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ABSTRACT

We consider the problem of detecting anisotropic scattering of targets from wideband SAR measurements. We �rst
develop a scattering model for the response of an ideal dihedral when interrogated by a wideband radar. We formulate
a stochastic detection problem based on this model and Gaussian clutter models. We investigate the performance
of three detectors, the conventional imaging detector, a generalized likelihood ratio test (GLRT) detector based on
the dihedral anisotropic scattering model, and a sum-of-squares detector motivated as a computationally attractive
alternative to the GLRT test. We also investigate the performance degradation of the GLRT detector when using
truncated angle response �lters, and analyze detector sensitivity to changes in target length. Finally, we present
initial results of angular matched �lter detection applied to UWB radar measurements collected by the Army Research
Laboaratory at Aberdeen Proving Grounds.
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1. INTRODUCTION

Conventional SAR imaging assumes an isotropic response from scattering centers. However, man-made targets often
exhibit distinctly anisotopric scattering. There has been recent interest in exploiting anisotropic scattering behavior
of man-made objects to improve target detection performance.1{3 These techniques use the property that angular
scattering response is inversely proportional to the width of the scattering object.

Conventional SAR (or ISAR) imaging aims to coherently sum received signal energy at each \pixel" in the
formed image. The coherent summation is usually unweighted (or perhaps weighted by a window to minimize
sidelobe e�ects). An unweighted sum can be shown to have the interpretation of an optimal detector for a scattering
center that has an isotropic (constant) response as a function of view angle, for a certain clutter model.

On the other hand, it is known that many scattering mechanisms on man-made targets exhibit anisotropic
responses as a function of angle. An optimal target detector should take this anisotropic scattering into account.
This has been noted by researchers, and improved target detection using this idea has been demonstrated.1{3

In this paper we consider SAR target detection from wideband radar measurements, from a signal detection
standpoint. We �rst develop a scattering model for the response of an ideal dihedral when interrogated by a
wideband radar (the studies in 1,2 apparently use a single-frequency scattering model). We formulate a stochastic
detection problem based on this model and appropriate clutter models. We then quantify the performance achievable
by exploiting anisotropic scattering behavior for detection. We analyze the performance of three detectors, the
conventional imaging detector, a generalized likelihood ratio test (GLRT) detector based on the dihedral anisotropic
scattering model, and a sum-of-squares detector motivated as a computationally attractive alternative to the GLRT
test. We also consider some computationally e�cient variants of the GLRT test obtained by using truncated angle
response �lters, and analyze their statistical performance and robustness to mismatch of assumed target length.
Finally, we present initial results of angular matched �lter techniques applied to ultra-wideband radar measurements
collected by the Army Research Laboaratory at Aberdeen Proving Grounds.

email: (randy,ertene,potter)@er4.eng.ohio-state.edu. This work was performed through collaborative participation in the Advanced
Sensors Consortium sponsored by the U.S. Army Research Laboratory under Cooperative Agreement DAAL01-96-2-0001..
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Figure 1. Geometry of the dihedral.

2. IDEAL RESPONSE FROM A DIHEDRAL

We �rst develop a model for anisotropic scattering that will form a basis for our detector design. We assume that
the target scattering mechanism is a dihedral formed by two rectangular, perfectly conducting plates as shown in
Figure 1. The vertex of the dihedral is of length L, and is oriented horizontally and at an angle �0 from the zero-angle
reference � = 0. For convenience we assume that the zero phase reference point is the center of the vertex. We are
interested in the monostatic scattering response for a radar oriented at an elevation angle of � and angle � with
respect to broadside to the dihedral. The model is motivated because of the large dihedral-like response of ground
targets at cardinal angles; it is hypothesized that this response is dominated by the dihedral formed by the ground
and the vertical side of the target.

Because our radar is wideband, we are interested in the wideband response of the dihedral. To do so, we use
physical optics (PO) to model the scattering s(f; �) as a function of frequency and angle, and transform this data to
obtain the response s(t; �) in the time-angle domain. This model forms the basis of our detector design in the next
section.

The return signal of such a dihedral of some length, say L, as a functon of aspect angle � and frequncy f is given
by the following equation

s(f; �) = Ao k sinc(k L sin(� � �0)) (1)

where k = 2�f
c
, Ao is a constant proportional to plate area and �0 is the orientation of the dihedral. We note that

1,2 employ the above model for a single frequency fo. Assume that the radar transmits a waveform with frequency
response T (f) on f 2 [fmin; fmax] (The actual frequency response, T (f), of the transmit signal used in UWB SAR is
as shown in Figure 2). Then the backscattered waveform from the target, as a function of time t and radar orientation
�, is given by

s(t; �) = 2Re(~s(t; �)) (2)

~s(t; �) =

Z fmax

fmin

T (f)s(f; �)ej2�ftdf (3)

If we assume the transmitted signal is a constant over [fmin; fmax], one can obtain a closed-form expression for the
wideband dihedral scattering. By inserting 1 into 3 and carrying out the integration, we get :

~s(t; �) =
AoFe

j2�fct

L sin(� � �0)2j
(ej2�fc

L

c
sin(���0)sinc(�F (

L

c
sin(� � �0) + t))� e�j2�fc

L

c
sin(���0)sinc(�F (

L

c
sin(� � �0)� t)))

(4)
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Figure 2. Transmit waveform, T (f)
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Figure 3. ~s(t; �)

where F = fmax � fmin and fc = fmax+fmin
2 . A plot of ~s(t; �) is shown in Figure 3. We see that most of the

scattered energy occurs near t = 0 and � = 0. The large response for � = 0 and t 6= 0 are sidelobes resulting from the
assumed rectangular frequency response T (f). The two diagonal ridges in ~s(t; �) correspond to leading and trailing
edge di�raction from the dihedral. ~s(t; �) evaluated at t = 0 is given as follows :

~s(0; �) =
Ao�

c
(f2max � f2min)sinc(�

L

c
sin(� � �0)(fmax � fmin))sinc(�

L

c
sin(� � �0)(fmax + fmin)) (5)

A plot of ~s(0; �) given in Figure 4.

3. TARGET DETECTION AS A HYPOTHESIS TEST

Assume we have radar measurements from a wideband, angle-diverse radar. For each k = 1; : : : ; N , y(t; �k) is the
time response (the received signal) at aperture location k; the time response might be measured directly (for an
impulse radar) or obtained as the inverse Fourier transform from a linear FM chirp signal or a stepped frequency
radar. The measured signal contains clutter n(t; �k), and may or may not contain a signal component s(t; �k) with
unknown amplitude A. We consider the signal model in the previous section for general L, and as a special case the
isotropic scattering response obtained with L = 0.

We model the clutter as white Gaussian noise with zero mean and variance �2 in the (t; �) plane.As we show
below, under this white noise assumption, one can obtain \matched �lter" detectors that are optimal or close to
optimal in the sense that they maximize the target detection probability for a given probability of false alarm. The
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Figure 4. j~s(t; �)j for t = 0

Gaussian assumption is also motivated in part because n(t; �k) is the sum of a large number of clutter elements
in the scene that lie on the surface of a sphere (whose radius corresponds to the two-way propagation time of the
wavefront); because these clutter terms can reasonably be assumed to be independent, the clutter in this domain is
approximately Gaussian by the law of large numbers. The white Gaussian assumption would not apply, however,
if the clutter return is dominated by a small number of large-amplitude scattering mechanisms, and in fact the
clutter is highly correlated in the (t; �) plane in this case. A detailed study on the validity of a Gaussian white noise
assumption, or the development of alternate clutter models, has not been carried out, although preliminary results
by the authors and others suggests the white noise assumption is a reasonable starting point.1{3

We approach the target detection problem in the following way. The radar return signal corresponding to an
image pixel traces out a hyperbola in the (t; �) plane. Thus, the signal response from the time delay corresponding to
a pixel is the signal y(t; �k) extracted along this hyperbolic path. Let t(x; y; �) denote this hyperbola corresponding
to pixel at location (x; y), and let

yk = y(t(x; y; �k); �k); k = 1; : : :N (6)

y = [y1; : : : ; yN ]
T (7)

The task of target detection can be modeled as the following hypothesis test

H0 : y = n (no target present) (8)

H1 : y = As+ n (target present)

where the vectors s and n are de�ned along the hyperbolic path similarly to y and A is an unknown target amplitude.

For target detection, we compute a detection statistic at each location (x; y). This set detection statistics can be
displayed as an \image". For each location (x; y), the test statistic is formed as a function of the vector y de�ned
in equation 7. SAR imaging can be interpreted as the computation of a decision statistic, at each pixel location,
for solving the hypothesis problem given in equation 8. The inputs for imaging are the UWB time pro�les y(t; �k)
measured at each aperture position. The output is the array of decision statistics, which can be displayed as an
image.

Below we consider three test statistics obtained from y and three corresponding detectors. The �rst is conventional
imaging, and we determine the detection problem that conventional imaging is optimal for. We then consider a GLRT
detector based on the dihedral response derived in the previous section. Finally, we consider a sum-of-squares detector
motivated as a computationally simple alternative to the GLRT.
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3.1. Conventional Imaging

In conventional imaging, the pixel value at location (x; y) is the coherent integration of SAR measurements along
the hyperbolic path t(x; y; �). This image value is thus given by (to within a constant):

d1 = d1(x; y) =

NX
k=1

y(k)

This process can be thought of as �ltering the signal with a uniform amplitude �lter. If the signal component of y
is As = A[s(1) : : : s(N)]T , then the test statistic d1 has probability distribution functions (pdfs) given by:

H0 : d1 � N (0; N�2) (9)

H1 : d1 � N (A
NX
i=1

s(i); N�2) (10)

If the signal is an isotropic scatterer with amplitude A (i.e., s = A[1; : : : ; 1]T ), and if the clutter is white Gaussian
noise in the (t; �) plane, this �lter is optimum (matched)1{3 and the optimum detector is

d1
H1

>
<
H0

�

for some threshold � that is determined by the desired probability of false alarm; alternatively, a CFAR detection
statistic can be used if �2 is unknown. The detection ROC curves corresponding to this detector can readily be
found by varying � and computing the detection and false alarm probabilities from the distributions in equations 9
and 10. In fact, the above detector is uniformly most powerful for unknown A4; i.e. it is the detector that maximizes
the probability of detection for a given probability of false alarm, independently of the value of A.

3.2. GLRT Detector

For a dihedral with known length L and orientation �0, the optimum detector is given by

d2
H1

>
<
H0

�

where
d2 = �sT (�0)y

and �s(�0) is the vector formed from the dihedral response s(t; �k) sampled along the hyperbolic path corresponding
to location (x; y), and scaled so that k�sT (�0)k = 1. In this case the test statistic is distributed as

H0 : d2 � N (0; �2�sT �s) (11)

H1 : d2 � N (A�sT s; �2�sT �s) (12)

Again, this detector is uniformly most powerful for unknown amplitude A.

In practice, the orientation angle �0 is unknown. It would be nice to �nd a detector that is uniformly most
powerful for unknown A and �0, but unfortunately no such detector exists. Therefore, we propose the popular (but
suboptimal) generalized likelihood ratio test (GLRT) statistic

d̂2 = �sT (�̂0)y (13)

where �̂0 is the maximum likelihood (ML) estimate of �0, given by

�̂0 = argmax
�

�s(�)T y (14)

Thus, the GLRT detector is given by

max
�

�s(�)T y
H1

>
<
H0

� (15)

Closed-form expressions for the distribution of d̂2 under H0 and H1 are not known; however, performance for the
GLRT is bounded by the analytical performance bounds given above for the known �0 case.

5



−30 −20 −10 0 10 20 30 40 50
0

5

10

15

20

25

30
Sum (d1), SNR=18.46dB

Ho H1

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40
Maximum correlation (d2), SNR=18.46dB

Ho H1

70 80 90 100 110 120 130 140 150
0

5

10

15

20

25

30

35
Sum of squares (d3), SNR=18.46dB

Ho H1

(a) Conventional Image (b) GLRT : d2 (c) Sum-of-Squares : d3

Figure 5. Detection statistic histograms for the three detection statistics

3.3. Sum of Squares Imaging

A computationally simple but suboptimal detector motivated by the GLRT detector is to compute each detection
statistic as a sum of squares of the data vector:

d3 =
1

�2

NX
k=1

y2(k) =
1

�2
yT y

The statistic d3 is found to be central- and noncentral-�2 distributed under H0 and H1
4:

H0 : d3 � �2N (16)

H1 : d3 � �2N (d
2) (17)

The advantage of this detector is that there is minimal impact to conventional SAR image formation; one simply
takes the square of the data y(t; �k) before summation. Thus, fast algorithms for image formation (e.g.,5 ) can also
be used for fast computation of this test statistic.

It can be seen that for high signal-to-clutter ratio, y ' s (to within a constant), the detection performance of
the sum-of-squares (SoS) and GLRT detectors will be similar. On the other hand, the SoS detector statistic is not a
function of target orientation �0, so we need only compute the statistic once, and not for several candidate �0 values
as in the GLRT.

3.4. Performance Comparison

We present an example to illustrate the detection peformance gain in using the GLRT and sum-of-squares detectors
over conventional imaging. We consider a dihedral with length L = 5m and signal-to-clutter (SCR) ratio of 18.46dB

(SCR is de�ned as

qP
i
s2
i

�2
). Figure 5 shows histograms of target and clutter for test statistics d1, d̂2, d3. We see

improved target and clutter separability using the GLRT. The SoS detector performance is between the conventional
imaging and GLRT performance, but is computationally nearly equivalent to the (simpler) imaging detector. For
higher SCR, the SoS performance is closer to the GLRT performance.

We should note that none of the above detectors is optimal because they all use only a single hyperbolic slice of
the given data y(t; �k). Since the target scattering response is nonzero for points o� of this hyperbola (see Figure 3),
some performance gain can be realized by using a detector on the full two-dimensional imagery. On the other hand,
most of the target energy is concentrated in the considered hyperbolic slice, as can be seen from Figure 3, so the
resulting performance loss is minimal (and the computational gain realized by restricting to a single hyperbolic slice
is signi�cant).

Table 1 summarizes the distributions of the three test statistics considered in this section.
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Imaging technique output for no target output for target

Conventional Imaging d1 � N (0; N�2) d1 � N (A
PN

i=1 s(i); N�2)
GLRT Imaging (for � = �0) d2 � N (0; �2�sT �s) d2 � N (A�sT s; �2�sT �s)
Sum-of-Squares Imaging d3 � �2N d3 � �2N (d

2)

Table 1. PDF's of the decision statistics for the three imaging procedures

4. GLRT PERORMANCE

In this section we consider the GLRT detector and some computationally e�cient approximations obtained by
truncating the detector \�lter". We consider the performance degradation caused by the �lter truncation, and also
consider the performance sensitivity to mismatch between the assumed and actual target length L.

A �lter whose impulse response is as given in equation 5 has to be employed (matched �lter). Since the orientation
angle �0 of the target is unknown, the GLRT detector is implemented as a bank of �lters, each corresponding to a
di�erent orientation angle. The pixel value is taken to be the maximum of the outputs of this bank of �lters. The
�lter with the maximum ouput gives the maximum likelihood estimate of the target orientation.6

As a computational saving, the matched �lter may be truncated at, say, its 3dB points.1,3 Let h1 denote the
matched �lter and h2 the 3dB truncated matched �lter. As a further computational saving, h2 can be approximated
by a uniform amplitude �lter, denoted by h3 (see Fig.6). In either case, the �lter bank above is replaced by a
convolution operation: the vector y = fy(i)gNi=1, treated as a one-dimensional signal, is convolved with the �lter h2
or h3, and the detector statistic is the maximum of the convolution output.
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Figure 6. Filters h1, h2 and h3.

The optimal �lters used to detect the target will be arbitrary to within a scaling constant. However, for optimum
detection, the parameter L used to design the �lter and actual length of the target have to be the same. In the
case of a length mismatch, a loss in detection performance will be incurred. This loss can be conveniently observed
in the ROC curves and the �lter output SCR ratio. If the truncated �lters are used, there will also be a loss in
output SCR ratio, and a corresponding loss in performance. The expression for the probability of detection (PD) for
given probability of false alarm is directly proportional to the SCR, therefore the highest SNR will coincide with the
highest PD .

To quantify this loss, Figure 7(a) shows the ouput SNR as a function of �lter L for all three �lters. The �lters
are designed assuming LD = 5m, and tested with a measured signal that corresponds to a dihedral with varying L.
The baseline (0 dB level) is chosen as the matched �lter output SCR corresponding to each input signal. The clutter
is modeled as additive white Gaussian. For a perfect signal-�lter match,the loss incured by using h2 and h3 versus
the matched �lter is about -1dB. However, when the target length is about 50% larger than the �lter L, h2 and h3
outperform h1. Thus, for best performance, the �lters h2 and h3 should be designed for about 50% larger length
than the expected target length. The performance of the three �lters when h2 and h3 are designed to have best
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performance at L = 5m is shown in Figure 7(b). The best performance obtained by h2 is about 0.25 dB less than
the optimum performance and the best performance obtained by h3 is 0.5 dB less than the optimum performance.
Furthermore, these �lters are relatively insensitive to variations in target length; the ouput SCR decreases only 1dB
when the length of the target increases or decreases by a factor of 2.
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Figure 7. Output SCR as a function of L=LD; (a) �lters designed assuming LD = 5 meters, (b) as in (a) but with
h2 and h3 �lters compensated to give peak performance at LD = 5 meters.

Another way to measure the loss caused by target length mismatch or truncation of the matched �lter is to
compare the corresponding detection ROC curves. Figure 8 shows these ROC curves for the case considered in
Figure 7. Figure 8(b) shows the ROC curves when the target and �lter design values of L coincide, for the three
�lters h1, h2 and h3 (for h2 and h3 we compensate the design L value to obtain best performance, as in Figure
7(b)). Figure 8(a) shows ROC curves for h1 when designed for a dihedral of L = 5 meters, when the measured
dihedral has lengths of L=3, 5 and 10 meters.
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Figure 8. Detection ROC curves for (a) matched �lter but with target length mismatch, and (b) matched �lters
h1, and truncated �lters h2, and h3 when measured target length matches �lter design length.

5. MEASURED DATA

In this section we present preliminary results obtained by applying the anisotropic scattering detectors to measured
UWB imagery. The SAR measurements were collected by Army Research Laboratory at Aberdeen Proving Grounds.
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Figure 10. UWB imagery

The images shown are of a target oriented approximately -32� from the SAR aperture.

Figure 9 shows the anisotropic scattering return signal from the target along the hyperbolic path corresponding
to the location of the center of the \dihedral". This response shows good agreement with the wideband model in
Section 2 in the mainlobe region. The model sidelobes are lower than the measured sidelobes; the reason for this is
not yet clear and is under investigation. However, this di�erence will have a minor impact on detection performance
because it is in a low-energy region. Figure 10 shows \images" of detection statistics d1, d2, and d30 in a region
around the target. Finally, Figure 11 shows histograms for these detection statistics in the target and background
regions. While this imagery is clearly anecdotal (presenting results for only one target realization), it does suggest
that improved target detection may be realized using the SoS and GLRT detectors.

6. CONCLUSIONS

We have considered SAR precreeening by detecting anisotropic scattering. We have viewed the problem as an
optimal or suboptimal binary hypothesis testing problem. We developed a wideband scattering model for dihedrals,
and obtained a closed-form expression, based on the dominant term of a physical optics scattering model for a
dihedral. Using this model, along with a white Gaussian clutter model for clutter in the (t; �) domain, we considered
three detectors: conventional imaging, a GLRT detector \matched" to the target anisotropic scattering response at
its center, and a sum-of-squares detector. We also considered computationally e�cient approximations to the GLRT
detector obtained by truncating the matched �lter.

From analytical studies on an ideal dihedral scattering model, we quanti�ed performance of the above three
detectors. In particular, we quanti�ed detection performance gain achievable using anisotropic scattering detectors,
and quanti�ed this gain as a function of target length. We also considered sensitivity and robustness of the GLRT
detector by analyzing the performance loss due to truncating the GLRT detection �lter, and due to changes in the
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Figure 11. Histograms of UWB imagery

target length. We showed that the performance loss was minimal | less than 0.5 dB for �lter truncation, and
approximately 1 dB for changes in target length up to a factor of two.

Finally, we presented preliminary studies of anisotropic detection on UWB radar measurements from ARLs
impulse radar operating as a boom SAR at Aberdeen Proving Grounds. The results, shown for a ground target, are
encouraging, and corroborate promise shown by the analytical studies for using anisotropic scattering detectors.

Our future work is focused on more extensive analysis of the ARL data, and comparing the quantitative analytical
results with results obtained on measured data.
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