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Abstract

We present a parametric attributed scattering
model for Synthetic Aperture Radar imagery.
The model characterizes both frequency and
aspect dependence of scattering centers. We
present algorithms for estimating the model pa-
rameters from SAR image chips, and propose
model order estimation algorithms that exploit
nested model structures. We develop a Bayes
classifier for the extracted model parameters;
the classifier uses uncertainty in both extracted
and predicted features. Numerical results on
synthetic and measured SAR data validate the
model and show encouraging results in both
the ability to accurately extract scattering at-
tributes and the utility of these attributes for
improved discriminability of target classes.

1 Introduction

This paper describes our research on the use of a
parametric scattering model for Synthetic Aper-
ture Radar (SAR) Automatic Target Recogni-
tion (ATR). In this work we propose a para-
metric attributed scattering center model to de-
scribe the backscattered response from a region
measured by a SAR sensor.

*This work was sponsored by the Defense Advanced
Research Projects Agency under contract F33615-97-
1020 monitored by Wright Laboratory. The views and
conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the De-
fense Advanced Research Projects Agency or the United
States Government.

At high frequencies, the scattering response
of an object is well approximated as a
sum of responses from individual scattering
centers[Keller, 1962]. These scatterers provide
a concise, physically relevant description of the
object and are thus good candidates for use in
target recognition, radar data compression, and
scattering phenomenology studies.

The proposed scattering model incorporates
both frequency and aspect dependence of scat-
tering centers. The model is based on dom-
inant responses of monostatic scattering solu-
tions from both physical optics and the geo-
metric theory of diffraction. We model each
scattering center by a set of parameters describ-
ing its location, shape, orientation (pose) and
amplitude. This extends current SAR scatter-
ing center models, most of which implicitly as-
sume scattering centers are localized or isolated
points [Tu et al., 1997, Sacchini et al., 1993].
The proposed model generalizes the point scat-
tering model, and provides a richer description
of scattering behavior.

We develop algorithms for estimating the model
parameters, or features, from measured SAR
image chips. The algorithms estimate param-
eters directly from high energy regions in the
image; this facilitates insertion into SAR ATR
data processing streams and also provides ro-
bustness to any assumed clutter model (for ex-
ample, it reduces degradation of estimates due
to a nearby tree in the image chip). We have
developed an approximate maximum likelihood
algorithm that uses an iterative descent tech-



nique, and also a suboptimal but computation-
ally fast estimator. We characterize feature un-
certainty both by lower bounds and by simula-
tions on algorithm performance.

We also address the problem of model order es-
timation. We propose a computationally effi-
cient and statistically consistent method that
exploits a nested model structure; such a struc-
ture appears in the scattering center models we
consider in this work.

We develop a Bayes classifier that operates on
extracted model features. The classifier as-
sumes uncertainty in both the extracted fea-
tures and the predicted catalog features. We
use the Bayes classifier to predict ATR perfor-
mance, and we describe our initial ATR, perfor-
mance estimation results using attributed scat-
tering features.

2 Attributed Scattering Model

We have developed a parametric model that de-
scribes backscattering from objects measured
at high frequencies [Gerry, 1997]. The model
attempts to achieve high fidelity of scattering
while remaining sufficiently simple and parsimo-
nious to permit robust inference from estimated
parameters.

The attributed scattering model assumes that
the total scattered field as a function of fre-
quency f and aspect ¢ is a sum of p individual
scattering terms:
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Each scattering center is modeled parameter-
ized as
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where (2, yr) denote the scatterer location, Ay
is its amplitude, «y is its frequency dependence,
L and ¢ are the length and orientation of

Table 1: Parameters « and L serve to discrim-
inate many scattering geometries.

H Example scattering geometries ‘ « ‘ L H
dihedral 1 |L#0
corner reflector 1 0
cylinder % L#0
sphere 0 0
edge broadside 0 | L#O0
corner diffraction -1 0
double corner diffraction -2 0

distributed scatterers, and -y is the aspect de-
pendence of localized scatterers. The scatter-
ing model is thus described by the parameter
set (Ag, Tk, Yk, Qs Vs L, o) for k = 1,...,p.
Each scattering center is either localized or dis-
tributed; for localized scattering centers Lj =
¢r = 0 and +;, characterizes the (mild) aspect
dependence of the scattering center. For dis-
tributed scattering centers aspect dependence
is described by the pair (L, ¢x) with Lj > 0,
and we set vy, = 0.

The point scattering model can be seen as a
special case of the attributed scattering center
model with v, = Ly = a = 0. The point scat-
tering model contains no aspect and frequency
dependence description of scatterers.  Sev-
eral canonical scattering geometries are, how-
ever, distinguishable by differences in frequency
and aspect dependence of their backscattered
response; example geometries distinguishable
by their («, L) parameters are shown in Ta-
ble 1. The richer physical description afforded
by these scattering attributes motivates an in-
vestigation of their utility for improved discrim-
inability of targets and improved ATR. perfor-
mance.

3 Feature Extraction
3.1 Estimation Algorithms

We have developed two algorithms for estimat-
ing the attributed scattering center model pa-
rameters from SAR image chips. One is an
approximate maximum likelihood (AML) algo-
rithm, and is based on weighted least squares



fitting of the model to regions of high energy
in the measured SAR image. The algorithm re-
cursively estimates and subtracts contributions
from small clusters of scattering centers, using
an iterative descent from initial parameter esti-
mates to minimize a nonlinear cost function. It
has the interpretation of being approximate ML
for a Gaussian clutter assumption on the mea-
sured imagery. The second algorithm is compu-
tationally faster than the approximate ML al-
gorithm at the expense of an increase in the
variance of estimated parameters. This second
algorithm is a variation of the initial estimation
stage of the AML algorithm.

Significantly, both algorithms operate directly
on SAR image chips and fit models only on re-
gions of high backscattered energy. Processing
on image chips facilitates insertion into SAR
ATR data processing streams, because post-
detection processing is often applied to small
chips containing detected regions of interest. By
model fitting only on regions of the image, we
realize robustness to any assumed clutter model;
for example, we reduce uncertainty or bias in
feature estimates that might be caused by large
nearby clutter scattering that is not well mod-
eled as Gaussian noise.

To estimate parameters from image chip data,
we need a model of the SAR image formation
process. We assume scattering data is collected
as a function of frequency f and aspect ¢ as
in equation (1). The data are interpolated to
a rectangular grid using linear filtering, zero
padded, multiplied by a window to reduce side-
lobes, then inverse Fourier transformed [Koets,
1998].

We formulate the estimation problem in a max-
imum likelihood framework. Let D denote the
measured SAR image pixels in the (z,y) plane,
stacked as a vector, and let d be its correspond-
ing vector in the (f,¢) domain; thus, D = Bd
where B is a linear operator encompassing the
image formation procedure. We assume the
measured vector d is the sum of the model in
equation (1) and an additive Gaussian noise vec-
tor n with covariance X:

p
d=>"m(f,$:0) +n, n~N(©O,3) (2
k=1

where m(f, ¢;0r) denotes the kth scattering

center model as a function of (f,¢). Then it
follows that
P
D =Y M(z,y;6¢) + (3)
1=k

where N ~ N(0,BEBf) and M(z,y;0})
denotes the kth scattering center model af-
ter transformation to the image domain (z,y).
Since D is a Gaussian random vector whose
mean depends nonlinearly on the parameter
vector 0 = [67,... 071", it follows that the
maximum likelihood estimate of # can be found
by a weighted least squares minimization

Onr = arg mein D — M(z,y;0)|lfy  (4)

where M(z,y;0) = 37,
(BxBH)~1

M(x,y;6,) and W =

The above minimization is difficult because the
minimization is performed over all image pixels
and on a parameter vector 6 of high dimension.
We can effectively approximate this minimiza-
tion by exploiting the fact that scattering cen-
ters have nearly all of their signal energy con-
centrated in a small region of the image plane.
We realize this approximation by fitting models
of small order to regions of high energy in the
image plane as an approximation to the mini-
mization in equation (4) [Koets, 1998].

Our algorithm consists of two stages. The first
stage isolates regions of high energy in SAR im-
ages, classifies those regions as distributed or
localized scattering centers, and generates ini-
tial estimates of the parameter values. The
second stage of the algorithm uses these es-
timates to initialize an iterative nonlinear de-
scent routine that generates approximate maxi-
mum likelihood estimates for the parameter val-
ues. We have implemented a second algorithm
which employs a variation of the first stage of
parameter estimation and skips the computa-
tionally intensive optimization stage. This vari-



ation requires two orders of magnitude less com-
putation, and gives less accurate parameter es-
timates.

Our algorithm is recursive and uses an ap-
proach based on the CLEAN algorithm [Tsao
and Steinberg, 1988]. In each of several itera-
tions we estimate the parameters of scattering
centers in a region of the image, simulate an
image using the parametric model and the esti-
mated parameters, and subtract the simulated
scattering center from the measured data, re-
moving the most recently processed peak and
its sidelobes from the image. The algorithm ter-
minates when a specified number of scattering
centers have been processed, when a specified
amount of the energy in the original images has
been removed, or when the peak in the resid-
ual data falls a specified level below the original
peak.

The faster variant on the algorithm incorpo-
rates only slight modifications to the first stage
of the algorithm. We modify the segmentation
and order selection procedures to produce re-
gions that contain only a single scattering cen-
ter. This variation of the algorithm removes a
processed peak in the image by setting the pix-
els of the corresponding region to zero since the
parameter estimates are sometimes not accurate
enough for subtractive removal to be effective.

We use a segmentation process based on a wa-
tershed algorithm [Stach and LeBaron, 1996]
to select regions in the image that contain a
small number of scattering centers. Segmenta-
tion is carried out in two stages. We generate
an initial segmentation which isolates each local
peak in the image. Further processing combines
these regions where it is necessary to construct
a region that accurately reflects the extent of a
small number of scattering centers. Model or-
der and scattering center structure (localized or
distributed) are estimated from the shape of the
combined region and the number of initial seg-
ments combined [Koets, 1998].

We compute initial estimates for the parame-
ter values from the measured data in the image
region or assign initial values based on knowl-
edge of the range of values that are reasonable
to represent the scattering mechanisms. We ini-

tialize the z and y parameters using a center of
mass of the segments. We estimate L from a
best fit quadratic to the sinc function found in
the FF'T of a one dimensional slice of the image
data through the center of mass of the selected
image region. The v parameter is initialized to
zero. We initialize ¢ as the tilt angle of the
best fit ellipse to the pixels of the image region.
The « parameter is drawn from a small set of
discrete values, and is initialized by exhaustive
search over a € [—1,—-1/2,0,1/2,1]. The am-
plitude estimate is initialized using a linear least
squares fit over the pixels of the image region.
For the fast variation of the algorithm we esti-
mate only |A| by fitting to the magnitude of the
measured data.

We use a standard iterative descent technique to
minimize (4) starting from the initial estimates.
These methods will not determine the globally
optimum parameter set for an arbitrary initial
guess, so it is important that our initial param-
eter estimate be near the global minimum.

We have computed the Cramér-Rao bound
(CRB) on estimator variance for the parameters
of our model [Gerry, 1997, Koets, 1998]. The
CRB provides a lower bound on the variance of
unbiased estimators. Since our estimator is an
approximate ML estimator we expect it to be
at least asymptotically unbiased and efficient.

3.2 Experimental Results

We present feature extraction experimental re-
sults on three data sets: 1) synthesized model
data, 2) XpatchF synthesized data of the SL-
ICY target, and 3) MSTAR measurements of a
T72 image chip.

First, to validate the estimation algorithms and
to test the relative statistical efficiency of the
approximate maximum likelihood method, we
applied the algorithm to both localized and dis-
tributed scattering centers at several resolutions
using the parametric model. The scattering
center models were chosen to closely approxi-
mate scattering centers on the SLICY target de-
scribed below. We then added correlated Gaus-
sian noise to the images and estimated the pa-
rameters of the scattering centers using the ap-



proximate ML variation of the algorithm. We
performed 50 such trials for each combination
of scattering center type, resolution, and signal
to noise ratio. Our parameter estimators essen-
tially achieve the CRB in every case.

We next present results of feature estimation
from synthetic images of the SLICY geomet-
ric test target that were generated using the
XpatchF electromagnetic prediction package.
These images were generated at several reso-
lutions. When applied to this data, the algo-
rithms accurately estimate the physically char-
acteristics of the localized and distributed scat-
tering centers present on the target object.

We then added noise to the synthetic images
and estimated the scattering center parameters
with both the fast and the approximate ML
variations of the algorithm. Example results are
shown in Figures 1 and 2 for the trihedral scat-
terer on the SLICY target. The observed vari-
ances of the parameter estimates and the CRB
for the z, y, (in units of inch?) and o parameters
of this scattering center in the synthetic data
are shown in Figure 1. This experiment was
conducted with 30 dB SNR where SNR is de-
fined as the ratio of the peak pixel in the noise-
less data to the standard deviation of the noise.
Figure 2 shows the observed variances and the
CRB for the z, y, and « parameters of a local-
ized scattering center in the 6” resolution data
at several SNR values. In both cases we see
good agreement with the CRB for the AML al-
gorithm, and somewhat higher variances for the
fast estimation algorithm; however, even in the
fast algorithm the standard deviations of scat-
tering center locations are less than 0.1 inch for
all noise levels and resolutions.

Finally, we have applied our algorithms to mea-
sured SAR images of vehicles measured under
the MSTAR program. Figure 3 shows a mea-
sured SAR image of a T-72 tank. We estimated
the parameters of 33 scattering centers in this
image. We used the estimated parameters with
the parametric model to form the reconstruc-
tion of the image shown in Figure 4.
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Figure 1: Scattering center parameter vari-
ances (inch?) and CRB for synthetic
SLICY trihedral, for 37, 6”7, and 12”
SAR resolutions.

4 Model Selection for Nested Model
Classes

4.1 Introduction

An important problem in parametric model fit-
ting is that of estimating the model order.
The maximum likelihood (ML) principle is well-
known for estimating unknown fixed parame-
ters when the dimension of the model is known.
In applications where the parameter dimen-
sion is also unknown, minimum description
length (MDL) [Rissanen, 1978, Rissanen, 1996]
has been widely proposed [Wax and Kailath,
1985, Barron and Cover, 1991]. The implemen-
tation aspects of MDL-based methods, such as
computational complexity, have received little
attention. For instance, MDL-based methods
require maximum likelihood estimates of model
parameters for each of the hypothesized mod-
els. However, many engineering problems in-
volve nested models, where the simpler model
can be embedded in the more complex one to
form a nesting.

We present an parameter estimation technique
that uses the Wald statistic [Wald, 1943] to esti-
mate MDL cost of each of the individual models
in the hypothesized class of nested models. The
major advantage in employing the Wald statis-
tic is that only the parameter estimates of the
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Figure 2: Scattering center parameter vari-
ances and CRB for synthetic SLICY
trihedral; 6” resolution and varying
SNR.

most complex model are required. The Wald
statistic can intuitively be understood as a dis-
tance of ML estimates from the parameter set
of the simpler model.

We establish the statistical consistency of the
proposed order selection method and the con-
sistency of the corresponding parameter esti-
mates. Also, a dynamic programming approach
is used with the Wald statistic to minimize
the expected computational cost of order selec-
tion. Computed performance is presented for
estimating scattering centers. Results are pre-
sented for nonlinear regression models in Gaus-
sian noise, but are also applicable to the i.i.d.
or non-Gaussian noise cases.

4.2 Notation

Consider nonlinear regression models in addi-
tive white Gaussian noise

IL‘t:gt(Q)"—Et, t:1,2, (5)

where g;(0) is a known real-valued continuous
function defined on a compact set O, C RF.
The noise ¢ is assumed to be Gaussian with
zero mean and unknown variance o?. The pa-
rameter space for each model order j is denoted
by ©, and is assumed to be a bounded open
subset of RJ. For each j < k, ©, , represents
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Figure 3: Measured SAR Image of T-72 Tank,
in dB.
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Figure 4: Reconstruction of T-72 tank image

from estimated model parameters,
in dB.

the embedding of ©; in R¥. Further, we assume
that ©;, N O, = 0,V 1 # j, and O, C Gl,k
for all j < [. Also, assume that the parameter
set of a simpler model j < k, ©; 4, can be ob-
tained by imposing k—j continuous restrictions,
7 k(0x) = 0, on the parameters of model £, i.e.,

Ojk = {0k : 1jk(0k) = 0,0, € O}.  (6)

The restrictions are such that R; () = %Tg’T’“ is
o k
full rank for all 6, € ©. If the parameter sets
for different model orders form a nesting, then
the restrictions defining them are also nested.
Where £k is clear from the context, we will use

0, ©;, rj and R; to represent 0; 1, ©; 1, r;; and




R; ., respectively.

We assume that the model order is bounded by
K. The true model order and parameters are
denoted by k° and 9,’;07 x» respectively. The prior
probability density on model order is denoted
by m(k), and the prior on model parameters for
model order k is denoted by wy(0),6 € ©f. The
model, f(z|0),0 € O is defined on a measur-
able space with respect to a fixed sigma-finite
measure A(dz). The model is assumed to be
regular, i.e., the Fisher information matrix is
full rank, at all 8y € ©f. For clarity, we use
7(-) to denote pdf for a discrete random vari-
able and f(-) for a continuous random variable.
Finally, we let 2V = [z1,22,...,2x]7 denote
the observed data vector and éK € Ok de-
note the maximum likelihood (ML) estimate of
0]3, K € ®k, K-

4.3 Proposed Method

Consider the large sample form of Stochastic
Complexity [Rissanen, 1978],

SC(k) = —log f (x|t§k) + glogN+ O(log N)

where N is the number of data samples. For
k>j,

f (xléj) 0
f ($|ék)

| — k
J log N + O(log N)

SC(j) — SC(k) = —log

+

We replace the first term in equation (7) with
the generalized Wald statistic [Hadi and Wells,
1990], yielding an estimate of SC(5)

SCx(j) = SC(k)+7] (6x)B(Ok)r;(05)
+7 ; b log N + O(log N)
= SC(k)+Wjy
i—k

_l’_

5 log N + O(log N) (8)

~ N~ oA ~ +
Here B;(6),) = (R}’(ek)ﬁ(ek)Rj(ek)) where
I(0) is an estimate of the Fisher informa-
tion matrix computed at the true parameter

value, I(07 ). Further, A™ is the Moore-Penrose
pseudo-inverse of A. Based on (8), the model
order is estimated as

Ey = in SCk(j
N arg . min & (J)

= argj:rlr,l.i.].a,K Wik + %logN 9)
Note from (8) that the Wald statistic requires
the ML parameter estimates of only the more
complex model k. Thus, given the ML param-
eter estimates for model k, the stochastic com-
plexity of all the lower dimensional models can
be estimated using (8). We note that W is
a non-increasing sequence in j [Sabharwal and
Potter, 1998].

4.4 Consistency of Proposed Order
Selection

To prove that the proposed method (9) pro-
duces consistent model order estimates, we re-
quire the consistency of the overparameterized
ML estimates. Since we are interested in the
case where the Fisher information at true pa-
rameter value, 0;.’,,9, may have rank less than k,
the known results on ML consistency [Jennrich,
1969] cannot be directly applied. We extend
the results of [Jennrich, 1969] to singular Fisher
information case, in nonlinear regression, un-
der the assumption of compactness of the pa-
rameter space. The case with singular Fisher
information is of practical utility rather than
mere mathematical generalization. A number
of engineering models when overparameterized
have singular Fisher information at the true
parameter; for instance, damped exponential
model, ARMA [Veres, 1985], ARMAX [Klein
and Spreij, 1996] and multilayer perceptron net-
works [Fukumizu, 1996]. We note that the re-
sults in this section on consistency of overpa-
rameterized ML estimates are directly applica-
ble for complex valued ¢;, and to zero mean fi-
nite variance non-Gaussian errors, ¢; in equa-

tion (5).

Theorem 1 (Consistency) Let the true
model order be denoted by k°. If either of
the following conditions are satisfied, then

limpy o, Pr (l%N — k") —1.



1. the Fisher information matriz is full rank
at all O € Ok and O ~5 05 Further,
the derivatives

L 0%g.(0
gt = aoz . an J o gt()

9= i

exist, and are continuous on Of. Lastly,
all the tail cross products of form [v,u] ez-
ist, where v,u = g,4g"*, g*’.

2. the Fisher information matriz is rank de-
ficient at Opo g € O, K > k°, such that
rank(I (0o k) = k°. Let I(0g) denote an

a.s.1

estimator of 1(07,), with O “25 09, €
E,. Assume that the Fisher information
for each of the identifiable parameter grows
as O(N%), a > 1. Further, assume that
%f(ék) — = 1(65), I(0) is continuous
function of 6, and

A}LmOO Pr (mnk(i(é[()) = mnk(I(Ggo))) =1

Proof [Sabharwal and Potter, 1998].

4.5 Asymptotic Rules for Cost
Minimization

The Wald statistic asymptotically reveals model
order for overparametrized models; implemen-
tation requires selection of a hypothesized
model order and computation of the corre-
sponding ML parameter estimates. A dynamic
programming approach is used to select can-
didate model orders such that average compu-
tational cost is minimized. Let k° denote the
true model order which is distributed with prior
probability distribution, 7w(k°). At a cost c(j),
we can compute ML estimates for order j. Us-
ing the Wald statistic, we (asymptotically) re-
ceive one of the two answers regarding model
order:

Al: the true value k° < j, or
A2: the knowledge that k° equals or exceeds j.
We seek the decision strategy to minimize the

expected cost. Let 7’ denote the prior probabil-
ity distribution on [1,..., K] when parameters

are estimated for order j. Let R(j|n') denote
the expected risk of arriving at the correct an-
swer if order j is tried, then the following re-
cursion is obtained using dynamic programming
principles:

R(jln") = Pr(k < jln")e(j) + Pr(k > j|n')

(et + win B
m>)

where R(K|n") = ¢(K) and p(n') is the pos-

terior probability distribution on k given that

order j estimates result in answer (A2).

4.6 Superimposed Exponential
Signals

We apply the Wald-statistic based approach for
order selection and parameter estimation in su-
perimposed exponential models,

kO
T = Z a;el®i (Uie_wi)t + € (10)
i=1
for ¢t = 1,...,N, where ¢ is normally dis-

tributed with mean zero and variance o2 and
v; = 1. The model order k°, the model param-
eters {(a;, ¢i,w;)}¥",, and the noise variance o2
are the unknown parameters in (10). For 1 foot
resolution X-band and K-band radars, equa-
tion (10) is an excellent approximation for far-
field electromagnetic scattering predicted by the
Geometric Theory of Diffraction [Gerry, 1997].
To apply the Wald statistic, we have verified the
required assumptions for model (10) and have
derived restrictions ;1 (6;) = 0.

Monte-Carlo simulations are computed for a
controlled comparison of the proposed order se-
lection procedure to MDL and MAP. In all the
results, the true model order was uniformly dis-
tributed on [1,...,7]. As a comparison, model
order estimates using MDL and MAP were com-
puted using

R N k
kvypr = arg n}cmf(ac|9k) + 3? logn

. N k
kyap = argmkinf(ac|9k)+5?logn

A low computation SVD-based procedure
from [?] is used for computing ML parameter es-
timates. With uniform prior on the true model
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order, the asymptotically optimal rule for model
selection using the Wald statistic is to compute
ML estimates for model order £k = 7. If, for
example, K = 15, then the asymptotically op-
timal rule is to: (a) compute ML estimates for
model order 13, (b) if k < 13, stop else compute
ML estimates for model order 15 and estimate
k.

In Figure 5, the performance of the order se-
lection using the three methods is shown as a
function of SNR/mode/Fbin. The average com-
putational cost of MDL and MAP is more than
three times the proposed method, with similar
detection performance.

In Figure 6, the detection performance is shown
as a function of number of samples, N, with
SNR/mode = —15 dB. The ratio of the average
computational cost of MDL and MAP to the
average cost of the proposed method is shown
in Figure 7.

5 Classification

We are interested in evaluating ATR perfor-
mance when attributed scattering center model
parameters are used in a feature-based classifi-
cation scheme. In particular, we are interested
in quantifying the ATR performance improve-
ment of frequency and aspect dependence of the
model, relative to a baseline of point scattering

Probability of correct detection
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Number of Samples

Figure 6: Probability of correct detection of
model order as a function of data
length
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Figure 7: Ratio of average computational
CupL/MAP
Cwald

tion of data length

complexity ( ) as a func-



features.

In order to evaluate ATR performance, we have
developed a Bayes classifier that operates on ex-
tracted attributed scattering center model fea-
tures, and compares to a catalog of predicted
model features. The classifier assumes feature
uncertainty in both the extracted and predicted
model parameters.

We propose the statistical models for attributed
scattering features as follows: Let H denote a
set of hypotheses (including type, pose, articu-
lation, and configuration), = denote a predicted
feature vector, y denote an extracted feature
vector, z; (y;) denote the i’ scatterer in z (y),
Zik (yir) denote the k¥ attribute of z; (1;). Let
N (M, ¥) denote a Gaussian random vector with
mean M and covariance matrix . Define corre-
spondence I' such that I'; = ¢ provided I" maps
y; from z;; I'; = 0 provided that I maps y; from
clutter points. We denote P; as the probability
of detection of predicted scattering center x;.

We assume all extracted attributes are mutually
independent conditioned on the corresponding
predicted attributes; that is,

I f wjeler,)
;

= 1[I f@lzr;e)  (11)
k

f(yjlzr;)

We also assume all extracted scatterers with
correspondence are mutually independent con-
ditioned on hypothesis H:

fly, T1H) = [ f (), T1H)
j

We adopt a one-to-one correspondence [Ettinger
et al., 1996, Irving et al., 1997]. Our goal is to
find the conditional likelihood f(y,I'|H). We
adopt the following likelihood equation

!
_A% I »rw)

" {j:1;=0}

fy,T|H) =e

H Pr; </p(yj|ij)p(ij)dij>

{7:L; 70}

I a-r (12)

k,Dj=k,Yj

where m is the total number of extracted scat-
tering centers, and f is the total number of false
scattering centers in I'.

To compute the above probabilities, we need
prior probabilities on the parameters, and we
need to determine the probability density func-
tions for the predicted features f(z;), the ex-
tracted features conditioned on predicted fea-
tures f(yjk|Tr;k), Vi, k, and the extracted fea-
tures when extracted from clutter fo(y;z). We
model these densities as follows:

e Amplitude: Log Normal for |A|, Gaussian
for A.

e Location: Gaussian for  f(z;,) and
f(yjklzr;k), 2D Poisson with rate A for

fe(yix)-

e Geometric Type: Since
a€[-1 —1/20 1/2 1], the densities are
probability mass functions.

o Length: f.(y;r) = e-d(g;1) for gL = 0 and
fc(ij) = 2(1 - 6) 'g(gjln 0,0'ij) for gjL >
0, and similarly for the other densities.

e Tilt Angle: Gaussian

From the above densities, we can compute
f(yjlzr;k) for various attributes assuming I'; =
i in a straightforward manner; for details, see
[Chiang, 1998].

5.1 ATR Performance Estimation

The above likelihood formulation provides a
mechanism for matching extracted to predicted
model parameters. We can compute the Bayes
error of a match as a function of the uncertainty
of the attributes. We thus use the Bayes match
formulation to predict ATR performance, and
to quantify the performance as a function of fea-
ture uncertainty. An initial illustrative example
is presented below.

Figure 8 shows the result of a simple experi-
ment that motivates the use of more scattering
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Figure 8: Bayes classification error as a func-

tion of uncertainty in frequency de-
pendence parameter «

features in a target identification task. The ex-
periment is a two-class classification task. The
two targets are a T72 and a BMP2 from the
MSTAR 1995 Public Release database. Each
target catalog contains 60 images of different
pose angles from 0 to 90 degrees with a res-
olution of 1 foot by 1 foot. For each im-
age we extract the locations and amplitudes of
the three strongest peaks using an FFT-based
CLEAN technique [Tsao and Steinberg, 1988].
For each peak we randomly set the type param-
eter « € {—1,—1/2,0,1/2,1} with equal proba-
bilities. The standard deviation of the location
uncertainty is set to 5 feet, the standard devi-
ation of the amplitude uncertainty is set to be
equal to the extracted amplitude, and the stan-
dard deviation of the type uncertainty is varied
from 0.1 to 1.9. We assume equal priors on the
images. A standard two-class Bayesian classifier
(a likelihood ratio test) is performed [Van Trees,
1968]. The likelihood score for a test pattern
given a true pattern is computed as the maxi-
mum of the likelihood score among all possible
one-to-one correspondences. For each image we
generate 100 realizations. Figure 8 shows that
the performance is improved by 30 % with the
additional type attribute even if the relative un-
certainty of the type attribute is twice as large
as that of the amplitude attribute.

6 Conclusion

We have presented a GTD-based parametric
scattering model for the extraction of scatter-
ing centers from radar data measured as a func-
tion of frequency and aspect angle. We have
developed algorithms for extracting these fea-
tures from measured SAR image chips. We have
bounded feature uncertainty using the Cramér-
Rao bound, and have shown that our approxi-
mate maximum likelihood estimation algorithm
nearly achieves this bound in most cases. We
have also presented a model order estimation
method that uses the Wald statistic to pro-
vide computational savings while retaining good
statistical performance. Finally, we have de-
veloped a Bayes classifier that operates on at-
tributed scattering features. An initial ATR
performance experiment shows improved clas-
sification performance, when compared to per-
formance using only point scattering features.
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