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ABSTRACT

In this paper we consider linear correlation filters for image pattern recognition, with particular applica-
tion to Synthetic Aperture Radar (SAR). We investigate the statistical properties of several popular Synthetic
Discriminate Function (SDF) based linear correlation filters, including SDF, MVSDF, and MACE filters. We
compare these statistical properties both qualitatively and analytically for SAR applications. We also develop
modifications to these SDF-type filters which have particular utility for Synthetic Aperture Radar (SAR) image
classification. We compare the performance of the modified filters to the standard filters using X-patch generated
SAR images with both white and colored noise. We also investigate effects of performance degradation caused by
mis-estimated noise statistics, and the effects of image normalization on the target detection rates.
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1 INTRODUCTION

An Automatic Target Recognition (ATR) system typically consists of a number of stages which perform
the tasks of initial detection, clutter rejection, target orientation estimation, and finally target classification.!
For many ATR systems, the final stage is often implemented using some type of linear correlator. A number of
correlator filters have been described in the literature, including Synthetic Discriminant Function (SDF), Minimum
Variance Synthetic Discriminant Function (MVSDF), and Minimum Average Correlation Energy (MACE) filters,
and their variants (see, e.g.,27%). We refer to these methods as SDF-type linear correlators. They are popular for
use in both optical and in SAR image classification applications.

Object classification in ATR systems must be robust to the presence of noise. Most of the popular SDF-type
correlators are designed to optimize a performance criterion that provides immunity to this noise. In optimizing
performance criteria, the noise on the image is frequently assumed to be both additive and wide-sense stationary.
However, in most SAR classification problems, image noise is not additive. While it is often valid to assume
additive complex noise for the complex SAR image, classification often is done using only the magnitude of the
image. The reason for this is that the phase information of SAR pixels are quite sensitive to errors in sensor
range, object orientations, etc. Thus, even though the complez SAR images are corrupted with additive noise,
the noise in the magnitude image is multiplicative noise and is non-stationary. Consequently, SDF-type filters
that are designed assuming additive noise models may not perform as expected.



In this paper, we address the issue of non-additive noise in two ways. First, we propose a modification to the
performance optimization criteria of SDF-type linear correlation filters which is more appropriate for non-additive
noise models such as that encountered in SAR image classification. Second, we analyze the statistical properties
of both the original and modified SDF-type linear correlators under a variety of conditions, including additive,
wide-sense stationary noise with different amounts of spatial correlation, and the corresponding multiplicative
noise induced by using the magnitude of a complex image. We analyze the similarities and differences among
some basic SDF-type linear correlation filters and draw some general qualitative conclusions on their performance.

We also provide several numerical experiments to compare the various SDF-type correlators for SAR classi-
fication. We use X-Patch synthesized SAR images corrupted by noise to investigate the classification detection
rates of several filters. We also investigate how badly performance degrades as a result of mis-estimates of the
second order statistics of the noise. Finally, we discuss the effect of image normalization on the performance of
linear correlators for pattern recognition.

2 NOTATION AND PROBLEM FORMULATION

In this paper, we use lower-case variables such as v(m,n) or A(m,n) to indicate images or filters in the
spatial domain. Upper-case variables such as V(k,!) or H(k,[) are the corresponding two dimensional Discrete
Fourier Transforms of the images. All input images and all correlators are assumed to have the same size with
n1 X ng pixels. Variables such as v and h are column vectors formed fromn stacking the pixel values of v(m,n)
and h(m,n). In this paper, we refer to (.)* as the complex conjugate operator, (.)¥ as the complex conjugate
transpose operator, and we refer to correlation outputs as the outputs of the correlators at the origin.

With the above notation, the problem we address is as follows. We assume the training patterns {v;;(m,n)} ;\il
are given for each ¢ in one of L classes. Each v;;(m,n) can be either a real-valued or a complex-valued image.
Assume the test pattern to classified is given as y = f(vpq, n), where p is the class index, 1 < ¢ < M, and n
is the background clutter. Given a test pattern y, our task is to recognize it to be in the pth class. For additive
noise, f(vpg, ) = vpg +n; for SAR imagery, we assume vy, and n are complex-valued and f(vpg,n) = |vpg +nl,
i.e., only the magnitude images are used for classification.

3 REVIEW OF SDF-TYPE LINEAR CORRELATORS

SDF-type linear correlators can be used to solve the above problem by synthesizing linear correlation filters,
one for each class of objects, namely h; for the ith class. A test pattern y is assigned to the class whose correlation
output is maximum. Each correlator h; is designed to satisfy the following constraints:

C1: h; is linear and circular-shift invariant.
C2: h; minimizes hff Ah; or H¥ AH; for some user-specified positive definite matrix A.

C3: The output at the origin for filter h; is 1 for input training vectors from the ith class and 0 for input vectors
from all other classes. That is, v,{.{jhi =d;p,forallk=1,...,L,and all § = 1,..., My.

By employing Lagrange Multipliers, one can solve the above problem?; the solution is given by one of
hy = A7lg(a¥ATlz) Ty, (1)
H, = d-A'X(X"ATIX) 1y, (2)

depending on whether the second constraint is imposed in the spatial or frequency domain. Here, z is a matrix
of training vectors, X is its corresponding discrete Fourier transform, d is a constant equal to the dimension of



the training patterns, and each element of u; is a 0 or 1 corresponding to the third constraint above. Particular
choices of domain and A result in some common filters. If A is the identity matrix, I, the corresponding correlator
is an SDF filter for both the spatial and frequency domain. It can be shown? that for A = I, the second design
constraint is equivalent limiting the filter to be a linear combination of the training patterns. If A is the noise
covariance matrix, Rpn, the corresponding correlator is an MVSDF filter in the spatial domain,? which is the best
SDF-type correlator for wide-sense stationary (W.S.S.) additive, zero-mean noise, since it minimizes the output
noise variance. If A is a diagonal matrix whose diagonal elements are the samples of the average magnitude
spectra of the training patterns, D, the corresponding correlator is a MACE filter in the frequency domain, which
minimizes the average correlation energy corresponding to training patterns, and produces sharp correlation
peaks.

SDF, MVSDF, and MACE filters are the most basic correlators among the SDF-type correlators. There are
many variations of these filters developed in the literature, such as a frequency-domain version of the MVSDF
filters, a spatial-domain version of MACE filters, Improved SDF (ISDF)-type composite filters which linearly
combine the optimization constraints of MACE and MVSDF (or MACE and SDF) filters, etc.*™"

4 MODIFICATIONS FOR NON-ZERO-MEAN NOISE

The filter designs above are based on the assumption of zero mean noise. However, for SAR applications,
the noise term in the magnitude image is not zero mean. Below we address ways of modifying the SDF-type
correlators when the noise is 1ot zero mearn.

4.1 Specifying means of correlation outputs

The goal of the filter design is to distinguish a noisy image as belonging to one of several classes, so we want
the correlator outputs to be different for input images from different classes. For zero mean noise and linear
correlator filters, this goal is implemented using criterion C3 above. When the noise is nonzero mean, criterion
C3 requires modification.

Let s(m,n) be any input pattern to a linear circular-shift invariant correlator with frequency response H*(k, 1),
and let the associated output pattern be y(m,n). The corresponding correlation output, =, is given by:

1 nl—lnz—l

r = y(0,0) = 3N B (K D)S(K,1) = ;1172—1—135 (3)

ny - N2 =0 1=0

Also, by Parseval’s Theorenn:
ny—1ng—1

r o= Z Z R (m,n)s(m,n) = hfls (4)

m=0 n=0
Let spq be the noisy patterns f(vpg,m), hii=1,... L, be correlators corresponding to L classes of objects, and
Tpgi,t = 1,...,L be the associated correlation outputs of h;’s. We propose the following modification to criterion
C3:
C3” E{rpg} = 6—p, Vi,p,q (5)

Let 72 be the matrix of vectors E{spq}, and M be the matrix of vectors E{Sp,}. By equations (3), (4) the
constraints are equivalent to:

E{Z\}[}HHZ = wu;(nl-n2), and E{rh}Hhi = u; (6)
where u; is a column vector with each element equal to a 0 or 1 corresponding to the constraint in equation (5).

We note that criterion C3 in the previous section is a special case of the more general constraint we show in



equation (5). Specifically, previous designs have used versions of equation (5) which are appropriate for additive,
zero-mean noise, instead of the more general form used here.

4.2 Optimization criteria

To accommodate non-additive noise, some of the optimization criteria must be suitably modified. As examples,
we provide the (modified) optimization criterion for some basic SDF-type correlators, including SDF, MVSDF,
MACE, and ISDF correlators.

a. SDF :

There are two modified SDF filters, depending on whether we limit the correlator to be a linear combination
of E{spq} or of vpy (Jupe] on SAR imagery). We refer to these two SDF-type filters as SDFy and SDFs,
respectively. 1t is easy to show that SDF} is equivalently obtained by minimizing the filter’s energy under
the constraint in equation (6). There is no simple optimization criterion corresponding to SDF,. We
note that the original motivation for limiting the correlator to a linear combination of vy, is that it allows
optical correlators to be implemented by multiple-time-exposure techniques?; for electronic (hardware or
software) correlators there is little reason for this limitation. Thus, the SDF filter is recommended for
SAR applications.

b. MVSDF:
We can set the optimization criterion of MVSDF such that the result is to minimize the average variances
of correlation outputs corresponding to s,,’s, which is given by:

1 R
Vave; = ﬁthRququhi = h¥ Rssh; (7)
Dy

. : e I ‘ 5 2 — 1
Where Rg, s, is the covariance matrix of 84, and Rgs = % Ep"q Rs,,5,,-

c. MACE:

For the modified MACE filters we can minimize either the mean of the average correlation energy, corre-
sponding to the s,,’s or the average correlation energy corresponding to the vy,’s. We refer to the associated
correlators as M ACE, and M ACE,, respectively. The mean of the average correlation energy correspond-
ing to spq’s is:

1 1 A

El, = =) E Hi(k,1)78,0(k,1)|*} = HEDH,
3 2 Ely SV S DF) = HE D (®)

where D is a nyny X nins diagonal matrix with diagonal elements equal to ngllﬁ P opg E{ISpg (K, DI}

. N : e a3
The average correlation energy corresponding to vpg’s is®:

T

.1 1 (1 N (12— 21 H T
E2; = N% m;m(k,z) vpg (B, D)2 = HEDH; (9)

Where D is a nynz X nins diagonal matrix with diagonal elements equal to nlizN > g [Voa (K, 2.

d. ISDF:
The criterion to minimize, for the modified ISDF filters, are chosen as linear combinations of the criteria to
minimize for (M ACE; or MACE,) and (MVSDF; or SDF; or SDF3).

4.3 Structures of modified correlators

Similar to the standard SDF-type correlators, each of the corresponding modified correlators {except SDF3)
can be formulated as minimizing a quadratic function of either the form hZ Ah; or H¥ AH;, subject to constraints



on the correlation outputs. The modified filters thus have the following structure:
hy = A7 Y(mT AT )y (H, = ATTM(MEATIM)  tui(ning)) (10)

For SDF,, h; (H;) is limited to be a linear combination of vpq (Vpq) subject to the constraint on equation (6).
The solution can be readily obtained, and is:

hi = w(mPe) . (H; = X(MEX) Pui(ning)) (11)
Where z is a matrix of training vectors vpq (|upg| for SAR images). |

For SAR i images, if n is complex white Gaussian noise, cach element in s, is Rician distributed” and elements
in , D and Rgs can be computed from first order numerical integration of the pdf of the Rician densities. For
colored or non-Gaussian noise, it is hard to obtain a closed form of the pdf of s,, and higher-order numerical
integration is needed to compute the ensemble statistics. For details on the impact on filter synthesis, refer to.”

5 STATISTICAL PROPERTIES

In this section we develop the second-order statistical properties and the relative performance of these linear
correlators. We assume the noise n is W.5.5. (restricted to the image size).

5.1 Relationships among linear correlators

It well known that nearly all SDF-type correlators can be related to the basic SDF correlator by decomposing
A™linto A"? A=7, and by rearranging the filter structure in equations (1) (equation (2)) as*

hi = ATThSPFY (H; = A~31HSPFY) (12)

Where y is the transformed matrix of tlaining patterns A‘%z: and h7PF * is the SDF designed from the trans-
formed tr dlmng patterns y. The matrix A~ 7 can be regarded as a whltemng filter. For example, for a MVSDF

correlator, Rnn is a noise whitening filter?; for a MACE correlator, D~7 is a whitening filter to whiten the
average spectra of the training patterns.®

For the modified linear correlators, the same technique can also be applied to relate all the other correlators
(except SDFy) to a basic SDFicorrelator. That is, we rewrite equation (10) to:

hi = ATPRIPT (H = A~ EIPT

(13)
L1

where y is the transformed matrix of mean vectors A~ % . For an MV SDF, Rgd is a whitening filter to whiten

the average covariance matrix of spq's. For MACE; and MACE,, D=3 and D% are whitening filters which

whiten the average means of the spectra of s,, and vy, respectively. For a modified ISDF, its’ whitening filter

whitens a linear combination of average covariance matrix of sp; and average mean spectra of training patterns.

5.2 Second-order statistical properties and relative performance

Below we discuss the qualitative statistical properties and relative classification performance of the different
SDF-type correlators when applied to image classification. Our discussion assumes that the training patterns
employed in designing the filters are narrow-band low-pass images. This assumption is true in most practical
SAR applications which employ a magnitude image. As we discuss below, this low-pass property can be employed
to develop the statistical properties of the linear correlators in question.



5.2.1 Spectral density of the linear correlators

SDF, SDFy, and SDF, are linear combinations of low-pass images vy or E{|upg + n|}. Thus, we observe
that the above correlators are all low-pass, since a linear combination of low-pass images is low-pass with high
probability. Thus, in the frequency domain these linear filters weight the input patterns more where it is strong
and less where it is weak.

On the contrary, MACE, MACE; and M ACE, are high-pass filters since in their alternate expressions
(equations (12) and (13)) the whitening filter A~% effectively forms the inverse spectra of the training patterns.
It follows that both SDF¥ and SDFY are approximately white since y is the matrix of the whitened training or
mean training patterns. That is, in the frequency domain, M ACE filters weight the input patterns more where
they are weak and less where they are strong. Therefore, in the frequency domain, if distortion or noise occurs
where vpg or |vpe| has high energy (i.e. it is low-pass), SDF, SDF; and SDF} are less capable of suppressing it
than MACE, MACE:, and M ACE,, and vice versa.

The spectral density of MV SDF and MV SDF) can be either low-pass or high-pass depending on the (average)
covariance matrices of spy’s. If the noise is highly correlated, and thus the s,,’s are narrow-band low-pass images,
the spectral density of MVSDF and MV SDF) are high-pass just like those of M AC E’s. If the noise is relatively-
uncorrelated, the whitening filters in MV SDF and MV SDF; have little effect on the (mean) input patterns,
and thus they will look like the SDF’s which are low-pass.

5.2.2 Relative performance with respect to W.S.S. noise

For additive noise, analytic performance of these linear correlators is much easier to develop since we can treat
the training patterns, v,4, and noise n separately. Accordingly, we first develop our arguments for additive noise,
and then extend the arguments to applications which include SAR imagery, where magnitude images are used
and the noise is not additive.

For the class of filters under consideration, the outpuf noise is approximately W.S.S. if the input noise is
W.S.S., where “approximately” arises from the fact that finitely-sized circular convolution instead of infinitely
sized linear convolution is employed by the correlators. In this case the variance of the correlation output is equal
to the variance of correlation noise, so is approximately equal to the average power of the output noise. Therefore,
the average output noise power dominates the performance (i.e., the detection rate) of a correlator for a given
W.S.S. noise power. The average output noise power is:

ny—~1ny,~—1
1

S5 H(k D Pan(k, 1) (14)

mn2 120 =0

where Pnn{k,!) is the power spectral density of noise n. Thus, if the high-energy band of the power spectra of
the noise is coincident with the pass-band of the energy spectra of a particular filter, then the output noise power
1s large, and thus the performance of the correlator degrades, and vice versa.

For non-additive noise, such as is the case for SAR imagery, same characteristics are likely, but not guaranteed.
For SAR imagery, the equivalent additive noise presented to the correlators is:

B = |upg + 1|~ E{Jvpg +nl}, (15)

which depends on vp, and is not W.S.S. in general. Thus, the power spectral density of fi is not defined.
Furthermore, because of the nonlinear transformation above, there is no longer a linear relationship between the
average power of the noise n and the noise variance at the origin of the correlator output. Thus, while it is likely
that an increase in noise power results in higher correlator output variance, it is not certain to be the case.
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Figure 1: Training images at one azimuth angle: (a) magnitude images (b) the corresponding magnitude spectra
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Figure 2: Performance of the linear correlators for white Gaussian noise: (a) theoretical performance computed by
approximating the pdf of correlation outputs with Gaussian densities (b) Monte-Carlo simulation results where
ensemble estimates of means and variances of noisy input images are computed from numerically integrating
Rician densities

It is well known that an SDF filter is the best SDF-type linear correlator for additive white noise.?2 However,
with respect to SAR. imagery in which magnitude images are used, the standard SDF filters perform poorly. In
fact, in this simulation, when the SNR < 5, the mean of correlation output for the School bus class is always higher
than those for the other three classes, given any test patterns from the four classes. Therefore, the unmodified
SDF filter decision rule always chooses the School bus class.

Recall that the magnitude spectra of a M ACE filter is high-pass, while the magnitude spectra of an SDF
filter is low-pass. The difference between the original training patterns |vpe| (which are used to synthesize the
SDF and MACE filters) and the means of the noisy patterns |v,, + n| are low-pass for general low-pass |vpg].
Thus, if we employ the standard SDF and MACE filters with this SAR data, and if we treat the difference
between the means of jup,q + 1| and |vpy| as “noise”, the corresponding correlator output “noise” energy for the
SDF is higher than that for the M ACE. Thus, output “noise” tends to produces serious effects on the SDF
filter and substantially alters the correlator output means.

As discussed in Section (5.2.2) and verified in Figure 2, MV SDF,, SDF), and SDF, are more robust with
respect to white n, while M ACFE; and M ACE, are more sensitive to white n. MV SDF, should be the optimal



standard MACE increases significantly as p increases.”

The performance of MV SDFY, although not simulated for colored noise, should be bounded below by the
performance of SDF 5 and MACE; ;. Since M ACE; minimizes the mean of the average correlation energy
corresponding to |vpg + n, its performance on reducing the correlation energy should be better than that of
MACE,, which minimizes the average correlation energy corresponding to |vpe|. However, it is difficult to
predict which will have the better detection rate. Also M ACE; needs more statistical information (D) than does
MACE,. Figures 3-(b) suggests that for more highly correlated noise, the performance of M ACE, is better than
that of M ACE; in this scenario.

6.3 Noise model mismatch

We present a simple example to evaluate the sensitivity of SDF-type correlators to the assuined noise model.
In this example, we use the true noise variance information to synthesize the correlators, but we incorrectly
assume that the noise is white. We then test the linear correlators with the colored noise model we used in the
above examples. Recall that if we set the noise variance to zero, then the modified correlators reduce to previously
published correlators.

Figures 4-(a) and 4-(b) show the results of this simulation for SNR = -10 dB and SNR = -5 dB. respectively.
We see that the performance degradation is minimal if the mismatch on noise model is not dramatic. We also
see that M ACE,; and M ACE, are more robust to the noise model mismatch than either SDF) or SDF;. It is
interesting that in this scenario, the detection rates of M AC E; increase as the mismatch on noise model increases.
Recall that M ACE-type correlators are designed to minimize average correlation energy, and this criterion is not
directly related to the detection rate.
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Figure 4: Simulations using white Gaussian noise model for correlator synthesis, and tested with colored Gaussian
noise: (a) SNR=-10 (b) SNR=-5

6.4 Image normalization

From Figure 1 we see that the energy of the different images from different classes may significantly differ.
Moreover, even for images from the same class, power may also differ as the viewing angle changes. Novak, Owirka
and Netishen® found that normalization can improve the inter-class performance on SAR image classification.
Here, we normalize the Frobenius norm of images used in the simulations, and discuss why normalization improves
the performance of these linear correlators.



Among the modified correlators, MV SDF;, SDF, and SDF, are found to be more robust with respect to white
or relatively uncorrelated noise than M ACE;, and M ACE;. We also find that M ACE,, and M ACE. are more
robust with respect to highly correlated noise. These results are similar to the results obtained for additive noise
using previously published correlators.

The theoretical performance of these correlators can be evaluated approximately by approximating the pdf
of the correlator outputs as Gaussian densities. This approximation is usually good if the spatial correlation
of the noise is low for pixels far apart in the images. We provide theoretical performance in the example for
white Gaussian noise which shows good agreement with the results obtained by Monte-Carlo simulations. For
colored noise, it is problematic to compute the theoretical performance because of the need to construct large
sized covariance matrices which require extensive memory.

We also employed sample statistics in order to synthesize correlators. The results show modest degradation
for white noise case when compared to those results obtained by employing the ensemble statistics. However,
this degradation can be made small by increasing the sample size. For colored noise, this appears to be a good
alternative to employing numerical integration to solve for ensemble statistics. The effect of noise model mismatch
was also evaluated. Simulation results show that the detection rates of these linear correlation filters degrades
only slightly if the mismatch with the noise model is not significant. Finally, the effect of image normalization was
discussed and simulated. We determined that normalization of images improves the performance of these linear
correlators by making the variances of the correlator outputs closer to each other and thus makes the decision
criterion of the linear correlators closer to the Bayes criterion.
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