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ABSTRACT

We consider the impact of bandwidih on nar-
rowband direction-of-arrival (DOA) estimation
using an array of sensors. We derive expressions
for the DOA bias for three array processing
algorithms: MUSIC, ESPRIT, and Weighted
Subspace Fiitting. The bias expressions are
found by a perturbation analysis of these al-
gorithms for small relative bandwidths of the
sources. We compare the perturbation-based
bias predictions to actual bias for some cases of
interest,

1. INTRODUCTION

We consider the effect of bandwidth on the direc-
tion of arrival (DOA) estimates using an array of
sensors. Our problem is motivated by communi-
cations and sensor problems in which the relative
bandwidths of the source signals, while small, may
not be negligibly small. Our interest is to quan-
tify the bias (and variance) of narrowband DOA
estimators due to nonzero source bandwidths.

An important and popular class of narrowband
DOA estimation algorithms is based on decom-
posing the array covariance matrix into a low-
rank signal subspace and an orthogonal noise sub-
space. The low-rank structure arises from a zero-
bandwidth assumption; when the signals have
non-zero, bandwidth, the low-rank structure of the
signal subspace is lost. Correspondingly, the sta-
tistical properties of DOA estimates, and in par-
ticular the DOA biases, are effected.

One alternative to DOA estimation for sources
with nonzero bandwidth is to use wideband source
location algorithms (see, e.g., [1]). However, these
algorithms are more complex than their narrow-
band counterparts, so the use of narrowband algo-
rithms is preferred when the bandwidths are small
enough that the DOA bias is negligible or tolera-
ble. ‘
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In this paper we quantify the bias in DOA esti-
mates for three popular subspace-based DOA esti-
mators: MUSIC, ESPRIT and weighted subspace
fitting (WSF). Specifically, we assume multiple
signals of non-zero bandwidth impinging on an ar-
bitrary array configuration and give analytical ex-
pressions for the resulting bias of the estimates of
the directions of arrival.

The bias analysis is based on a series expansion
of the signal and noise subspaces of the array co-
variance matrix as a function of the relative band-
widths of the source signals; as such, the analysis
applies to cases where the relative bandwidths are
“small”. We compare our expressions to the true
bias resulting from sources with nonzero band-
width for some cases of interest.

Our analysis is a perturbation analysis of the ar-
ray covariance matrix, and is similar in principle
to several related perturbation analyses on, e.g.,
sensor positioning errors and uncertainties in the
sensor gain and phases (see e.g. [2] and the ref-
erences therein). Many such perturbation anal-
yses assume a perturbation that retains the low-
rank signal subspace structure; in contrast, the
non-zero bandwidth of the source signals destroys
this low-rank property. In related earlier work [3],
which is in part based on the perturbation analy-
ses in [4, 5], we studied the effect of source angu-
lar spread on DOA estimation, another problem
in which the low-rank subspace structure is de-
stroyed. In the present paper we show that the
perturbation due to non-zero bandwidth can be
formulated in a way similar to that resulting from
multipath. Thus, our work is is partly an exten-
sion of the results in [3].

2. MODEL AND ASSUMPTIONS

We assume an arbitrarily configured array of m
sensors, whose sampled output at time ¢ is the
complex m-vector x(t) = [z1(t),...,zm(t)]. A
number of uncorrelated signals {s;(t)}7_, impinge
on the array. Fach source has total power ¢, and
arrives from an angle 8. Each signal is random,
and its spectral density function Si(w) is a shifted
and scaled version of a normalized “shape” spec-

tral density Sy (w), whose center frequency is zero,
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whose bandwidth is one, and whose total power is
one. That is,

_ 1 ~ fw—uwi
Se(w) = gk B Sk ( ) . (1)

Brwi

We see that Si(w) has relative bandw1dth Bk, with
0< <1

The “spectral shape” autocorrelation function
71(T), given by the inverse Fourier transform of
Sk(w), is normalized such that 7(0) = 1. In addi-
tion, since Sk(w) has finite second moment, 7x(7)
is continuously differentiable at + = 0. The cor-
responding signal autocorrelatlon, r%(7), is found
from equation (1) to be

WET . P (BrweT)- (2)

Note that as fr — 0, r%(r) — qre™*™ and
Sr(w) — 27qu6(w wy) as desired.

We note that Si(w) (and consequently, Si(w))
need not have finite support as long as its second
moment is finite; see [6] for details.

The received signal at the pth sensor can be
expressed as (for p=1,...,m)

(1) = le

Z Gy (O )si(t — Tku) +nu(t),  (3)
k=1

where T}, is the time taken for the kth signal to
propagate from an arbitrary reference point to the
pth element of the array. The complex array gain
at the angle # is given by the vector

a(0) = [@1(6), @2(8), - . ,am(9)]" (4)

and is assumed to be constant with respect to
frequency over the interval corresponding to the
bandwidth of sx(t). This assumption, used also
for bandwidth performance of adaptive antenna
systems [7], valid for small relative bandwidths,
which is the case of interest here. Even if a
is not independent of frequency, it can be cor-
rected via calibration . The noise vector n(t) =
[1(t) ... nm(®)]T is a zero mean, circularly com-
plex random vector with E{n(t)n*(s)} = A2L,6;
and E{n(t)n”(s)} = 0.

If the source signals have zero bandwidth, i.e.
if B = 0, then the array covariance matrix R =
B{x(t)x" (t)} is given by the standard “nominal”
expression:

Ro = A(wo, 80)QA*(wo,00) + NI, (5)

where 6y = [6;. ]T wp = [wi...wn]T,
A(wg, ) = [a(wl,el) a(wn,0,)] is the (m X n)
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array manifold matrix, and Q = diag{q:...¢n}-
Note that

am(ek )e—‘iwkThm]T‘
. A . (6)

For nonzero signal bandwidths, it is shown in [6]
that the covariance matrix R becomes

a(wr, 0) 2 [31(6k)e™ Tk ...

R = Z a(wi, Ox)qra* (Wi, 0r) © By + NI, (7)
k.—-

where ® denotes the Hadamard (element wise)
product. The (m x m) matrices {By}p_, are de-
fined by their (u,v)th elements:

B(n,v) = 1 (Bewr (Try — Thp))- (8)

For B = 0, By, is a matrix whose elements are -all
ones, and R reduces to Ry in equation’(5).

3. SMALL PERTURBATION
PROPERTIES OF R

We now assume that the fractional bandwidths S
are “small” and find the Taylor series expansion
of R about the nominal covariance Rg and retain
terms to second order in f;. It is straightforward
to show that

R~Ro+ 3 [A:Ci+ ﬁ%ﬁk] ®)
k=1 | ~

where C, = 0 and the (u, v)th element of Bk is
given by

Bi(p,v) = au(wk’ak)%a*(wk;ok)
(Tew Tku)zwk ~"(0) (10)

Note that:
" 1 [ m i
7e(0) = rll»lgoﬂ/ —w?Sk(g)e " dw |
= LT G e
= i /_ } wsk(u;)@. P

The integral in (11) is well defined since Si(w) is
assumed to have a finite second  moment.

4. BIAS ANALYSIS OF DOA
ESTIMATORS

We analyze the bias and variance of DOA esti-
mators when the source signals have small but
nonzero bandwidth. The approach we take is to
perform a small perturbation analysis of the esti-
mation algorithms, using the perturbation results
on R obtained above (and on its COrresponding'
sample estimate R)

The analysis is similar to the one in [3] for
sources that are spread in arrival angle, and we
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are able to use the results in [3] on signal and noise
subspace perturbation.

We note that, similarly to [3], the finite-sample
variance of the DOA estimates are the same as
the nominal (4. ., zero bandwidth) DOA variances;
these variance expressions are well-studied in the
literature. Below we present an analysis for the
DOA bias terms.

4.1. Signal and Noise Subspaces

In practice, the true covariance matrix R is not
available and must be estimated from N samples
of the-array output, {x(¢)}{;, according to

. 1 X .
R= 5 > x(E)x" () (12)

t=1

Consider the following subspace decompositions of
Ry and R:

Rg = SAS*+)2GG* (13)

R = SAS*+GSEG* (14)
where A = diag{)\; ... \n} contains the n largest
eigenvalues of Rg, S is the corresponding matrix
of the n associated orthonormal eigenvectors, and
(G is the matrix of the remaining m -~ n orthonor-
mal eigenvectors. We assume {;}2.; are distinct
and greater than A2. The matrices S,A, G and
$ are similarly defined. Then as B — 0 and
N — oo, we have [ R - R, § — S, A — A,
$ — ALy, and GG* — GG*. We also define

A& A - )L, (nxn), and
Pa=A(A*A) 1A = AAT (15)

the projection matrix onto the range space of
A (note that A' = (A*A)~1A* designates the
pseudo-inverse of A). To simplify the notation,
in what follows we will often write a; instead of
a(wg, Or) and dy instead of day/dfy.

4.2. The MUSIC Algorithm

The weighted MUSIC algorithm gives the DOA

estimates {0}}7_, as the n largest maxima of the
scalar function

V(6) = tr {Pae)SWS*} (16)

where W is a non-negative definite matrix, chosen
by the user. Following the approach of [3] it-can
be shown that the MUSIC bias, to second order in
Br, is given by

E{oM} - 0, ~
Re {alSWA's* [T1, A28 GG*dy
alSWS*al* . d2GG*d;

(17)
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4.3. The ESPRIT Algorithm

The ESPRIT algorithm uses the fact that the ar-
ray can be partitioned into two subsets. The two
sub-arrays are identical except for a translational
shift of A wavelengths. Define the matrices

8 = [In 0)S (mxn) (18)
S; = [0 LuS (mxn) (19)
(,25 = (S*Sl) IS$SQ (nxn) (20)

' and similarly S;, §; and ¢. If {pr}i=; and {pk}k 1

are the eigenvalues of the matrices ¢ and ¢ respec-
tively, then the DOA estimates of the ESPRIT al-
gorithm are given by

AE: .— ____argﬁk =3 21
6y = sin (27rA>’ k=1,...,n, (21)

where the shift-invariance of the array has been
used. Let v; and 7 denote the left and right
eigenvectors of ¢, normalized so that y{m = 1.

- Introduce

ti = (SI8)7IST{I0 Ln] - pefln 01} (22)

Then, to second order in Sy, the ESPRIT bias is
given by (3]

E{0F} — 6y == 1/(2wA cos ;)
-Im {;}-—ukGG* [Z BB ] s&‘lnk} (23)
i=1
4.4. The WSF Algorithm
The WSF algorithm computes the DOA estimates

~W ..
as the vector @ that maximizes a scalar loss func-
tion (of a vector variable), i.e.,

8" = arg max V(89), (24)

where 8" = [ov,...
DOA estimates and

,O¥IT is the vector of WSF

v(e)=tr [P 2SW8|. (25)

- According to [3], the WSF bias is (to second order

in B) given by
E{8"} -6y~
{2Rel(ATSWS* AT © D*GG™D]}  V(80) (26)

with D = [dy,...,d;] and where V’(8), the gra-
dient vector of V(B) has the tth element

Vi(6o) ~
2Re {e{ATswx‘ls* [Z ﬁ,?fs,] GG*dk}(27)
=1
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5. NUMERICAL EXAMPLES

We first note that for a single source impinging a
ULA, it can be shown that the DOA bias is zero
for all three methods considered [6]. We therefore
consider a two-source case. We have a uniform lin-
ear array (ULA) with m sensors at half-wavelength
spacing relative to the source center frequency. We
consider two sources, each with flat spectrum over
its frequency band; i.e., Sp(w) = 7 for jw] < 1, so
F1(BrwiT) = sinc (Brwit). The signals arrive at
angles #; and #; measured from the broadside of
the array. The center frequencies w; and ws are
equal, as are the relative bandwidths £, and Ss.

Figure 1 shows the MUSIC DOA estimation bias
for two sources at 6; = 20° and 6, = 50°, as a
function of the relative bandwidth, for m = 5 sen-
sors. The cases of equal (g2/q1 = 1) and different
(g2/q1 = 5) source powers are shown. In the fig-
ures, we show both the “true” bias computed using
the exact expression for R, and the second-order
predicted bias using equation (17). We show re-
sults for MUSIC, but the results for ESPRIT and
WSF are very similar. We see that for this case
the bias is well-predicted using the analysis in the
paper for relative bandwidths below about 20%.
Note that the bias of a weak source can become sig-
nificant even for small relative bandwidths, an in-
dication that bias may be a significant issue when
sources have different powers (such as in the near-
far problem in wireless communications).
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Figure 1. MUSIC bias as a function of relative band-
width for n = 5 sensors and two sources at 8; = 20°
and 6, = 50°. Note the different scales in the two
figures.
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