rectangular grid using linear �ltering� zero
padded� multiplied by a window to reduce side�
lobes� then inverse Fourier transformed �Koets�
�		���

We formulate the estimation problem in a max�
imum likelihood framework� Let D denote the
measured SAR image pixels in the �x� y� plane�
stacked as a vector� and let d be its correspond�
ing vector in the �f� �� domain� thus� D � Bd
where B is a linear operator encompassing the
image formation procedure� We assume the
measured vector d is the sum of the model in
equation ��� and an additive Gaussian noise vec�
tor n with covariance ��

d �

pX
k��

m�f� �� �k� � n� n � N ����� ���

where m�f� �� �k� denotes the kth scattering
center model as a function of �f� ��� Then it
follows that

D �

pX
i�k

M�x� y� �k� �N ���

where N � N ��� B�BH� and M�x� y� �k�
denotes the kth scattering center model af�
ter transformation to the image domain �x� y��
Since D is a Gaussian random vector whose
mean depends nonlinearly on the parameter
vector � � ��T� � � � � � �

T
p �

T � it follows that the
maximum likelihood estimate of � can be found
by a weighted least squares minimization

��ML � argmin
�
kD �M�x� y� ��k�W ���

where M�x� y� �� �
Pp

i�kM�x� y� �k� and W �
�B�BH����

The above minimization is di�cult because the
minimization is performed over all image pixels
and on a parameter vector � of high dimension�
We can e
ectively approximate this minimiza�
tion by exploiting the fact that scattering cen�
ters have nearly all of their signal energy con�
centrated in a small region of the image plane�
We realize this approximation by �tting models
of small order to regions of high energy in the
image plane as an approximation to the mini�
mization in equation ��� �Koets� �		���

Our algorithm consists of two stages� The �rst
stage isolates regions of high energy in SAR im�
ages� classi�es those regions as distributed or
localized scattering centers� and generates ini�
tial estimates of the parameter values� The
second stage of the algorithm uses these es�
timates to initialize an iterative nonlinear de�
scent routine that generates approximate maxi�
mum likelihood estimates for the parameter val�
ues� We have implemented a second algorithm
which employs a variation of the �rst stage of
parameter estimation and skips the computa�
tionally intensive optimization stage� This vari�



ation requires two orders of magnitude less com�
putation� and gives less accurate parameter es�
timates�

Our algorithm is recursive and uses an ap�
proach based on the CLEAN algorithm �Tsao
and Steinberg� �	���� In each of several itera�
tions we estimate the parameters of scattering
centers in a region of the image� simulate an
image using the parametric model and the esti�
mated parameters� and subtract the simulated
scattering center from the measured data� re�
moving the most recently processed peak and
its sidelobes from the image� The algorithm ter�
minates when a speci�ed number of scattering
centers have been processed� when a speci�ed
amount of the energy in the original images has
been removed� or when the peak in the resid�
ual data falls a speci�ed level below the original
peak�

The faster variant on the algorithm incorpo�
rates only slight modi�cations to the �rst stage
of the algorithm� We modify the segmentation
and order selection procedures to produce re�
gions that contain only a single scattering cen�
ter� This variation of the algorithm removes a
processed peak in the image by setting the pix�
els of the corresponding region to zero since the
parameter estimates are sometimes not accurate
enough for subtractive removal to be e
ective�

We use a segmentation process based on a wa�
tershed algorithm �Stach and LeBaron� �		
�

to select regions in the image that contain a
small number of scattering centers� Segmenta�
tion is carried out in two stages� We generate
an initial segmentation which isolates each local
peak in the image� Further processing combines
these regions where it is necessary to construct
a region that accurately re�ects the extent of a
small number of scattering centers� Model or�
der and scattering center structure �localized or
distributed� are estimated from the shape of the
combined region and the number of initial seg�
ments combined �Koets� �		���

We compute initial estimates for the parame�
ter values from the measured data in the image
region or assign initial values based on knowl�
edge of the range of values that are reasonable
to represent the scattering mechanisms� We ini�

tialize the x and y parameters using a center of
mass of the segments� We estimate L from a
best �t quadratic to the sinc function found in
the FFT of a one dimensional slice of the image
data through the center of mass of the selected
image region� The � parameter is initialized to
zero� We initialize � as the tilt angle of the
best �t ellipse to the pixels of the image region�
The � parameter is drawn from a small set of
discrete values� and is initialized by exhaustive
search over � � ��������� �� ���� ��� The am�
plitude estimate is initialized using a linear least
squares �t over the pixels of the image region�
For the fast variation of the algorithm we esti�
mate only jAj by �tting to the magnitude of the
measured data�

We use a standard iterative descent technique to
minimize ��� starting from the initial estimates�
These methods will not determine the globally
optimum parameter set for an arbitrary initial
guess� so it is important that our initial param�
eter estimate be near the global minimum�

We have computed the Cram�er�Rao bound
�CRB� on estimator variance for the parameters
of our model �Gerry� �		�� Koets� �		��� The
CRB provides a lower bound on the variance of
unbiased estimators� Since our estimator is an
approximate ML estimator we expect it to be
at least asymptotically unbiased and e�cient�

��� Experimental Results

We present feature extraction experimental re�
sults on three data sets� �� synthesized model
data� �� XpatchF synthesized data of the SL�
ICY target� and �� MSTAR measurements of a
T�� image chip�

First� to validate the estimation algorithms and
to test the relative statistical e�ciency of the
approximate maximum likelihood method� we
applied the algorithm to both localized and dis�
tributed scattering centers at several resolutions
using the parametric model� The scattering
center models were chosen to closely approxi�
mate scattering centers on the SLICY target de�
scribed below� We then added correlated Gaus�
sian noise to the images and estimated the pa�
rameters of the scattering centers using the ap�



proximate ML variation of the algorithm� We
performed �� such trials for each combination
of scattering center type� resolution� and signal
to noise ratio� Our parameter estimators essen�
tially achieve the CRB in every case�

We next present results of feature estimation
from synthetic images of the SLICY geomet�
ric test target that were generated using the
XpatchF electromagnetic prediction package�
These images were generated at several reso�
lutions� When applied to this data� the algo�
rithms accurately estimate the physically char�
acteristics of the localized and distributed scat�
tering centers present on the target object�

We then added noise to the synthetic images
and estimated the scattering center parameters
with both the fast and the approximate ML
variations of the algorithm� Example results are
shown in Figures � and � for the trihedral scat�
terer on the SLICY target� The observed vari�
ances of the parameter estimates and the CRB
for the x� y� �in units of inch�� and � parameters
of this scattering center in the synthetic data
are shown in Figure �� This experiment was
conducted with �� dB SNR where SNR is de�
�ned as the ratio of the peak pixel in the noise�
less data to the standard deviation of the noise�
Figure � shows the observed variances and the
CRB for the x� y� and � parameters of a local�
ized scattering center in the 
� resolution data
at several SNR values� In both cases we see
good agreement with the CRB for the AML al�
gorithm� and somewhat higher variances for the
fast estimation algorithm� however� even in the
fast algorithm the standard deviations of scat�
tering center locations are less than ��� inch for
all noise levels and resolutions�

Finally� we have applied our algorithms to mea�
sured SAR images of vehicles measured under
the MSTAR program� Figure � shows a mea�
sured SAR image of a T��� tank� We estimated
the parameters of �� scattering centers in this
image� We used the estimated parameters with
the parametric model to form the reconstruc�
tion of the image shown in Figure ��

10
1

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

Resolution, inches

V
ar

ia
nc

e

CRB on x               

CRB on y               

CRB on α          

ML Variance of x       

ML Variance of y       

ML Variance of α  

Fast Variance of x     

Fast Variance of y     

Fast Variance of α

Figure �� Scattering center parameter vari�
ances �inch�� and CRB for synthetic
SLICY trihedral� for ��� 
�� and ���
SAR resolutions�

� Model Selection for Nested Model

Classes

��� Introduction

An important problem in parametric model �t�
ting is that of estimating the model order�
The maximum likelihood �ML� principle is well�
known for estimating unknown �xed parame�
ters when the dimension of the model is known�
In applications where the parameter dimen�
sion is also unknown� minimum description
length �MDL� �Rissanen� �	��� Rissanen� �		
�

has been widely proposed �Wax and Kailath�
�	��� Barron and Cover� �		��� The implemen�
tation aspects of MDL�based methods� such as
computational complexity� have received little
attention� For instance� MDL�based methods
require maximum likelihood estimates of model
parameters for each of the hypothesized mod�
els� However� many engineering problems in�
volve nested models� where the simpler model
can be embedded in the more complex one to
form a nesting�

We present an parameter estimation technique
that uses the Wald statistic �Wald� �	��� to esti�
mate MDL cost of each of the individual models
in the hypothesized class of nested models� The
major advantage in employing the Wald statis�
tic is that only the parameter estimates of the



0 10 20 30 40 50 60 70

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

SNR, dB

V
ar

ia
nc

e

CRB on x               

CRB on y               

CRB on α          

ML Variance of x       

ML Variance of y       

ML Variance of α  

Fast Variance of x     

Fast Variance of y     

Fast Variance of α

Figure �� Scattering center parameter vari�
ances and CRB for synthetic SLICY
trihedral� 
� resolution and varying
SNR�

most complex model are required� The Wald
statistic can intuitively be understood as a dis�
tance of ML estimates from the parameter set
of the simpler model�

We establish the statistical consistency of the
proposed order selection method and the con�
sistency of the corresponding parameter esti�
mates� Also� a dynamic programming approach
is used with the Wald statistic to minimize
the expected computational cost of order selec�
tion� Computed performance is presented for
estimating scattering centers� Results are pre�
sented for nonlinear regression models in Gaus�
sian noise� but are also applicable to the i�i�d�
or non�Gaussian noise cases�

��� Notation

Consider nonlinear regression models in addi�
tive white Gaussian noise

xt � gt��� � 	t� t � �� �� � � � ���

where gt��� is a known real�valued continuous
function de�ned on a compact set �k � Rk�
The noise 	t is assumed to be Gaussian with
zero mean and unknown variance 
�� The pa�
rameter space for each model order j is denoted
by �j and is assumed to be a bounded open
subset of Rj � For each j � k� �j�k represents
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from estimated model parameters�
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the embedding of �j inRk� Further� we assume
that �j�k � �l�k � ��	 l �� j� and �j�k � �l�k

for all j � l� Also� assume that the parameter
set of a simpler model j � k� �j�k� can be ob�
tained by imposing k�j continuous restrictions�
rj�k��k� � �� on the parameters of model k� i�e��

�j�k � f�k � rj�k��k� � �� �k � �kg� �
�

The restrictions are such that Rj�k��� �
�rj�k

��Tk
is

full rank for all �k � �k� If the parameter sets
for di
erent model orders form a nesting� then
the restrictions de�ning them are also nested�
Where k is clear from the context� we will use
�j� �j � rj and Rj to represent �j�k� �j�k� rj�k and



Rj�k� respectively�

We assume that the model order is bounded by
K� The true model order and parameters are
denoted by ko and �oko�K � respectively� The prior
probability density on model order is denoted
by ��k�� and the prior on model parameters for
model order k is denoted by wk���� � � �k� The
model� f�xj��� � � �K is de�ned on a measur�
able space with respect to a �xed sigma��nite
measure ��dx�� The model is assumed to be
regular� i�e�� the Fisher information matrix is
full rank� at all �k � �k� For clarity� we use
���� to denote pdf for a discrete random vari�
able and f��� for a continuous random variable�
Finally� we let xN � �x�� x�� � � � � xN �T denote
the observed data vector and ��K � �K de�
note the maximum likelihood �ML� estimate of
�ok�K � �k�K�

��� Proposed Method

Consider the large sample form of Stochastic
Complexity �Rissanen� �	����

SC�k� � � log f
�
xj��k

�
�
k

�
logN �O�logN�

where N is the number of data samples� For
k � j�

SC�j�� SC�k� � � log
f
�
xj��j
�

f
�
xj��k

� ���

�
j � k

�
logN �O�logN�

We replace the �rst term in equation ��� with
the generalized Wald statistic �Hadi and Wells�
�		��� yielding an estimate of SC�j�

dSCk�j� � SC�k� � rTj �
��k�B���k�rj���k�

�
j � k

�
logN �O�logN�

� SC�k� �Wj�k

�
j � k

�
logN �O�logN� ���

Here Bj���k� �
�
RT
j �

��k��I
����k�Rj���k�

��
where

�I���k� is an estimate of the Fisher informa�
tion matrix computed at the true parameter

value� I��oko�� Further� A
� is the Moore�Penrose

pseudo�inverse of A� Based on ���� the model
order is estimated as

�kN � arg min
j������ �K

dSCK�j�

� arg min
j������ �K

Wj�K �
j

�
logN �	�

Note from ��� that the Wald statistic requires
the ML parameter estimates of only the more
complex model k� Thus� given the ML param�
eter estimates for model k� the stochastic com�
plexity of all the lower dimensional models can
be estimated using ���� We note that Wj�k is
a non�increasing sequence in j �Sabharwal and
Potter� �		���

��� Consistency of Proposed Order

Selection

To prove that the proposed method �	� pro�
duces consistent model order estimates� we re�
quire the consistency of the overparameterized
ML estimates� Since we are interested in the
case where the Fisher information at true pa�
rameter value� �oj�k� may have rank less than k�

the known results on ML consistency �Jennrich�
�	
	� cannot be directly applied� We extend
the results of �Jennrich� �	
	� to singular Fisher
information case� in nonlinear regression� un�
der the assumption of compactness of the pa�
rameter space� The case with singular Fisher
information is of practical utility rather than
mere mathematical generalization� A number
of engineering models when overparameterized
have singular Fisher information at the true
parameter� for instance� damped exponential
model� ARMA �Veres� �	���� ARMAX �Klein
and Spreij� �		
� and multilayer perceptron net�
works �Fukumizu� �		
�� We note that the re�
sults in this section on consistency of overpa�
rameterized ML estimates are directly applica�
ble for complex valued gt� and to zero mean ��
nite variance non�Gaussian errors� 	t in equa�
tion ����

Theorem � �Consistency� Let the true

model order be denoted by ko� If either of

the following conditions are satis�ed� then

limN�� Pr
�
�kN � ko

�
� ��



�� the Fisher information matrix is full rank

at all �K � �K and ��K
a�s�
�
 �oK� Further�

the derivatives

git �

gt���


�i
� and gi�jt �


�gt���


�i
�j

exist� and are continuous on �K� Lastly�

all the tail cross products of form �v� u� ex�
ist� where v� u � g� gi� gi�j�

�� the Fisher information matrix is rank de�

�cient at �ko�K � �K� K � ko� such that

rank�I��ko�K�� � ko� Let �I���K� denote an

estimator of I��oko�� with ��K
a�s��
�
 �oko �

Eo� Assume that the Fisher information

for each of the identi�able parameter grows

as O�N��� � � �� Further� assume that
�

N�
�I���k� 


�

N� I��oko��
�I��� is continuous

function of �� and

lim
N��

Pr
�
rank��I���K�� � rank�I��oko��

�
� ��

Proof �Sabharwal and Potter� �		���

��� Asymptotic Rules for Cost

Minimization

TheWald statistic asymptotically reveals model
order for overparametrized models� implemen�
tation requires selection of a hypothesized
model order and computation of the corre�
sponding ML parameter estimates� A dynamic
programming approach is used to select can�
didate model orders such that average compu�
tational cost is minimized� Let ko denote the
true model order which is distributed with prior
probability distribution� ��ko�� At a cost c�j��
we can compute ML estimates for order j� Us�
ing the Wald statistic� we �asymptotically� re�
ceive one of the two answers regarding model
order�

A�� the true value ko � j� or

A�� the knowledge that ko equals or exceeds j�

We seek the decision strategy to minimize the
expected cost� Let �� denote the prior probabil�
ity distribution on ��� � � � �K� when parameters

are estimated for order j� Let R�jj��� denote
the expected risk of arriving at the correct an�
swer if order j is tried� then the following re�
cursion is obtained using dynamic programming
principles�

R�jj��� � Pr�k � jj���c�j� � Pr�k � jj���

�

�
c�j� � min

m�j
R�mj�����

�

where R�Kj��� � c�K� and ����� is the pos�
terior probability distribution on k given that
order j estimates result in answer �A���

��� Superimposed Exponential

Signals

We apply the Wald�statistic based approach for
order selection and parameter estimation in su�
perimposed exponential models�

xt �
koX
i��

aie
��i
�
�ie

���i
�t

� 	t ����

for t � �� � � � � N � where 	t is normally dis�
tributed with mean zero and variance 
� and
�i � �� The model order ko� the model param�
eters f�ai� �i� �i�gk

o

i��� and the noise variance 
�

are the unknown parameters in ����� For � foot
resolution X�band and K�band radars� equa�
tion ���� is an excellent approximation for far�
�eld electromagnetic scattering predicted by the
Geometric Theory of Di
raction �Gerry� �		���
To apply the Wald statistic� we have veri�ed the
required assumptions for model ���� and have
derived restrictions rj�k��k� � ��

Monte�Carlo simulations are computed for a
controlled comparison of the proposed order se�
lection procedure to MDL and MAP� In all the
results� the true model order was uniformly dis�
tributed on ��� � � � � ��� As a comparison� model
order estimates using MDL and MAP were com�
puted using

�kMDL � argmin
k

f�xj��k� �
�k

�
logn

�kMAP � argmin
k

f�xj��k� �
�k

�
logn

A low computation SVD�based procedure
from ��� is used for computing ML parameter es�
timates� With uniform prior on the true model
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Figure �� Probability of correct detection of
model order as a function of SNR

order� the asymptotically optimal rule for model
selection using the Wald statistic is to compute
ML estimates for model order k � �� If� for
example� K � ��� then the asymptotically op�
timal rule is to� �a� compute ML estimates for
model order ��� �b� if �k � ��� stop else compute
ML estimates for model order �� and estimate
�k�

In Figure �� the performance of the order se�
lection using the three methods is shown as a
function of SNR mode Fbin� The average com�
putational cost of MDL and MAP is more than
three times the proposed method� with similar
detection performance�

In Figure 
� the detection performance is shown
as a function of number of samples� N � with
SNR mode � ��� dB� The ratio of the average
computational cost of MDL and MAP to the
average cost of the proposed method is shown
in Figure ��

� Classi	cation

We are interested in evaluating ATR perfor�
mance when attributed scattering center model
parameters are used in a feature�based classi��
cation scheme� In particular� we are interested
in quantifying the ATR performance improve�
ment of frequency and aspect dependence of the
model� relative to a baseline of point scattering
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Figure 	� Probability of correct detection of
model order as a function of data
length
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features�

In order to evaluate ATR performance� we have
developed a Bayes classi�er that operates on ex�
tracted attributed scattering center model fea�
tures� and compares to a catalog of predicted
model features� The classi�er assumes feature
uncertainty in both the extracted and predicted
model parameters�

We propose the statistical models for attributed
scattering features as follows� Let H denote a
set of hypotheses �including type� pose� articu�
lation� and con�guration�� x denote a predicted
feature vector� y denote an extracted feature
vector� xi �yi� denote the ith scatterer in x �y��
xik �yik� denote the kth attribute of xi �yi�� Let
N �M��� denote a Gaussian random vector with
meanM and covariance matrix �� De�ne corre�
spondence ! such that !j � i provided ! maps
yj from xi� !j � � provided that ! maps yj from
clutter points� We denote Pi as the probability
of detection of predicted scattering center xi�

We assume all extracted attributes are mutually
independent conditioned on the corresponding
predicted attributes� that is�

f�yjjx�j � �
Y
k

f�yjkjx�j �

�
Y
k

f�yjkjx�jk� ����

We also assume all extracted scatterers with
correspondence are mutually independent con�
ditioned on hypothesis H�

f�y�!jH� �
Y
j

f�yj�!jH�

We adopt a one�to�one correspondence �Ettinger
et al�� �		
� Irving et al�� �		��� Our goal is to
�nd the conditional likelihood f�y�!jH�� We
adopt the following likelihood equation

f�y�!jH� � e�	
�f

m"

Y
fj��j��g

pf �yj�

�

�
� Y
fj��j ���g

P�j

�Z
p�yjjx�j �p�x�j �dx�j

��A

�
Y

k��j�k��j

��� Pk� ����

where m is the total number of extracted scat�
tering centers� and f is the total number of false
scattering centers in !�

To compute the above probabilities� we need
prior probabilities on the parameters� and we
need to determine the probability density func�
tions for the predicted features f�xik�� the ex�
tracted features conditioned on predicted fea�
tures f�yjkjx�jk��	j� k� and the extracted fea�
tures when extracted from clutter fc�yjk�� We
model these densities as follows�


 Amplitude� Log Normal for jAj� Gaussian
for A�


 Location� Gaussian for f�xik� and
f�yjkjx�jk�� �D Poisson with rate � for
fc�yjk��


 Geometric Type� Since
� � ��� � ��� � ��� ��� the densities are
probability mass functions�


 Length� fc�yjL� � e ����yjL� for �yjL � � and
fc�yjL� � ���� e� � g��yjL� �� 
yjL� for �yjL �
�� and similarly for the other densities�


 Tilt Angle� Gaussian

From the above densities� we can compute
f�yjjx�jk� for various attributes assuming !j �
i in a straightforward manner� for details� see
�Chiang� �		���

��� ATR Performance Estimation

The above likelihood formulation provides a
mechanism for matching extracted to predicted
model parameters� We can compute the Bayes
error of a match as a function of the uncertainty
of the attributes� We thus use the Bayes match
formulation to predict ATR performance� and
to quantify the performance as a function of fea�
ture uncertainty� An initial illustrative example
is presented below�

Figure � shows the result of a simple experi�
ment that motivates the use of more scattering
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Figure �� Bayes classi�cation error as a func�
tion of uncertainty in frequency de�
pendence parameter �

features in a target identi�cation task� The ex�
periment is a two�class classi�cation task� The
two targets are a T�� and a BMP� from the
MSTAR �		� Public Release database� Each
target catalog contains 
� images of di
erent
pose angles from � to 	� degrees with a res�
olution of � foot by � foot� For each im�
age we extract the locations and amplitudes of
the three strongest peaks using an FFT�based
CLEAN technique �Tsao and Steinberg� �	����
For each peak we randomly set the type param�
eter � � f�������� �� ���� �g with equal proba�
bilities� The standard deviation of the location
uncertainty is set to � feet� the standard devi�
ation of the amplitude uncertainty is set to be
equal to the extracted amplitude� and the stan�
dard deviation of the type uncertainty is varied
from ��� to ��	� We assume equal priors on the
images� A standard two�class Bayesian classi�er
�a likelihood ratio test� is performed �Van Trees�
�	
��� The likelihood score for a test pattern
given a true pattern is computed as the maxi�
mum of the likelihood score among all possible
one�to�one correspondences� For each image we
generate ��� realizations� Figure � shows that
the performance is improved by �� # with the
additional type attribute even if the relative un�
certainty of the type attribute is twice as large
as that of the amplitude attribute�

� Conclusion

We have presented a GTD�based parametric
scattering model for the extraction of scatter�
ing centers from radar data measured as a func�
tion of frequency and aspect angle� We have
developed algorithms for extracting these fea�
tures from measured SAR image chips� We have
bounded feature uncertainty using the Cram�er�
Rao bound� and have shown that our approxi�
mate maximum likelihood estimation algorithm
nearly achieves this bound in most cases� We
have also presented a model order estimation
method that uses the Wald statistic to pro�
vide computational savings while retaining good
statistical performance� Finally� we have de�
veloped a Bayes classi�er that operates on at�
tributed scattering features� An initial ATR
performance experiment shows improved clas�
si�cation performance� when compared to per�
formance using only point scattering features�
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