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ABSTRACT

Using a point scatterer assumption, high-frequency synthetic aperture radar (SAR) phase histories can be mod-
eled as a sum of two-dimensional (2D) complex exponentials in additive noise. This paper summarizes our SAR
signal modeling experience using the XPatch simulated scattering data. We apply several 2D parametric estima-
tion techniques including 2D TLS-Prony, MEMP, 2D IQML, and 2D CLEAN to estimate the complex exponential
model parameters. From the estimation results, we discuss the engineering trade-offs among memory requirement,
computation requirement, and estimation accuracy.
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1. INTRODUCTION

Over narrow viewing angles, high-frequency synthetic aperture radar (SAR) phase histories can be modeled as a
sum of two-dimensional (2D) complex exponentials in additive noise.l-2:3,4.5.6 The 2D exponential terms correspond
to scattering centers on the object, and the exponential amplitude taper in angle and frequency accommodates
anisotropic scattering behavior over frequency and angle. Scattering-center-based SAR modeling has application to
feature-based automatic target recognition (ATR) (such as in the MSTAR program) and to data compression of
SAR or ISAR imagery.” This paper summarizes our SAR signal modeling experience using the XPatch simulated
scattering data.

Several authors have addressed the applicability of point scatterer models in real and/or simulated SAR complex
phase modeling; others have also investigated the estimation accuracy of using parametric algorithms in SAR mod-
eling. Sacchini et al.3 developed 2D total least squares Prony techniques (2D TLS-Prony) for estimating scattering
exponential parameters and successfully applied the algorithms to extract the electro-magnetic scattering features
of a thin metal plate. Gupta® presented a 2D bandwidth extrapolation approach using the point scattering model
and obtained radar images with improved resolution than the ones obtained using 2D inverse Fourier transform.
Hua? showed that SAR (or ISAR) phase histories of moving objects can be well modeled by a sum of ideal point
scatterers if both the radar bandwidth and the viewing angle region are relatively small. With this superimposed
scatterers model, he developed a matrix pencil technique which successfully extracts closely clustered scatterers of
a synthesized X-band stepped frequency ISAR data set.4 In addition, Hua developed matrix enhancement and ma-
trix pencil (MEMP) techniques8 which can also be used to estimate the scattering parameters. Clark and Scharf?
developed a 2D iterative quadratic maximum likelihood (2D IQML) algorithm to estimate 2D exponential model
parameters, and the algorithm was used to model XPatch data.l0 De Graaf? developed a CLEAN-type algorithm,
called the coherent deconvolution (CD) algorithm, and compared the performance of the developed CD technique
with the previous CLEAN algorithm.!!

While a number of exponential modeling techniques have been developed, relatively little work has appeared on
comparisons of these algorithms to SAR phase history data. In this paper we apply the 2D TLS-Prony techniques,
the MEMP techniques, the 2D IQML algorithm, and a 2D CLEAN variant to estimate the complex exponential
model parameters. From the estimation results, we consider the engineering trade-offs among memory requirement,
computation requirement, and estimation accuracy. Pepin et al.l0 presents a similar survey of related techniques;
their conclusions differ from ours, mainly because the data used by Pepin et al. were pre-processed in an unusual
way.



The paper is organized as follows. Section 2 presents the 2D exponential model used in our complex SAR modeling
problem. In Section 3, we review several 2D exponential modeling techniques, including 2D TLS-Prony, MEMP,
2D IQML, and 2D CLEAN. In Section 4 we theoretically compare the memory and computation requirement of the
algorithms. In addition, we apply the algorithms to XPatch synthetic data. Modeling errors are used for performance
comparison. Section 5 summarizes the engineering tradeoffs and concludes our paper.

2. 2D EXPONENTIAL MODEL

Using the point scatterer assumption,1:2:4:5.6,12 complex SAR phase histories can be modeled as a sum of expo-
nential signals. For a 2D radar return, the 2D exponential signal model is given

Zazw yr+e(m,n), m=0,1,... M—-1 n=0,1,...,.N—1, (1)

where {a;}{_, are the amplitudes, {:1:,, yi}1_, are the 2D poles, and e (m, n) is an additive complex white Gaussian
noise with mean zero and variance 202 (each of the real and imaginary parts of the noise has variance 02?). We assume
that {z;, y;}i_, are distinct, i.e., z; # x; or y; # y;,Vi # j, e (m, n) is uncorrelated with the signal components, and
the real and imaginary parts of e (m, n) are also uncorrelated. The indices m and n represent samples in frequency
and angle, respectively.

Physically, the model describes a radar return as a sum of scatterers whose locations correspond to the angles
of the 2D {z;, y;} poles. The moduli of the poles (|z;| and |y;|) model anisotropic frequency and angle behavior of
the it" scattering center, and the amplitudes model the intensities of the scattering responses. Although the model
is simplified, it also reveals a great deal of geometrical information about radar responses.13:12,14 In addition, for
high frequency band radars (e.g., X-Band radar), SAR phase histories for military targets often exhibit strongly
localized scattering responses, which indicates that the undamped exponential model (i.e., the pole moduli are one)
is applicable. In this paper we will discuss both damped and undamped exponential models, depending on the
estimation techniques under consideration.

Note that the exponential model in Equation (1) can be extended to model polarimetric data.l* For different
polarized radar transmitting signals, target scattering returns exhibit same pole information but different amplitude
responses, i.e., {z;, y;}1_; will be the same but {a;};_; will be different from each polarimetric channel. Instead
of one 2D exponentlal sequence, multiple 2D exponential sequences can then be used to model multi-polarimetric
returns in SAR applications.14

The problem we consider is to estimate the model parameters based on measurements. Formally, given a set
of noisy measurements, y(m, n), we want to estimate the model parameters, {a;, z;, y;}i_,. Under the normality
assumption, the maximum likelihood estimator for this modeling problem is obtained by minimizing the sum of the
squares error between the noisy measurements and the estimated data. However, the nonlinear and multimodal cost
surface results in a difficult numerical optimization task. A variety of techniques have been suggested for suboptimal
solutions to this problem; we briefly discuss several in the next section. It is our interest to understand how these
suboptimal techniques perform in practice, especially in SAR imaging applications.

3. 2D ESTIMATION TECHNIQUES

3.1. 2D TLS-Prony Techniques

Sacchini et al.3 proposed two TLS-Prony based 2D estimation algorithms based on decomposing the original 2D
estimation problem into two one-dimensional (1D) estimation problems. To do so, first note that Equation (1) can
be rewritten as
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and where ¢ = Eszl L. This reparameterization enables the decomposition of the 2D estimation problem since the
last term of Equation (2) is the 1D multi-snapshot exponential signal model. With this multi-snapshot exponential
parameterization, one can use the 1D TLS-Prony algorithm15:16 (or other pole estimation algorithms, such as Matrix
Pencill” (MP), State Space techniques,!® etc.) in conjunction with a least squares (LS) fit to estimate the z-poles,
{z1}, and the multi-snapshot amplitude coefficients, ¢ (n). After estimating ci(n), yx,; and ax,; can then be estimated
using the same approach, but with “data” cg(n). We refer to this algorithm as 2D TLS-Pronyl.

The estimates of the y-poles in the above algorithm can suffer from error propagation since the y-poles are
estimated from estimate of ¢(n). To eliminate this error propagation, Sacchini et al. proposed a second algorithm
in which the above algorithm is used twice (the algorithm is referred as 2D TLS-Prony2). First, the algorithm is
applied to estimate the z-poles and then the y-poles as above; second, it is employed to estimate the y-poles first,
then the z-poles. A heuristic distance matching algorithm is used to match the z-poles from the first estimation
process and the y-poles from the second one, thereby using the pole estimates with higher accuracy. Finally, the
amplitude coefficients are computed by linear LS using the paired 2D poles.

The 2D TLS-Prony techniques are computationally efficient because they decompose the 2D estimation problem
into 1D problems. However, the algorithms are sometimes difficult to use because we need to set an upper bound
on Ly (e.g., say there are at most Ly y-poles for each z-pole); after estimating all the parameters, the final model
order can be determined using existing model order selection algorithms, such as AIC, MDL, or an energy threshold
criterion. In addition, the pairing algorithm in 2D TLS-Prony2 is not robust for low SNR, as is demonstrated by
simulations presented later.

3.2. MEMP Techniques

A matrix enhancement and matrix pencil (MEMP) approach was proposed by Hua® to estimate 2D poles. The
approach uses the matrix pencil (MP) method (a generalized eigen-decomposition technique) to estimate the model
parameters. The problem is then to identify a proper mechanism that the MP technique can be applied to. For no
collocated poles (when no two poles have the same z coordinate or y coordinate), the original 2D data matrix can
be used for this purpose.l® However, the technique suffers from the rank deficiency problem for collocated poles. To
address these problems, Hua8 crafted a rank-enhanced data matrix by stacking windowed data sequences in a linear
prediction fashion. With this rank-enhanced matrix, the MP method can be applied to estimate the 2D poles even
for collocated pole cases, and an orthogonality-based pole pairing algorithm can be used.

Hua proposed two MEMP-based techniques. The first follows the principle described above (referred as MEMP1).
The second assumes the noise covariance is known (we refer this second technique as MEMP2). By using prior noise
covariance information, an MEMP-based technique using the covariance matrix of the enhanced data matrix is
devised. The advantage of using this technique is to use the eigen-decomposition on the dimensionally-smaller
covariance matrix instead of the SVD on the much larger enhanced data matrix, thereby saving both memory and
computation.

The MEMP techniques have been shown to give accuracy near the Cramér-Rao bound for a simple test case of
three exponential modes in white Gaussian noise.8 In addition, they have the advantage over the 2D TLS-Prony
techniques that they avoid rooting of high order polynomials. However, from our experience the MEMP techniques
have two major drawbacks. First, their memory requirement is large due to the large rank-enhanced data matrix;
this is especially true of MEMP1. Second, their performance is limited by deficiencies of the heuristic pole pairing
algorithm; this problem seems to be more prevalent for higher model orders.



3.3. 2D IQML

The iterative quadratic maximum likelihood (IQML) method attempts to solve the nonlinear least squares min-
imization problem for the exponential model by using a prediction polynomial parameterization.20:21 Clark and
Scharf? developed a 2D extension of the original 1D IQML algorithm. Like IQML, the 2D IQML finds the poles as
the roots of polynomials. The first polynomial gives the leading poles, and they are required to be distinct. These
leading poles are then used in a Lagrange interpolating polynomial to find the second dimension poles. The Lagrange
interpolating polynomial technique requires that the leading poles are distinct. In addition, the polynomial coeffi-
cients are estimated through an iterative multi-dimensional minimization procedure over an orthogonal subspace of
high dimension.

Unlike other algorithms, the 2D IQML algorithm has no pairing problem since the pairing of the 2D poles is
inherent in the algorithm. However, the convergence of the algorithm is not guaranteed and is sometimes very
slow. In addition, the technique is memory intensive, even with sparse matrix implementation, because of the high
dimension of the orthogonal subspace. The dimension of this space is NM — ¢ where N M is the number of total
available data points and ¢ is the model order; the algorithm uses large matrices, of size (NM — q) x (NM — g).

3.4. 2D CLEAN

The CLEAN algorithm is an FFT-based parametric estimation algorithm.1.22 The algorithm uses the undamped
exponential signal model and thus assumes ideal point scattering responses. Essentially the CLEAN algorithm
recursively estimates complex undamped exponentials using 2D FFT. The algorithm first estimates the strongest
undamped exponential signal from the frequency, amplitude and phase of strongest peak in the oversampled 2D
FFT. This estimated strongest undamped exponential signal is then subtracted from the phase history. The above
procedure is then repeated recursively until the residual error between the original phase history and the estimated
phase history (constructed using the point scatterer parameter estimates) is below the known noise level.

Many variants of the above CLEAN algorithm have been developed in recent years. De Graaf?22 developed
the so-called coherent deconvolution (CD) algorithm which refines the CLEAN estimates using an optimization
procedure that minimizes the deconvolution residual. Pepin et al.10 proposed a variant called the RELAX algorithm
which recursively reestimates the parameters. Nevertheless, in this paper we will use the standard CLEAN algorithm
with the following amplitude estimation modification. Instead of using the complex amplitudes of the peaks as the
amplitude estimates, we estimate the complex amplitudes using the linear LS fit of the frequency estimates to the
original SAR phase history. In addition, the complex amplitudes of previously estimated modes are re-estimated
whenever a new mode is added. We also include an option to the stopping criterion in which the estimation process
is terminated when the number of mode estimates reaches an upper bound. This prior information is used because
it is often available in SAR applications; it may be available for specific target classes, or one may only be interested
in the ¢ highest energy modes on the target. We will refer this variant as the 2D CLEAN algorithm. We find that
the 2D CLEAN algorithm is simple and computationally efficient. However, the algorithm is biased and is limited
by the Fourier resolution.

4. COMPARISONS: MEMORY, COMPUTATION, AND PERFORMANCE

In this section we compare several aspects of the above algorithms in their ability to model SAR scattering
data. The numerical, computational, and statistical properties of most of these algorithms have been analyzed in
the literature; however, the results have not been widely compared, especially for problems and parameter settings
relevant to SAR data. For example, asymptotic statistical properties are available for many of these algorithms, but
in SAR signal processing the data length and SNR are rarely close to “asymptotically large”. Also, we wanted to
test the algorithms on realistic scattering data where neither the scattering signals nor the clutter fit the assumed
signal or noise model. Finally, we are interested in cases where the number of scattering centers is significant (10-50),
a case not often considered in the literature.

Three aspects of the algorithms are considered: memory requirement, computational load, and modeling accuracy.



Table 1: Memory bottlenecks of the 2D algorithms (in Bytes); L, and L, are the prediction orders; S, and S, are
the oversampling factors.

| Algorithm | Memory Bottleneck |
5D TLS-Pronyl&2 NM—L,)x (L, +1) x16x6
MEMP1 Lol x (M Lo+ ) (N—L,+ 1) x 16 X 6
MEMP2 LoLyx (M —Lo+ 1) (N—L, + 1) x 16 x 2
5D IQML (NM — ) x 16 x 0.0L x 3
5D CLEAN NM x 5,5, x 16

For memory requirement, we compare the memory bottlenecks from each estimation algorithm, i.e., the most memory
space required to perform the essential operation in each algorithm. For computational load, we will estimate the
floating-point-operation (flop) counts for each algorithm; we sum the flop counts from the most demanding operations,
which often account for 90% or more of the computation required for each algorithm.

To evaluate the modeling accuracy, we apply the algorithms to the XPatch data sets provided by ARPA. Because of
the lack of the true signal scattering center parameters for the XPatch data, we use the weighted relative error (WRE)
of the estimated SAR image as the evaluation criterion. Given noisy SAR phase history, y(m,n), the WRE is defined

as
St S Wi IFT{y(m,n) — §(m,n)}[?
2%21 Zle wmn|IFT{y(m, ")}|2

where IFT{-} is the inverse Fourier transform operation, | - | is the magnitude of a complex number, wy,, is
the weighting for the (m,n) pixel, and §(m,n) is the estimated SAR phase history. Although different weighting
functions can be used, in the simulations below we use the square root of the magnitudes of the original image, i.e.,
VIET{y(m,n)}|. This weighting function emphasizes the high energy regions of the SAR image; these regions most
likely contain the target of interest and good model accuracy is needed in this region for ATR and data compression
applications.

WRE = , (4)

4.1. Memory Requirement

To compare the memory requirement for the estimation algorithms used, we consider the most memory-demanding
operation in each estimation algorithm. For example, the most memory-demanding operation for the 2D TLS-Prony
techniques and MEMP1 is the SVD operation, for MEMP2 it is the autocorrelation matrix calculation, for 2D IQML
it is the QR decomposition of the NM — ¢ dimensional orthogonal space, and for 2D CLEAN it is the oversampled
2D FFT operation. Table 1 summarizes the memory bottlenecks for the considered estimation algorithms. In the
table we consider that the SAR phase histories are complex and each complex data point is represented in a double
precision format (i.e., 16 bytes are needed to represent a complex number). Also, L, and L, in the table are the
prediction orders of the z-dimension and y-dimension, respectively; S, and S, are the oversampling factors in the
z-dimension and y-dimension for the 2D CLEAN FFT computations; for 2D IQML, we assume that the orthogonal
subspace is implemented using sparse matrix techniques, and with a matrix sparseness of 1%.

Using the entries in Table 1, we plot the memory requirement of the estimation algorithms versus the used SAR
image size in Figure 1. We assume the images are square with size N x N pixels. For the linear prediction-based
techniques (i.e., the 2D TLS-Prony and MEMP techniques), the linear prediction orders are assumed to be N/3.
For 2D IQML, we assume the model order is N/4. For 2D CLEAN, we assume that the oversampling factor is 4 for
each dimension.

From Figure 1 we can see that the MEMP techniques require the most memory, and 2D CLEAN requires the
least. In addition, the memory required in the MEMP techniques increases rapidly as the image size increases, and
for even moderate size images, the memory demand is very large (e.g. more than 400 Mbytes for a 100 x 100 image).
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Figure 1: Different image size memory requirement using the 2D TLS-Prony techniques, the MEMP techniques, the
2D IQML technique, and the 2D CLEAN technique.

4.2. Computation Requirement

The computation bottlenecks of the algorithms include the following operations: SVD, QR, EVD, polynomial
rooting, linear LS fitting, matrix inversion, 2D FFT, and peak finding. In Table 2, we summarize the flop counts?3
for these operations on a real-valued matrix of size R x C. Since the tested SAR phase histories are complex, we
also include approximate multiplicative factors for complex-valued matrices; we used MATLAB to estimate these
factors. The total flop count for each operation is thus the product of the real matrix flops and the complex factor.

Table 2: Computation of various important operations

| Operation | Flops for real matrix of R x C' | Approx. complex factor |
Economy SVD 14RC? 4+ 8C? 2.5
Full SVD 4R?C + 8RC? +9C3 2.5
Economy QR 4C* (R-C/3) 4.0
Symmetric EVD 9C? 8.5
Rooting 10C3 4.0
Linear LS fitting 2C% (R—-C/3) 4.0
Inversion 203 4.0
2D FET RCTog, (RO) 105
Peak finding 8RC 4.0

In Table 3, we summarize the most computationally intensive operations for each estimation algorithm. Our
simulation experiments show that the listed operations generally account for 90% or more of the total computation.
For MEMP2, “Autocorrelation” means the computation required to calculate the large size autocorrelation matrix;
for 2D IQML, “Iterations” means the number of iterations taken to obtain a convergent result; for 2D CLEAN,
“Order Iterations” means the number of iterations taken to obtain all ¢ modes, where ¢ is the model order.

In Figure 2, we plot the computational loads of the considered algorithms versus the used SAR image size. We



Table 3: Computation bottlenecks of the 2D algorithms

| Algorithm | Computation Bottleneck
2D TLS-Prony1&2 SVD, Rooting, LS fitting
MEMP1 QR, SVD
MEMP2 Autocorrelation, EVD
2D IQML Tterations on (QR or LS fitting)
2D CLEAN Order iterations on (2D IFFT, Peak Finding, LS fitting)
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Figure 2: Different image size computational loads using the 2D TLS-Prony techniques, the MEMP techniques, the
2D IQML technique, and the 2D CLEAN; (a) varying model order as well as prediction order as a function of image
size, (b) fixing model order ¢ = 10 and prediction order L, (or Ly) to be one-third of data length, but no less than
10 and no greater than 30.

consider two cases; in Figure 2(a) we vary the model order (order is N/4) and the prediction order (N/3) as a
function of the image dimension, N, while in Figure 2(b) we fix the model order ¢ = 10 and the prediction order
to be one-third of the data dimension, but no less than 10 and no greater than 30. In addition, for 2D CLEAN
we assume that the oversampling factor is 4; for 2D IQML we assume that 50 iterations are needed to obtain a
convergent result, which tends to be a smaller figure than what we observe from the simulations.

It is clear from Figure 2 that 2D IQML requires the most computation. The 2D IQML computation prediction
is conservative; in practice 2D IQML typically requires more computation because it often requires more than the
50 iterations we assumed for the computation prediction. 2D TLS-Pronyl requires the least computation. Also,
we verify the theoretical prediction by using simulation whose results for corresponding algorithms are shown in
Figure 2(b). The computational counts (shown by stars) are obtained by averaging 10 Monte-Carlo simulations
using MATLAB. It is evident that the simulations and the theoretical results are in good agreement except for 2D
IQML. The 2D IQML computation from simulation is higher than the one from the theory prediction; it is due to
the fact that the average number of iterations used is about 70, instead of 50 used in the theoretical prediction. For
larger N, the number of iterations needed for convergence can sometimes (far) exceed 100.



/5
=
4
[T7
2~ 7~ 77~
A A AL L e e N LA
e e A = V| SIS
PRI IATT T T AATT AN ‘ A . | AT
E AT ZIAZTTT T DN | | R
S e AR S N AN Wi
I FIZFFFFZAGZ T R SHLT LS ~ Ny s
AT F T AN T AN ST AT ST AIALT PASL LT T2
7| 227 7 7 N T AL T 755
£ 27 b ] I Z AT T AL
~ 7~ VA i

Figure 3: (a) Fire truck CAD model used by XPatch, and (b) the corresponding SAR image.

4.3. Performance Evaluation Using XPatch Data

We apply the estimation algorithms to SAR phase history data of a fire truck on an uneven surface; the data
were generated by XPatch. In Figure 3 we show the fire truck CAD model and one of the SAR images generated by
XPatch from this CAD model. The center frequency used for the data set is 10 GHz, the bandwidth is 500 MHz,
the elevation angle is 25°, HH polarization is used, and the SAR integration angle is 2.82°, resulting in an image
resolution of 1 foot by 1 foot.

We tested the algorithms on four targets at azimuths from 0° to 360° in 2° degree increments. In general, the
modeling results were good to excellent for azimuths away from cardinal angles, and fair to poor for azimuths near
cardinal angles, with some variations in quality as a function of target. We present two typical results here, one at
54° azimuth representative of off-cardinal-angle performance, and one at 90° typical of the poor performance seen
for targets on cardinal angles.

To increase the apparent clutter, we add complex white Gaussian noise to the synthetic XPatch SAR data.
Different SNRs are used to evaluate the performance of the tested algorithms. In this paper, SNR is defined as

P,
SNR = 10log;q ﬁ, (5)

where 202 is the total noise power, and P, is the total signal power that is defined as

M N

Py= s 30 Y lstm. P, ©

m=1n=1

and s(m,n) is the noiseless SAR phase history.

The experimental results are shown in Figures 4 and 5. We applied the exponential modeling algorithms to the
fire truck phase histories at azimuth angles 54° and 90° (where 0° azimuth corresponds to nose-on). The phase
histories used were 50-by-50, and 10 scattering centers were extracted from the data. Based on the extracted 10
scattering centers from each algorithm, the phase history was estimated using the 2D complex exponential model in
Equation (1). The weighted relative error (WRE) is then calculated using this estimated phase history according
to Equation (4). For all the algorithms except the 2D IQML technique, 10 Monte-Carlo simulations were run to
calculate the averaged WREs; for the IQML curves, only 5 Monte-Carlo simulations were used to obtain the averaged
WREsS due to the high computational load of this method. The linear prediction orders for the TLS-Prony techniques
and the MEMP techniques are 17 (N/3) for each dimension.
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Figure 4: (a) Estimated pole locations superimposed to the noiseless SAR image, and (b) the weighted relative error
vs. SNR for fire truck at azimuth 54° .

Mesh SAR image for Firetruck at azimuth 90 degree Weighted relative errors for Firetruck at azimuth 90 degree
1 T T T T T T T
ook T T T - Tis-Pronyi |
40 % Tt
* 08t T
30
507+ —
o E S
20 2 S
L 806F N B
&) ~
\ | 2 N MEMP2
10 * \ 50.5¢ N « * E
\’ '& { s |- Yo 1IQML CLEAN ¥
A ool
0 A}:“\V‘\A}'\"}ll‘; 0.4F R S 1
50 '\s;‘(;;g}“ ST T T T Ts-Prony2” T
40 % 50 N
0.3F v g
=~ _TLS-Prony2XP2
0.2 . . . . . . R Rttt
. . 0 2 4 6 8 10 12 14 16 18 20
Range (X-dimension) 0 0 Crossrange (Y-dimension) SNR (dBs)

(a) (b)

Figure 5: (a) Estimated pole locations superimposed to the noiseless SAR image, and (b) the weighted relative error
vs. SNR for fire truck at azimuth 90° .

Several conclusions can be drawn from the figures.

e In general, the estimation accuracy is good to excellent for the fire truck at azimuths away from cardinal angles
(the WREs are less than 0.1 for most cases at 54°) but poor for the fire truck at cardinal angles. In addition,
the techniques exhibit similar performance for the fire truck at azimuths away from cardinal angles (the WREs
are generally within 5% of each other) but exhibit great differences for the fire truck at cardinal angles. This
is probably because of the mismatch between the superimposed scatterers model and the broadside responses.
For targets at broadside the scattering phenomenon in the phase history tends to be impulsive. The finite
superimposed scatterers model in the image domain does not model impulsive behavior well, and the WREs
are high for this case. On the other hand, the resulting model generally has one or more scattering centers at



the correct location of the impulsive scattering, even if the WRE fit error is large.

e The WRE curves are often fairly flat as a function of SNR, primarily because the WRE uses the noiseless image
for the weighting function. As a result, errors due to noise and clutter are given low weight, and the WRE is
not very sensitive to noise level. The curves tend to be dominated by model fit errors in the regions of strong
scattering. Unweighted relative errors (not shown) show a decreasing error with increased SNR, as these errors
are dominated by fit error in the “clutter” regions of the image.

e The 2D CLEAN algorithm tends to have good performance for the off-cardinal angles, and is relatively insensi-
tive to noise. However, it inherits the resolution limitation of Fourier transforms, and produces biased results;
the bias is not a dominant factor to the WREs in this case. It can be seen from Figures 4(b) and 5(b) that as
SNR increases, the estimation performance of 2D CLEAN does not improve much and, most of all, is surpassed
by non-FFT based parametric techniques.

e The 2D TLS Prony techniques often do not perform well, and need to be carefully tuned to achieve good
performance. Their WRE performance is very sensitive to algorithm parameter settings, especially to the
number of collocated poles (L in Equation (3)). This is illustrated in Figure 4(b), where we show two
curves for 2D TLS-Prony1 (the performance for 2D TLS-Prony?2 is similar). For the curve labeled with “TLS-
Prony1XP2”, we first chose 20 modes by choosing 2 y-poles for each z-pole, and we then chose the 10 highest
energy modes as the estimates. This is in contrast to the curve labeled with “TLS-Pronyl” in which we only
chose 10 modes by choosing one y-pole for each z-pole. It can be seen that the performance for the more
y-poles option is better for high SNRs and worse for low SNRs in comparison to the one from the one y-pole
option. This is because the SAR image does exhibit more than one y-pole phenomenon (seen from Figure 4(a))
so that the more y-poles option generally should produce better results. However, this is only true for high
SNRs since for low SNRs the variances of the estimates will be larger. The increased variances are due to the
larger prediction orders (we used 33 instead of 17 since we need to choose 20 modes first).

e For the TLS-Prony techniques, the importance of pole collocation information is magnified in the broadside
example (Figure 5), which has all the poles practically at the same z location*. It is seen from Figure 5(b)
that 2D TLS-Pronyl literally fails, even with the two y-poles option (not shown here). However, the 2D
TLS-Prony2 technique performs extremely well for this case. This is because the algorithm has the option to
estimate 10 different y poles, which is well suited to this broadside example. Note that the 2D TLS-Prony
techniques outperform the MEMP approach in most cases we show. This is mainly due to the poor pole pairing
performance of the MEMP technique.

e For the MEMP techniques, we show results only for the MEMP2 algorithm because the memory requirement
for MEMP1 exceeded the memory capacity of our workstations. It is seen from the figures that MEMP2
outperforms other techniques for the azimuth 54° case (except at the very high SNR) but performs less well
for the broadside case. From our experience, this is mainly due to the suboptimal pole pairing algorithm. To
improve the pole pairing algorithm, one can use exhaustive search techniques, but at very high computational
cost.

e The performance and computation of the IQML approach depend on the tolerance used in terminating itera-
tions. The smaller the tolerance, the better the estimation accuracy, but at a cost of more computations. The
computational increase can be large for even modest increases in tolerance, and the algorithm can sometimes
fail to converge when the tolerance is decreased.

The results in Figures 4 and 5, and the conclusions drawn from them, differ from those in a recent comparative
paper by Pepin et al.10. One reason for the difference is that the data used by Pepin was later found to be zero
padded, and the modeling approaches were applied to both the data and the zero padding. This resulted in larger
relative errors than we see here.

*Although the poles are not at the very same location numerically, the closeness of the poles causes the numerical ill-condition so that
the 2D TLS-Pronyl fails.



5. CONCLUSIONS

We considered the modeling of SAR phase history data for ATR and for data compression applications. We applied
several 2D parametric estimation techniques including the 2D TLS-Prony techniques, the MEMP techniques, the
2D IQML algorithm, and the 2D CLEAN algorithm to estimate the SAR scattering feature parameters using the
complex exponential models. From the estimation results, we considered the engineering trade-offs among memory
requirement, computation requirement, and estimation accuracy.

We find that the 2D CLEAN algorithm requires the least memory and modest computation to extract the model
parameters. The 2D CLEAN algorithm performance was fairly constant with respect to SNR for the weighted relative
error on SAR data we considered. However, the 2D CLEAN algorithm is limited by the Fourier resolution and gives
biased results; similar conclusions have been reached by De Graaf?2 and others.

Eigen-decomposition techniques, including the TLS-Prony methods and MEMP techniques, can give excellent
performance but at significant computational cost. Performance degradation often comes from the pole pairing
operation required in most of the methods.

The 2D IQML method can give very good estimation accuracy if properly initialized and if the convergence
tolerance level is set low. However, the technique has very slow convergence rate, and hence has very high computa-
tional cost. If the tolerance is set higher to reduce computational cost (as was done in Figures 4 and 5), 2D IQML
performance is similar to that of other methods which have lower computational cost.

Thus, FFT-based methods are robust but have limited performance; non-FFT techniques are often not robust
and have high computational costs. This has led some authors to consider hybrid techniques that attempt to combine
the advantages of both types of methods210.24, Hybrid techniques employ FFTs for robust initialization, and refine
the model parameter estimates using optimization schemes. While hybrid techniques seem promising, they are not
yet automated to the point that they are easily applicable to automatic SAR feature extraction.

Finally, we note that the performance of these modeling techniques vary significantly as a function of target aspect.
This variation is often larger than the performance differences of the various algorithms we testes. For aspects near
cardinal angles, the point scattering assumption embraced in these 2D models is not good, and significant errors
between the data and its model are seen (although the estimated scattering centers are at the correct locations of
the target scattering). For cardinal angles, models that more accurately represent non-point target scattering are
needed to achieve more accurate data representation.
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