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Abstract

In this paper, we propose two model order selection
procedures for a class of summation models. We
ezploit the special structure in the class of candidate
models to provide a data dependent upper bound on the
model order. The proposed upper bound is also a con-
sistent estimator of model order. Further, MDL, AIC
and MAP when accompanied with the data dependent
prior exhibit an improved rate of convergence to their
asymptotic behaviour and an improved detection rate
for finite SNR and finite data lengths. Asymptotic
properties of the mazimum likelthood parameters are
used to derive the proposed methods. All simulations
use the complez undamped exponential model.

1. Introduction

In parametric modeling problems, one often derives pa-
rameter estimation algorithms by first assuming that
the model order is known. However model order is
typically not known in practice. Further, the use of an
incorrect model order can lead to serious loss in per-
formance {9] of many frequently used estimators (for
example MLE). Thus, effective parametric modeling re-
quires accurate model order estimation from observed
data.

A number of model order selection methods have
been developed: information-theoretic criteria such
as AIC [1], MDL (8], and EDC (12]; Bayesian ap-
proaches such as BIC [10], BPD [3}, and MAP [5];
and eigenspace-based techniques such as Fuchs’s ap-
proach [6]. These algorithms all make use of the par-
simony principle; that is, they penalize higher order
models in some way.

Most algorithms search for the best model order over
a set of candidate model orders. The highest order is
often chosen by the user in an ad-hoc fashion. In gen-

eral, the detection performance of most order selection
procedures depends on the number of candidate orders:
more candidate model orders imply a lower probability
of detection for most schemes. We propose two strongly
consistent data dependent upper bounds on the model
order. Further, the proposed upper bounds exhibit a
high detection rate when used as estimators of model
order.

Monte Carlo experiments with undamped exponen-
tial model suggest an increased rate of convergence
to the asymptotic behavior (consistency for MDL and
MAP) and an improved performance for finite data
lengths.

In Section 2, we briefly outline the peometry of
the summation models. Section 3 reports a simula-
tion study for the undamped exponential imnodel. The
simulations are used to support the claims made in
Section 4. The proposed algorithms are summarized
in Section 5. In Section 6, we compare the detection
performance of the proposed method with three order
selection methods, MDL, AIC and MAP. Finally, we
discuss the proposed methods in Section 7.

2. Topology of summation
models

The models have the following structure.

q

y(t) = s(t,0,) + e (1)
=1
where t = 1,...,N. The noise sequence ¢; is ii.d.

N(0,0%). For each ¢, ,; is a k dimensional parameter
vector defining the signal component s(t,&,;). Thus.
the total number of parameters to be estimated is kq.
The composite parameter 8, belongs to the set @,
which is an open subset of R¥¢, defined as

O, = {6, € R* : I(8,) is full rank } (2)



where I is the Fisher information matrix defined as

L(0) = - <[310gpe(y)} [Blogpe(y)D 3)

E 86,

Also, the function s is such that the identifiability cri-
terion is satisfied, i.e., for a given model order g, no
two distinct (to permutations) 8, and ¢, yield the same
noiseless data vector.

Note that ©, is an open subset and bd(Q,) = 9,\9,
contains models with order less than ¢. This implies
that for a given model order p > g and 8, € ©, there
exists a sequence of parameters in @, which converges
to §;. This property allows us to define the “consis-
tency” of ML estimates in the case of overmodeling.

For the rest of the paper, we denote the true quan-
tities by the superscript *. The true model is denoted
by ¢*.

Further, from the definition of Fisher information, it
follows that I(8,) is singular on the set bd(©,). Thus,
if ML estimates, 9q for ¢ > ¢* converge to a member of
bd(8,), then the condition number of T (éq) diverges to
oo. In section 4, we prove that ML estimates converge
to an element of bd(©,) (with some added assumptions)
as SNR — oco. Thus for model orders ¢ > ¢, the
residual error converges to 0. This leads to a “knee” in
the log-likelihood curve as a function of model order.

The summation model class is often considered a
nested model class, but we note that there is no unique
way of embedding a lower dimensional model into a
higher dimmensional model. An example of nested mod-
els with unique embeddings is AR(g).

3. Simulation study

In this section, we consider a widely studied example
of detecting superimposed undamped exponentials in
noise. Specifically, the data is assumed to come from
the following model

q
y(t) = Z 14i€j(w‘t+¢'-) + € (4)

i=1

For the simulations, we consider two equal amplitude
modes, half a Fourier bin apart where the true param-
eters are A; = 4, = 1, ¢ = L, o =0, wy = 7
and wp = %X . The index ¢ ranges from 0 to 24
(N = 25 data points). One hundred Monte Carlo sim-
ulations were performed for SNR ranging from -10 dB
to 20 dB, in steps of 1 dB. For obtaining the ML pa-
rameter estimates, a subspace-based method {7, 4] was
used to initialize a gradient search method. Also, as an
ad hoc upper bound on the model order, we consider

MDL cost

model ordet

Figure 1. Three realizations of MDL cost
functions at SNR = 20dB

Qmax = I_%J so that for the highest model order, we
have approximately two data points per parameter.

First, we motivate the need of a data dependent
prior on model orders. In Figure 1, three tvpical re-
alizations of the MDL cost function are shown (in a
“waterfall” plot). The MDL cost function exhibits lo-
cal minima at several mode] orders other than the true
order, i.e. ¢* = 2. The global minimum is at order 5,
4 and 2 respectively for the three cases. It is clear, if
we choose a prior [1110...0] on the model order. then
MDL will choose the correct model for all three cases.
Since the true order is unknown, we now explore the
possibility of generating a prior from data.

In Section 2, we noted that the Fisher informa-
tion matrix, 7(4,), tends to be poorly conditioned for
g > ¢*. This behavior can be observed in Figure 2,
where we plot inverse of condition number of the Fisher
information versus model order. We could use a thresh-
old to detect the “knee” in the curve and determine the
required binary prior. But this method requires us to
determine a threshold, which involves computing the
statistics of inverse of condition number of Fisher in-
formation matrix. Instead, we use the properties of
negative log-likelihood to propose threshold-free meth-
ods to detect the “knee”.

Let L(g) denote the negative log likelihood com-
puted at ML estimates for model order ¢ (we ignore
some additive and multiplicative constants).

2

q

MOEDI. (t,éqi)

i=1

1
= Nlog —
L(g) o8 %

(Note MDL minimizes L(q) + £log N).
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Figure 2. Inverse of condition number of
Fisher information at ML estimates at SNR
= 20 dB (same estimates as used in Fig-
ure 1)

Our first proposed estimator is given by

Gr=arg max (L(¢+1)+L(g—1)—2L(q))
7€(1,Quaz—1] (6)
We employ ¢; as a data dependent upper bound on
the highest model order. The proposed functional form
arises by extending the definition of curvature of a func-
tion of a continuous variable to a function of a discrete
variable. Since L(g) exhibits a “knee” at the true model
order, §; tends to be good estimator of g* for high SNR.
For moderate SNR, the §; tends to overestimate as seen
in Figure 3. Similar behavior of §» can be observed in
Figure 4.
The second estimator

s are max [L{q)|
=g WX D] @)

uses ratios of log-likelihood instead of differences as
compared to estimator (6). In both the cases, the
function to be maximized, say f(g), has the following
asymptotic behavior.

: 00 q9=q"

) — . (8)
g <o qFG.

The above follows from two properties: the residual

error, r,, converges to zero as SNR increases to oo for

q>4q*, and logry — —oo asr, — 0.
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Figure 3. Histograms of the proposed es-
timator, §,, for SNR =20,0,-5dB

4. Motivating Results

In this section, we present the theoretical results which
we use as a basis to propose the new model order se-
lection method.

First, we consider the consistency of ML estimates
in the case of overmodeling. To define the cousistency
for model orders g > ¢*, we define an equivalence class
using (2)as follows.

Cogv = {8, : 8, is a singular extension of f,- in O}

(9)

The equivalence class belongs to thie boundary of the
set O, bd(Og).

Assumption 1 For the true model order, ML is
strongly consistent, i.c., for a 8,- € @, the ML est-
mates éq* € O, converges almost surely to 8, as the
SNR — oco.

Theorem 4.1 Let 65+ € Oy be the truc purameter.
If Assumption I holds then for any fived ¢ > q*, ML
estimates, éq converge almost surely to a member in
the equivalence class Cy 4+ as SNR — co.

Proof : From [11}, in the case of model mismatch, the
maximum likelihood estimates #, converge to a ¢, sucl
that the Kullback-Leibler (KL) distance between the
true model f,+(,-) and the misspecitied model f,(8,)
is minimized. For ¢ > ¢*,

n;'m KL(fi~(0,-), £4(0,)) =0 (10)

which is achieved only by a member of C; ¢-. n
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Figure 4. Histograms of the proposed es-
timator, §,, for SNR = 20,0, -5 dB

Since ML estimates are consistent for model orders ¢ >
g*, the residual data fit error converges to 0. This
implies that L{g) — —oo for ¢ > ¢*. We state the
claim about the consistency of §; and §» without proof.

Claim 4.2 The estimators ¢ (and §) —=3 ¢, ie,
both the estimators are strongly consistent.

5. Proposed Algorithms

Based on the results obtained in the previous sections,
we propose following order selection procedures.

Algorithm 1 : § = ¢1(or §2).

The estimators §; and §, are given in Section 3.
When ¢ from Algorithm 1 is used as a data-dependent
prior for MDL, the resulting order selection procedure
can be summarized as

Algorithm 2 :
1. Compute g, = g1(or §z).
2. Evaluate

g=arg min MDL(g).
(16[0“-‘717]

We label the above algorithm as windowed MDL
(WMDL). The consistency of WMDL follows from the
consistency of MDL and §, (Claim 4.2). Note that
MDL in step 2 can be replaced by any other order
selection criterion, like AIC or MAP. For the meth-
ods which tend to overmodel for finite data and SNR,

the above data-dependent prior tends to eliminate the
overmodeling errors and in effect, increase probability
of detection. It is clear that the extent of improve-
ment is dependent on how close the upper bound is to
true model order. We demonstrate the effectiveness of
above procedures in the next section.

6. Simulations

For the same example as considered in Section 3. we
consider the detection rates of MDL, AIC aud the
MAP applied to complex undamped exponentials. The
model order estimates from three criteria for the uu-
damped exponentials are given by

Gdarc = min L(g) + 3¢
9
. . 3
qupr = minl(g)+ Sqlog N
q Z
uap = minL{q)+ %qlog N
q

The windowed versions of MDL, AIC and MAP are
obtained from Algorithm 2 using §; given in Section 5.
The improvement in detection performance for the
three methods is given in Figures 5, 6 and 7. In each
of the three plots, the dashed line represents the orig-
inal algorithm and the solid line is the performance
with the proposed data dependent upper hound. Fi-
nally, in Figure 8 we compare ¢; with MAP, MDL and
AIC. The performance of §» is identical to ;. so the
corresponding plots are omitted.

probability of detection
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Figure 5. MDL and WMDL for the 2-mode
case



