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Abstract

We propose a new algorithm for estimating the parameters of damped,
undamped or explosive sinusoidal processes. The algorithm resembles the
MODE algorithm which is commonly used for direction of arrival estima-
tion in the array signal processing field. The algorithm is asymptotically
(high SNR) optimal. Nevertheless it is computationally simple and easy to
implement. Numerical examples are included to illustrate the performance
of the proposed method.

1 Problem formulation

Let

g(t) = > arpp + &), t=1,2,...N (L1)
k=1

be the equation describing the observed signal. In (1.1) ax € C; | px | El;é(t) is

circularly symmetric Gaussian distributed noise with variance o2, and n is given.
The number of data samples N is typically small, and the signal to noise ratio
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(SNR) is usually assumed to be high. The SNR of the k" component in (1.1) is
defined as follows:

By
SNRy, = 101ogy (m—?) [dB]
where Ej is the total energy of the £** mode.

N-1 Nif [pel =1
B = 2 2o 2.0 T _
% = || g |k vy | % otherwise

The problem of interest herein is to estimate {py} (and perhaps {ax} as well,
which is an easy task once {p;} has been obtained).

1.1 Applications

This problem has importance in a number of applications, including speech mod-
eling [3], elctrocardiogram signal modeling [2], and radar scattering analysis from
stepped frequency measurements [1]. In all of these applications, both damped
modes and explosive modes may arise. For example, in radar scattering, damped
or explosive modes can arise because the frequency response of different scattering
centers may be decreasing or increasing as a function of frequency, respectively.

2 Solution by using MODE

Let y(t) be defined as

y(t) = :
gt +m—1)

for some m > n, and define

1 1 1 _

P1 P2 p p) ett)
A= , Tl s =| | elt) = :

pgn-~l pgn.—l o pm:—l anph e(t+m—1)
n

With the above definitions we can write

... Q1 Py
p p p
yt)=1{ " ; 5 e(t) = Az(t) + e(t)
1 1 1 P,
oy prt | e—o

(t)



The key equation here is (see above):
y(t) = Az(t) + e(t)

which resembles the “standard” model used in sensor array signal processing. We
form the following “sample covariance matrix”

Ri=> y((k-1)d+ 1)y ((k~1)d+1) (2.1)

where d > 0 is an integer which measures the degree of overlapping between
adjacent snapshots, (the smaller the d the more overlapped those vectors are; for
d > m there is no overlapping), and the total number of snapshots M is defined

as
N—-m

d

where |-| means rounding to the nearest smaller integer. The role of the d will be
discussed in the full paper.

M:[ J+1

For sufficiently large SNR values Ry in (2.1) is close to the matrix
Ry = AP A" (2.2)
where

szfx((i-ndﬂ)x*((i_1)d+1).

3=1
Let {bx}7_, be the coefficients of the following polynomial

boz" + -+ bp1z+ by = b [ (2 — px)

k=1
and let
by, -+ bo 0
B* = (m—mn) x m.
0 by, - b
Also define the eigenvalue decomposition of Ry as
A O S* «
Ry=|5 G}[OOHG*}_SAS (2.3)

where S is the matrix whose columns are the n principal eigenvectors of Ry and A
is a diagonal matrix with the corresponding eigenvalues on the diagonal (note from
(2.2) that rank(Ry) = n). It is well known that R(S) = R(A), where R denotes
the range-operator. Consequently, because B*A = 0 (as is readily verified) we

have
B*S = 0. (2.4)

This is a key property whose potential for parameter estimation is clear. Let S
and A denote the sample counterparts of the above S and A. In view of (2.4), we
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can expect that the following equation in the unknowns {b;} (which are used to
reparameterize the estimation problem under discussion) holds approximately (for

SNR > 1): )
B*S ~ 0. (2.5)

Based on (2.5) we can estimate the parameter vector by minimization of the fol-
lowing MODE-like[5] criterion

tr (BW,B*SW,5*) . (2.6)
where

b= bn - bo |
In the full paper we introduce some intuitively appealing weights, and we also show
that they in fact are asymptotically (for SNR > 1) optimal. The derivation of the
high SNR optimal weighting matrices W; and W is in fact the main theoretical

contribution of our (full version) paper. Plugging these weights into (2.6) we arrive
at the following cost function, that is to be minimized.

f(b) = tr (B(B*B)™ B*SAS™). (2.7)

We note that, in view of (2.4), minimization of (2.7) with B*B replaced by any
positive definite matrix (such as I) gives consistent estimates of {0y} (consistent
in SNR). Furthermore, it can be shown that, asymptotically in SNR, replacement
of B*B in (2.7) by a consistent estimate has no effect on the asymptotic accu-
racy. Hence the following two-step procedure appears suitable to use as for the
minimization of (2.7).

Step 1. Compute the n principal eigenpairs of Ry. Let
fw(b) = tr (BW™'B*SAS") .
Compute the n principal eigenpairs of Ry. Obtain initial (consistent) esti-
mates of b by minimizing fy(b) with W = 1.

Step 2. Derive enhanced estimates of {bx} as the minimizers of fu (b), with W =
B*B, where B is made from the estimates obtained in Step 1. Obtain {4}
from {by}.

Both the minimization steps above can be efficiently minimized by the algorithm
outlined in the following subsection.

2.1 Minimization of fy ()

We start out from the following form of the general cost function in (2.6):
f) = vec(B)" (W ® SW,S") vec (B) (2.8)

= b (Wl ® Sw,8*)b. (2.9)
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Initial Optimal TLS-Prony

Figure 1:

where vec denotes the vectorization operator
b =vec(B)" = [T 0T T 0T ... ], (2.10)

and where ® (ilenotAes the Kronecker matrix product. If we use Q to denote the
matrix W ® SW,S* from which the rows and columns corresponding to the zeros
m b are eliminated, and also denote by () the following matrix

O'=[1 - 10

then (2.9) can be written as
£(b) = b*Qb. (2.11)

The function (2.11) is to be minimized with respect to b, under an appropriate con-
straint. If we choose a unit norm constraint on b we obtain the Total Least Squares
Solution (TLS) which is easily obtained as the eigenvector of § corresponding to
the smallest eigenvalue. In summary

b = the smallest eigenvector of (.

3 Numerical example

Figure 1 compares proposed method with the TLS-Prony [4] method. The example
is adopted from [4]. There are ten exponential modes, which are selected in such
a way that the scenario is a rather general one. The true pole locations are
indicated with large ‘x’s in Figure 1. There were N = 100 data points and
o = 0.01. The amplitude coeflicients, {a; 12, are chosen so that each mode energy
is unity. This corresponds to an SNR of 20 dB per mode. In Figure 1 the ‘4’ signs
show the pole-estimates obtained from 100 independent Monte-Carlo simulations
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with the proposed algorithm (both initial and optimal estimates) and the TLS-
Prony algorithm discussed in [4]. The proposed algorithm produces more reliable
estimates and in addition it is computationally simpler and more straightforward
to implement.

References

[1] Rpb Carriére and Randolph L. Moses. High resolution radar target modeling
using a modified Prony estimator. 40(1):13-18, January 1992.

[2] B. D. Jaffe, S. W. Chen, L. C. Potter, and S. D. Nelson. Prony frequency
analysis of prolonged qrs signal averaged ecgs. In Circ. Research, volume 41,
page 659A.

[3] A. K. Krishnamurthy. Glottal source estimation using a sum-of-exponentials
model. IEEFE Transactions on Signal Processing, 40(3):682-686, March 1992.

[4] W. M. Steedly, C-H J. Ying, and R. L. Moses. Statistical analysis of TLS-based
Prony techniques. Automatica, 30:115-129, 1994.

[5] P. Stoica and K. C. Sharman. Maximum likelihood methods for direction-
of-arrival estimation. IEEE Transactions on Acoustics, Speech, and Signal
Processing, ASSP-38(7):1132-1143, July 1990.



MODE-type Algorithm for Estimating Damped, Undamped or Explosive Modes

Mats Cedervall Petre Stoica Randolph Moses
Systems and Control Group Department of Electrical
Department of Technology Engineering
Uppsala University, Sweden Ohio State University, USA

We propose a new algorithm for estimating the parameters of damped, undamped or explo-
sive sinusoidal processes. The algorithm resembles the MODE algorithm which is commonly
used for direction of arrival estimation in the array signal processing field. The algorithm is
asymptotically (high SNR) optimal. Nevertheless it is computationally simple and easy to
implement. Numerical examples are included to illustrate the performance of the proposed
method.



