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Abstract

We present an algorithm for estimating the di-
rections of arrival (DOAs) and signal amplitudes of
known, possibly coherent signals impinging on an ar-
ray of sensors. The algorithm is an extension to the
DEML method of Li, et.al., to handle coherent multi-
path which may be present in the signals. We derive
a large-sample Mazimum Likelihood estimator for the
signal parameters. The algorithm is computationally
efficient because the nonlinear minimization step de-
couples into a set of minimizations of smaller dimen-
sion. We also derive the asymptotic statistical vari-
ance of the parameter estimates, develop an analytical
expression for the CR bound for this signal scenario,
and compare the two both theoretically and numeri-
cally.

1 Introduction

Array signal processing has been a topic of consid-
erable interest. A number of high resolution DOA
estimation algorithms have been developed, includ-
ing MUSIC, ESPRIT and Weighted Subspace Fitting
(WSF). (see, e.g., [1, 2, 3] and their references). There
has also been considerable developments on the accu-
racy of these techniques [4, 5].

More recently, there has been interest in developing
algorithms that assume some a priori signal knowl-
edge to improve DOA estimation capability [6, 7, 8].
This interest is motivated by applications in which
partial knowledge of the incoming signals is a rea-
sonable assumption. One such application is mobile
telecommunications, where incoming signals of inter-
est have known preamble sequences that can be ex-
ploited to improve DOA estimation accuracy and/or
decrease computational cost.

One attractive algorithm for DOA estimation of
known signals is the Decoupled Maximum Likelihood
(DEML) method [7]. The DEML method is a large
sample ML algorithm which is computationally effi-
cient because the nonlinear minimization step in the
algorithm decouples into a set of one-dimensional min-
imizations.

The DEML algorithm in [7] is based on the assump-
tion that the desired signals are uncorrelated with
one' another, and the algorithm breaks down when
the signals are strongly correlated. In this paper we
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extend the DEML algorithm to handle coherent sig-
nals impinging on the array. The modification, which
we term Coherent DEcoupled Maximum Likelihood
(CDEML), is also a large sample ML algorithm, and
its nonlinear minimization step also decouples into a
set of minimizations of smaller dimension.

An outline of the paper is as follows. In Section 2
we state the problem of interest and discuss the as-
sumptions and applications. In Section 3 we derive
the CDEML algorithm, and show how it decouples
into computational blocks, one for each transmit sig-
nal. Section 4 presents an asymptotic statistical anal-
ysis, and derives the CRB for this case. In Section 5
we present numerical simulations to illustrate the per-
formance of the algorithm. Section 6 contains the con-
clusions.

2 Signal Model and Problem Formula-
tion
We consider the estimation of the directions of ar-
rival (DOA’s) of d narrowband plane waves impinging
on an array of m sensors. The array output vector
x(t) is modeled as

x(t) = A(6)s(t) + n(t) 1)

where x(t) € C™*! is the received data vector, s(t) €
C?! is the incident signal vector and n(t) € C™*! is
an additive noise vector term. The matrix A(0) (m x
d) is the array manifold describing the array transfer
response as a function of the signal parameter vector
0 =1[01,0,,...,04) € R¥*!. Each column of A(6) is a
steering vector a(fy).

We make the following assumptions in the deriva-
tion of the algorithm.

Assumption 1. The array manifold A(8) is un-
ambiguous; i.e., the vectors
{a(GS, ...,a(0p—1)} are linearly independent for any
set of distinct {6,...,0m-1}. m]

Assumption 2. The noise n(t) is circularly sym-
metric zero-mean Gaussian with second-order mo-
ments

En(t)n*(s)] = Qé¢.,

En(tn’(s)) =0  (2)



where (-)* denotes complex conjugate transpose. The
noise covariance matrix Q is assumed to be positive
definite, but is otherwise unknown. O

Assumption 3. The impinging signals s(t)
are scaled versions of a set of ¢ known sequences
{y1(2), ..., y:(t)}. In other words

s(t) = Ty(¢) 3)

where y(t) = [y1(t),..-,%:(t)]T and T is a (d x ¢)
matrix. The source signals y;(t) are assumed to be
“quasi-stationary” [9]; that is, the “covariance matrix”
of y(t) given by

N
1 "
Ryy = I\}}—IPOO N ; y(t)y (t)a (4)

is well-defined. We assume Ry, > 0, and that the
source signals and noise vectors are uncorrelated, so
that, Ry, = 0, with Ry, defined similarly to Ry,. O

Assumption 4. The matrix T’ in (3) has the fol-
lowing structure:

=y 0 0 -
Y1dy
0 72
T= : (5)
Y2d,
0
Vel
L 0 Yed.

Each index {di}{_, denotes the (known) number of
incoming signals corresponding to the k** source sig-
nal yg(t). O

We make the distinction between specular multi-
path and multipath caused by local scattering of the
source, in which a large number of signals arrive at
the array from nearly the same angle.

Since there are only d unknown elements of T, we
parameterize I' as T'(y), where the (d x 1) vector « is
defined as

(6)

[vk1s+«+ s Yea,]- We correspond-

v=NTAL T, (dx 1),

and where each 7%’
ingly partition @ as

0={67,6%,...,07). )
where each 87 = [0k1,- - -,0k4,]T- Thus, each incident
signal s (t) = yuyk(t) and arrives at angle 8y, for
k —

1,...,cand I =1,...,dg. The case dy > 1 corre-
sponds to coherent multipath from the y(t) source.

1158

The CDEML algorithm we present is derived for
signal scenarios satisfying Assumptions 1-4. The
DEML algorithm in [7] is a special case, imposing
the additional assumption that I' is square and di-
agonal, or, equivalently, that d = 1. Both CDEML
and DEML are large sample ML estimators when Ry
is diagonal.

3 Derivation of the Algorithm

In this Section we derive a large-sample Maximum
Likelihood (ML) estimator for @ and 4. The nega-
tive log-likelihood function of the array output vec-
tors x(t), t =1,..., N, is given, to within an additive
constant, by

L(6,7,Q) =1n|Q| +

N
+ir {Q‘l% > Ix(t) - By()] [x(t) — By(t)]*}(&)
t=1

where | - | denotes the determinant of a matrix and

B(6,7) £ A(0T'(y). In the following we suppress
the explicit dependence of A, B, and I on & and ~ to
simplify notation.

It can be shown that the Q that minimizes L in (8)
is given by

N
Q(B) = 7 Y [x(t) - By(0)] [x(t) - By()]" . (9)
n=1

We will use (9) to concentrate the log likelihood func-
tion on 8 and «. Inserting Q(B) into (8) and taking
the exponential, we obtain the following cost function
(to within a constant)

FI(B:’Y)

R.. + BR,,B* - BR,, - R!,B"

R.. — R}, R /Ry + (B-R;, R}

Ry, (B - R;wR;yl *

Q][+ B - B)R,,(B - By’

i

Q| [1+ Ry (B - By Q1B - B)[10)

where Q =R, — R;mR;leym, B= R;zR;yl, Ry, =
1NN, y(#)y(t)*, and R,, and Ry, similarly de-
fined. Note that both Q and B are consistent esti-
mates of Q and B, respectively. By using Taylor se-
ries expansion of In(F;) about the true 6 and 7~y vector
coefficients, a straightforward extension to the deriva~
tion in [7] shows that minimizing F; is asymptotically
equivalent to minimizing

B(6,7) =t [Ry,(B-B)Q7 (B-B)]. (1)
Equation (11) is a large sample ML estimator for a

general Ry, matrix, and involves a nonlinear mini-
mization of dimension 2d. If we further assume that



Ry, is diagonal, the minimization of (11) decouples
into the following ¢ minimization problems, each of
dimension d

ak,'Vk

= arg min [A(Bk)‘rk —Sk] Q! [K12)
kY
E = 1,...,¢

where by, denotes the k** column of B, A(6;) is the
part of A corresponding to @, and [] is the same as
the first bracketed expression. The minimization with
respect to 7y is

700 ={Q A0} @B, (13)

where (-)! is the Moore-Penrose pseudo-inverse of a
matrix with full column rank. Substituting (13) into
(12), we arrive at the following cost-function for esti-

mating @y,

~

O

arg rréin {ﬁz [Q'l - Q_IA(Bk)
(a*0a-taen) " A*00a] B} 04

Once 6y, is found from (14), the amplitude estimates
-, are obtained from (13).

Most iterative minimization algorithms require an
initial estimates of the parameter vector. A simple and
effective initial estimate can be found by considering
the one-dimensional function

by [Q—l - Q—la(e)a(e)*Q—l] by
a(0)*Q'a(0) '

The dj, values of @ giving the lowest local minima of

f(8) can then be used as the initial estimate of 8.
This one-dimensional cost function is similar to a spec-
tral MUSIC estimator for DOAs.

We remark that the above algorithm is consistent;
this follows from the consistency of the exact ML and
the asymptotic equivalence of the CDEML and ML
methods.

We remark also that, for uniform linear arrays
(ULAs), i.e., arrays with uniformly spaced identical
sensors, the di-dimensional search in (12) can be re-
duced to a polynomial root-finding operation using a
technique similar to that developed in {10, 11].

f(6) = (15)

4 Statistical Analysis '

In this section we state some results on the statis-
tical properties of the CDEML algorithm; the proofs
are given in the full version of the paper. The asymp-
totic statistical properties of the parameter estimates
are stated in Theorem 1. Theorem 2 gives the CRB
for the corresponding signal model. Theorem 3 states
that the CDEML algorithm is asymptotically efficient
for diagonal R.,.
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Theorem 1 Let a = [67 Re{y}T Im{v}7]T be the
(3d x 1) parameter vector, and let & = be the cor-
responding CDEML estimate obtained using equations
(14) and (13). If Ry, is diagonal, then the normalized
gsymptotie (large N) covariance matriz of & is given
y:

E ((a ~a)(@- a)T) - %H‘IVH‘I, (16)

Re(H;) Re(HT) Im(HY)
H = [ Re(Hz) Re(I-I3) —Im(Hg) ] (17)
Im(HQ) Im(Hg) Re(Hg)
Re(Vi) Re(V]) Im(V])
vV = Re(V3) Re(V3) —Im(Vs)] (18)
Im(Vg) Im(V3) RE(V?,)
H, = D*Q'Do@r*)’ (19)
. T
H, = A*Q Do (rE*r) (20)
T
H; = A'Q'A0 (EI‘Ei‘) (21)
V: = D*(R, ®Q)D (22)
Vs D*(R;/ ®Q) A (23)
V; = A'(R;[®Q)A (24)
D = diag{Q7'Divi}io,, A = diag{Q 7' Aw}i,,
D = [Dy,...,D] = [di1,...,d14y,..-,dca.], where
dy; 2 8—%‘(9%’:—’1, Er denotes a matriz of the same di-

mensions as I' in (5), but with the ~y replaced by
ones, and ® denotes Kronecker product.

Theorem 2 For the signal model in Section 2 under

Assumptions 1-4, and for f{yy > 0, the CRB of v is
given by:

Re(F:) Re(FT) Im(FT) 717°

CRB() = 5= | Re(F2) Re(Fs) ~Im(Fy) |
Im(Fz) Im(F;;) Re(Fg)

(25)

F, = D*Q"lDG(I‘ﬁny‘*)T (26)

F, = A*Q—lo@(rﬁny§)T (27)

F; = A'Q A0 (Erﬁnyf~)T,

and where D and Ep are defined as in Theorem 1.

If Ry, is diagonal, it can be shown that the right-
hand sides of equations (16) and (25) are asymptoti-
cally equivalent, giving:

Theorem 3 When R

vy 15 diagonal, the CDEML al-
gorithm is asymptoticaﬁy

statistically efficient.



5 Numerical Example

We examine the performance of CDEML for a uni-
form linear array with half wavelength spacing and 10
elements. There are two known source signals; one ar-
rives at 5°, and the other arrives from two directions,
0° and 10°. The source signals are random Gaussian
sequences and are uncorrelated. The SNR of each re-
ceived signal is 0 dB, and the they are equal energy

ei(l).257r 0
T 610.57r 0 (28)
0 ei0.751r

Figure 1 shows the RMSE and the CRB of the DOA
estimates obtained from the CDEML algorithm for
different numbers of snapshots, V. The solid lines are
the CRB standard deviations for the three received
signals; the lowest curve is for the single source from
5°, and the two upper curves are for the multipath
signals arriving at 0° and 10°. Since the sources are
uncorrelated, these curves also represent the asymp-
totic performance of the CDEML algorithm. The cir-
cles and 'x’s are the DOA RMSE obtained from 100
Monte-Carlo simulations. This figure numerically ver-
ifies that the algorithm is asymptotically efficient.

Figure 2 shows the RMSE of the CDEML estimates
and the CRBs as a function of array size m. As the ar-
ray size increases, the CRBs of the two multipath sig-
nals approaches that of the single source. The array
beamwidth is approximately 360/(w(m — 1)), so the
coherent signals are approximately 1.1 beamwidths
apart for m = 14, when the CRB approaches the
single-source CRB Again, the simulation performance
agrees closely with the statistical theory.

Figure 3 illustrates the performance of the algo-
rithm when the coherent signals have substantially dif-
ferent received powers. In this case we have two source
signals; one signal arrives in two directions, a strong
signal at 0° to simulate a direct path, and a weaker
signal at 10° to simulate a weak multipath signal.
The power of the multipath signal is varied between
-50 dB and -10 dB with respect to the direct-path co-
herent signal. When the multipath source is of mod-
erate power (-20 dB to -10 dB) the 3-source statistical
theory is accurate and the CDEML algorithm perfor-
mance agrees closely with the CRB. For a weaker mul-
tipath signal (-35 dB to -20 dB) the CDEML variances
increase from their predicted values.

For very low signal powers of the multipath signal,
Figure 3 shows the effect of overestimating the number
of signals in the model. In this region, the signal model
is practically that of two uncorrelated signals, as the
multipath signal can be considered absent. The algo-
rithm is thus using an incorrectly large model order (3
instead of 2). The weaker signal has variance corre-
sponding to a completely random DOA. The stronger
source RMSE approaches that of the CRB correspond-
ing to a single uncorrelated signal (i.e., equal to the
lowest solid CRB line). The simulation RMSEs of the
direct-path source are about 2-3 dB above this line;
the increased variance results from assuming a model
order that is too high for this signal environment.
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Figure 1: CRBs for CDEML (solid lines) and unknown
signals (dash-dotted lines). RMSEs (z and o) of DOA
estimates for the CDEML algorithm, as a function of
the number of data samples N.

20

Figure 2: CRBs for CDEML (solid lines) and unknown
signals (dash-dotted lines). RMSEs (z and o) of DOA
estimates for the CDEML algorithm, as a function of
the array size m.
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Figure 3: CRBs for CDEML (solid lines) and unknown
signals (dash-dotted lines). RMSEs (* and o) of DOA
estimates for the CDEML algorithm, as a function of
the ratio between the two multipath signal amplitudes

lva2/711(| in dB

6 Conclusions

We have presented a large sample maximum like-
lihood estimation algorithm for estimating the direc-
tions of arrival and amplitudes of known signals. The
algorithm is an extension to the Decoupled Maximum
Likelihood (DEML) method in {7}, which is unable to
handle coherent multipath. However, this extension is
important in applications such as mobile telecommu-
nications in which coherent or nearly coherent signals
impinge on the array due to multipath propagation.

The coherent decoupled maximum likelihood
(CDEML) algorithm we present retains the advan-
tages of the DEML algorithm; namely 1) the accuracy
of the DOA estimates are better than those for algo-
rithms based on unknown signal models, 2) the accu-
racy does not degrade when sources approach one an-
other, 3) the number of incident signals can be (much)
larger than the number of array elements, 4) the algo-
rithm handles the the case of unknown spatially col-
ored noise, and 5) the algorithm is computationally
efficient because the nonlinear minimization problem
decouples into problems of smaller dimension. The
ML estimator becomes further simplified for the spe-
cial case that the array is a uniform linear array.

We have derived the Cramér-Rao bound for the
coherent signal case. We have also analyzed the
large sample statistical properties of the CDEML al-
gorithm, and compared it to the Cramér-Rao Bound.
The CDEML algorithm, like the DEML algorithm, is
asymptotically statistically efficient when the source
signals are uncorrelated; unlike the DEML algorithm,
asymptotic statistical efficiency is retained if multiple
coherent copies of these uncorrelated source signals
also impinge on the array.

Finally, we presented numerical examples to illus-
trate the performance of the CDEML algorithm as
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compared to theoretical performance results.
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