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Estimated spectral densities max often take on negative values in
some frequency bands, and hence need be corrected to become
positive for all frequencies. The Letier describes 8 most natural
approach 1o enforcing the positiveness condition on an estimated
spectral density, which is shown to Jead to a semi-infinute
optimisation problem. In the numerical example reporied. the
latter problem is solved by using the Matlab Optimization
Toolbox.

Problem statement: Let {r,),." denote the estimated covariances
of a discrete time stationary signal. The corresponding estimated
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spectral density is given by
n

flay= 3 Fwst (1)

k=~n
Hereafter, @ denotes the (angular) frequency variable. As $(w) is
an even periodic function of w, with period 2m, it suffices to con-
sider eqn. [ for w € [0, =]. Estimated spectral densities having the
above form are ubiquitous in signal processing applications. They
are encountered both in nonparametric applications (e.g. based on
the Blackman-Tukey approach) and in parametric spectral estima-~
tion applications (e.g. by using an MA or ARMA model).

Several commonly-used methods for spectral estimation do not
guarantee that $(w) = 0 for all w in [0, =], and hence they may
yield estimates with negative values at some frequencies. As such a
situation is not acceptable for most applications, several research-
ers have proposed methods for enforcing the positiveness condi-
tion on an estimated §(w) (see, for example, [1-5]). Some of these
methods are simple to apply, but rather ad-hoc [3-5]. Others are
optimal, albeit in a limited sense, but they are somewhat intricate
from an algorithmic standpoint [1, 2]. This Letter shows that a
most general approach to enforcing the positiveness condition on
$(w) naturally leads to a semi-infinite optimisation problem, the
solution of which can be obtained for instance by using the Mat-
lab Optimization Toolbox.

S(w) = fle™)

Proposed solution: Let

pw)=[1 cosw...cosnw]l (2)
p=1[ro 27 ...27,]7 (3)

By making use of this notation, ¢(w) can be written as
3(w) = 5T o(w) (4)

Whenever §(w) is not positive for all w € [0, n], a vector p which
gives a valid spectral density

Mw) = plo(w) >0 w € [0.7] (3)
is to be determined such that ¢(w) is ‘close to’ (ﬁ(m). A natural for-
mulation of this problem is as follows:
D Y A - .
mm-—/ W (w)[0(w) — 6(w)]? du
P T Jo
subject to  ¢(w) >0 for w € [0,7] (6)
In eqn. 6, W(w) is a weighting function that can be used to
emphasise certain frequency bands.

A straightforward calculation shows that eqn. 6 can be re-writ-
ten in the following more convenient form:

min(p — p)TQ(p - p)

subject to pT(w) >0 for we 07} (7)
where

1/ . s
Q=1 [ Wlp)e () do ®)

For simplicity, in the following we consider the common choice
B{w) = 1. For this case Q is readily derived:

1 0

1/2
Q= ) (©)

0 1/2
Matrix @ above differs only slightly from the choice @ = 1 consid-
ered in [1]. Of course, other choices of W{(w) in eqn. 8§ may lead 1o
completely different @ matrices.

Next, we note that eqn. 7 is a semi-infinite optimisation prob-

lem which can be solved by a variety of algorithms. Here we use
the function ‘seminf’ in the Optimization Toolbox of Matlab. The

initial estimate required to start seminf can be determined as fol-
lows. Let 0, and w, be such that

Plw) = dlwz) =0 and P(w) <0 wE€ (wr,wz) (10)

{w, and w, can be obtained either by rooting $¢) or by inspection
of the plot of $(w)). If @ = (w, + @;)/2 = 0 or &, then compute

f(2) =2 f(2)) (=) (2 =) (2 me ) (—e )

X (z—e")}(z—e~*)? (11)

If © =0 or =, then f(z) is redefined as
() = M) - ez - e )z - ) (12)

By construction, $(w) 2 f(e*) is non-negative for v € [w,, w,].
Continuing in the above simple way, as necessary, we can obtain g
corrected spectral estimate that is non-negative for all frequencies,
This estimate is used as the starting point for seminf. An improved
initial estimate can be obtained by optimally scaling f'(z) deter-
mined as above. The optimal scaling factor is determined by the
minimisation of the criterion in eqn. 7. This amounts to solving a
very simple least-squares problem, the details of which are omitted
in the interest of brevity.

Fig. 1 Initial and corrected spectral densities

given (w)

- ~ - — Initial ¢ (w)

----- optimally corrected ¢(w)
— - — corrected ¢(w) in {1]

Numerical example: For illustration purposes, we consider one of
the examples in [1]. Let p = [1 2 3). The corresponding §(w) does
not satisfy eqn. 5, as shown in Fig. 1. The correction method
based on eqn. 11 yields p = [3.270 2.544 3.000)” and § (w) exhib-
ited in Fig. 1. The optimal correction method, which uses the
function seminf (initialised by §) to solve the semi-infinite optimi-
sation problem eqn. 7, gives p = [1.800 1.600 1.600)7 and ¢{w)
shown in Fig. 1. For comparison, Fig. 1 also includes the solution
derived in [1], which corresponds to using the slightly different
weight Q0 = [ in eqn. 7 (the corresponding p is p = [2.154 1.743
1.960]7). As expected, the corrected ¢(w) obtained with the method
of this Letter is closer to ¢(w) than is the corrected spectral den-
sity derived in [1]. In fact, the values of the criterion in eqn. 7 cor-
responding to  §, p,, and py, above are 5.300, 1.700 and 1.906,
respectively.

In conclusion, it should be noted that the function seminf has
been found to work quite properly on all simulations conducted.
When initialised as described above, seminf yields the optimally
corrected ¢(w) almost instantaneously for low dimensional prob-
lems. Although using seminf to solve the optimisation problem
(eqn. 7) may be expected to be less efficient computationally than
using the specialised algorithm of [1], seminf is simple to use and,
unlike the method in [1}, it does not require much interaction with
the user.
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ULTRA-WIDEBAND SYNTHETIC APERTURE RADAR TARGET DETECTION

Timothy Miller, Lee C. Potter,
Randolph L. Moses
Department of Electrical Engineering,
The Ohio State University,
Columbus, OH 43210

ABSTRACT

In this paper we present algorithms and features for
detection of targets from ultra-wideband (UWB) syn-
thetic aperture radar imagery. We have developed
and implemnted algorithms related to SAR target de-
tection, including prescreening by CFAR detection
and detection clustering, and feature-based discrim-
ination. We present results of CFAR prescreening,
and of detection using discrimination features, when
applied to UWB SAR imagery collected by ARL at
Aberdeen Proving Grounds.

INTRODUCTION

We present algorithms aimed at reliable detection of
targets from ultra-wideband synthetic aperture radar
imagery. The targets are embedded in clutter ranging
from benign clutter, such as grassy fields, to heavy
clutter from forested areas. We have developed al-
gorithms for both prescreening and discrimination.
These algorithms are compatible with ARL’s ATR
Evaluation Framework [1], and can be combined and
evaluated (e.g. with detection ROC curves) with pre-
screening and discrimination algorithms developed
by others. (This paper presents such combined eval-
uation results — we present ROC curves showing
performance of a prescreener developed at ARL in
conjunction with two discrimination features devel-
oped at Ohio State.)

We present results for both prescreening and discrim-
ination algorithms. The prescreener we use is a two-
parameter CFAR statistic combined with clustering

*Prepared through collobarative participation in the Ad-
vanced Sensors Consortium sponsored by the U.S. Army Re-
search Laboratory under the Federated Laboratory Program, Co-
operative Agreement DAALOQ1-96-0001. The U.S. Government
is authorized to reproduce and distribute reprints for Govern-
ment purposes not-withstanding any copyright notation thereon.

operations. In addition, the prescreener generates
several features on points of interest, with very lit-
tle computational overhead, to be used in the dis-
crimination stage. We present two additional dis-
crimination features, which are computed only on
points of interest identified by the prescreening al-
gorithm. The two features are based on rotational in-
ertia and range line bipolar templates of responses.
We provide some physical motivation for the fea-
tures, and show performance results when applied to
UWB SAR imagery from ARL data collections at
Aberdeen Proving Grounds.

CFAR PRESCREENING

Our prescreener is based on a two-parameter con-
stant false alarm rate (CFAR) approach applied to the
log-magnitude envelope imagery. A fast, memory-
efficient C code for the CFAR/cluster prescreener
has been implemented based on the Sandia-Sverdrup
STARLOS CFAR module.

The CFAR statistic at pixel (¢, §) is given by

- M

O’ij

where I;; is the corresponding SAR input image
pixel, and m;; and o;; are the corresponding esti-
mates of the local mean and standard deviation, re-
spectively. The mean and standard deviation are esti-
mated locally on a rectangular annulus of pixels cen-
tered on the test pixel, I;;; we choose an 8§ m diameter
annular guard band.

The clustering routine extracts points of interest
(POIs) in the scene by applying a threshold to the
CFAR statistic image and grouping closely spaced



Table 1: CFAR prescreening features

centroid (meters, UTM)

number of detected points in cluster
maximum (dB)

mean (dB)

standard deviation (dB)

Covariance Features

ellipticity of cluster

area of 86.5% Gaussian contour (sq. meters)
8 pose angle (degrees east of north)

| B W =

@)}

~

detections. The clustering routine scans the range
lines of the CFAR image. When a pixel exceeds the
threshold, a 5 meter square box centered on that pixel
is processed to produce the eight prescreening fea-
tures in Table 1. CFAR values in the region are ze-
roed to preclude additional POIs within the box. The
clustering approach is chosen to conserve both mem-
ory access and computation. Clustering computes a
centroid by processing pixels in the 5 m square box;
the additional seven prescreen features process the
same pixels and require only three additional mul-
tiplies per pixel. Thus, the prescresning features are
available from the clustering procedure with minimal
computational cost.

An illustration of the prescreening features is given
in Figure 1. The image is a 16m-by-16m target chip
from ARL data collection 2 at Aberdeen Proving
Grounds, Run #45 (denoted A2R45). The dark “*”
symbols denote CFAR pixels above threshold, and
the overlay cross-bars denote the estimated centroid,
ellipticity, and pose angle of the target.

A receiver operating characteristic (ROC) plot for
ARL Aberdeen data collection #3, Run 60 (A3R60)
(0.37 km? of data) is shown in Figure 2. A CFAR
threshold of 3.1 yields 2054 POIs and a minimum of
two detections per vehicle. A quadratic polynomial
discriminator (QPD) was trained on all combinations
of one, two and three prescreening features. The
best single feature performance was observed for the
mean CFAR value computed on the 5Sm-by-5m re-
gion. The best QPD combination of three features

Normalized Chip via Pseudo-CFAR, dB

crossrange (maters)

downrange (meters)

Figure 1: Prescreening feature example target chip,
A2RA45

was maximum CFAR pixel, mean CFAR value, and
ellipticity, resulting in 309 detected POIs.

For the A3R60 data set, the combination of three
simple prescreening features resulted in 309 POIs
(830/km?) for further discrimination processing.
CFAR processing provides an invariance to drift in
system gain, and can be interpreted as a contrast
enhancement step. The CFAR features compris-
ing the best combination of three are computed on
the Sm-by-5m box surrounding pixels above thresh-
old and have simple interpretation. First, the maxi-
mum CFAR pixel is the classical prescreening statis-
tic identifying points of bright scattering, normalized
by the local standard deviation. Second, the mean
CFAR value across the 5m-by-5m box characterizes
the average strength of radar returns in the immediate
vicinity of the peak pixel. The mean CFAR statistic
is typically larger for targets than clutter. Third, the
ellipticity is computed from the 2-by-2 covariance
matrix of CFAR pixels in the Sm-by-5m box. The
ellipticity captures the aspect ratio of the cluster of
bright pixels. Finally, the centroid of the Sm-by-5m
box is reported as the detection location.

DISCRIMINATION FEATURES

In the multi-stage approach, the prescreener is fol-
lowed by a discriminator, with the purpose of reduc-
ing false alarms due to both natural and some man-
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Figure 2: ROC curve for full-band CFAR pre-
screener, A3R60.

made clutter. Prescreening allows the use of more
computationally intensive features at the discrimina-
tion stage. We report results for two discrimination
features, rotational inertia and a bipolar range line
template match.

Rotational inertia

The normalized rotational inertia feature is computed
on a binarized image and exploits the size and shape
of bright regions in UWB SAR imagery. Applying
a user-defined threshold to a 16 m square image chip
centered on the POI, bright pixels are morphologi-
cally processed by erosions and dilations to produce
a bright blob. This is illustrated in Figure 3 for an
image chip from A3R60. The rotational inertia, nor-
malized to a circuolar disk of the same mass, is given
by

T@i — pz)? + (i — 1)’
mass /2w

2

inertia =

Thus, inertia is small for round objects and is very
large for elongated objects. For horizontal polariza-
tion, normalized rotational inertia has shown to be ef-
fective at identifying false alarms due to power lines;
the feature can be computed from either bipolar or

(a) chip 18

Biod from Morphotogical Procemsing
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(b) chip 18 binary blob

Figure 3: Blob by morphological filtering for exam-
ple target chip, A2R45.

log magnitude imagery with similar results. Figure 4
shows the separation of target and power line his-
tograms for A3R60 image chips specified using an
ARL prescreener output list of 110 points of interest
(POIs).

Bipolar Templates

The bipolar signature feature is computed on a range
line extracted from a bipolar image, and seeks to
identify differences in the one-dimensional, wide-
band responses from trees and vehicles. Figures 5
and 6 show selected signatures from POIs in A3R60.
From the peak within a Sm square box centered on
the POI, we select a range segment extending 0.7m
before and 1.0m after the peak (-2.33ns to 3.33ns).
The feature is then computed as the correlation of the
segment, s(n), with a 1.7m template, t(n), given by
(3, s(n)t(n)) /llsli- The template is the difference
of means from normalized target and tree responses.

Figure 7 shows the templates, ie., means of nor-
malized signatures (normalized to unit energy and
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Figure 4; Rotational inertia histograms for power
lines and targets, A3R60 horizontal polarization.

positive peak) from trees and targets in A2R45 and
A2R60. In Figure 8, the mean target template is
compared to £1 standard deviation of the normalized
tree signatures (dashed lines). Although the means
are more distinguishable in A2R45 than A3R60, the
target template largely lies within one standard de-
viation of the tree template. Therefore, an energy
measure, such as correlation, will not provide strong
discrimination. On the A3R60 data set, the resubsti-
tution method yielded only approximately 55% elim-
ination of false alarms. A covariance weighted tem-
plate (Fisher discriminant) is not robustly trainable
on the A3R60 data set and consequently emphasizes
excessively high frequency components.

The similarity of targets and trees may be explained
by the dominant role of specular responses in the sig-
nature energy. However, the trees in general are more
electrically lossy than vehicles; this is evidenced by
the slightly wider main lobe for the tree response in
Figures 7(a) and 7(b). Identification and exploitation
of invariant, observable discriminants remains a con-
tinuing goal.

CONCLUSIONS

We have presented algorithms for both prescreen-
ing and target discrimination for UWB SAR im-
agery. The algorithms are compliant with the ARL

(a) trees {(b) power poles

Figure 5: Example normalized bipolar signatures
from trees and power poles; segments taken from
A3R60 bipolar imagery, horizontal polarization.

vehicle V17, 65 degrees

vehicle V50, 90 degrees
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Figure 6: Example normalized bipolar signatures
from targets; segments taken from A3R60 bipolar
imagery, horizontal polarization.

UWB SAR ATR Evaluation Framework, and this
facilitates combining algorithms developed by sev-
eral researchers. We have presented ROC curves to
quantify the effectiveness of the algorithms both for
prescreening and for target discrimination on pre-
screened points of interest.

Current work is focused on improved discrimination
feature generation, and on combining these features
with other features developed at ARL and by other
UWB ATR researchers.
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