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ABSTRACT

We present an algorithm for model order determination and

simultaneous maximum likelihood parameter estimation for
complex exponential signal modeling. The algorithm ex-
ploits initial nonparametric (i.e., FFT) frequency location
estimates and Cramér-Rao Bound (CRB) resolution lim-
its to significantly reduce the search space for the correct
model order and parameter estimates. The algorithm ini-
tially overestimates the model order. After iterative min-
imization to obtain maximum likelihood (ML) parameter
estimates for that order, a post-processing step eliminates
the extraneous sinusoidal modes using CRB resolution lim-
its and statistical detection tests. Because the algorithm
searches on only a limited set of model orders and param-
eter regions, it is computationally tractable even for large
data lengths and model orders. In this paper we analyze
the performance of the algorithm and compare with other
existing approaches.

1. INTRODUCTION

A parametric modeling problem can be divided into two
parts: model order detection and parameter estimation.
Usually, model order detection and parameter estimation
are considered separately. However, it is well known that
the performance of parameter estimation algorithms is
greatly affected by the pre-determined model order. In par-
ticular, with a lower model order, the estimated parameters
become biased and with a higher model order, the variances
of the estimated parameters increase [2, 3]. Therefore, it is
important to have an accurate estimate of the model order.
In this paper, we consider the model order determination
issue for the complex exponential modeling problem.

For array signal processing, model order determination
using information-theoretic criteria has been addressed in
[4, 5, 6]. These algorithms search the entire model order
space in order to find the correct model order according to
some information criterion (AIC, MDL, etc.). For nonpara-
metric algorithms (e.g.,[4]), the computation cost is modest
but performance suffers even for moderate signal to noise
ratios (SNRs). In contrast, parametric algorithms [5, 6] give
good results but are computationally expensive.

For time series analysis, several authors have used eigen-
value or singular value analysis in the detection prob-
lem [7, 8]. The basic idea there is to identify the dominant
singular values (SVs) (or eigenvalues) by some criterion (for
instance, a pre-chosen threshold). The number of the dom-
inant SVs is the model order. The technique in (7] requires
the selection of a pre-determined threshold; both [7] and [8]
suffer from poor detection performance. With the help of
perturbation analysis, Fuchs [9] developed a statistical cri-
terion based on the data autocorrelation matrix to detect
the number of sinusoids. The approach requires a pre-
determined x? threshold and is computationally intensive.

More recently, Reddy and Biradar [10] utilized information-
theoretic criteria on the data matrix for detecting the num-
ber of damped/undamped sinusoids. This method is com-
putationally attractive but the performance suffers even for
moderate SNRs (as we show below).

Recently, we proposed a computationally tractable alter-
native for model order determination in [1]. The algorithm
uses an initial nonparametric frequency estimate, obtained
using an FFT, to reduce considerably the set of candidate
model order hypotheses. In addition, we significantly re-
duce the initial condition points for nonlinear minimization
procedures by use of an FFT initialization which is com-
bined with a mode splitting algorithm to account for the
limited FFT resolution. The splitting algorithm is based
on the CRB resolution limit. Because the initialization pro-
cedure tends to initially overestimate the model order, we
include a post-processing step to test for and eliminate ex-
traneous modes in the model. This process of intelligently
searching for model order and parameter estimates in a re-
duced subset of the entire space results in significant compu-
tational savings. In this paper we analyze the performance
of the algorithm through theoretical derivations and exten-
sive simulations. We also compare our approach with other
existing methods, in particular the ones in [9, 10].

An outline of this paper is as follows. In Section 2 we
present the data model and the problem formulation. In
Section 3 we summarize the proposed algorithm. In Sec-
tion 4 we show the consistency of the algorithm. In Sec-
tion 5 we present simulation studies which demonstrate the
ability of the proposed algorithm. We also compare the
algorithm with other existing model order determination
algorithms. Finally, in Section 6 we conclude the paper.

2. DATA MODEL AND PROBLEM
FORMULATION

me=1

Copsider a data vector {y,};; of complex exponential
samples

Yo = Zaiej(wiﬁ—w) +eq (1)

=1

where a; € R, wi, ¢i € (—m, 7. We assume that the
exponential modes are distinct, i.c., wi # wy for k # L
We also assume that {e,} is a zero mean complex white
Gaussian noise sequence with variance o2,

There are two related problems in exponential modeling.
One is the estimation problem, i.e., to estimate the parame-
ters, {a;}iz1, {#i}iz1, and {w;}?-; in the model. The other
problem is to determine the number of modes in the signal.
In this paper we consider a combined parameter/order es-
timation algorithm for the model in Equation 1.

To address the order determination problem, we use re-
sults of maximum likelihood (ML) estimation of the param-
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eter vector:

{#itim Awiliza ]T- (2)

Under the assumptions made, the negative log-likelihood

0:[ {(1.‘ ?=1

function for an estimate 8 of 8 is given as [11, 12]

me1

OB SN0

q=0

2

) (3)

where zq(a) is an estimate of the noiseless version of y,
parameterized by 6. The ML estimate is then given by

5ML = arg min L(?). (4)
]

Note that the ML estimate given in Equation 4 is only
valid if the number of modes in the estimate is correct, i.e.,
7 = n. By increasing the number of modes in the estimate,

we can always reduce the loss function L(6).

We design an algorithm which estimates the correct
model order and the corresponding ML parameter esti-
mates. We first obtain initial estimates using FFT peaks.
We then apply a splitting algorithm that is based on a crite-
rion derived from CRB results to refine the initial estimates.
We next apply an ML procedure (using Equation 4) to these
refined initial estimates. After the ML step, we prune the
extra modes in the estimate. We repeat the ML estima-
tion and the pruning cycle until no mode is pruned. The
number of modes in the final estimate is the estimate of the
model order; the final estimate is also the ML estimate of
the model parameters.

We note that the above proposed algorithm simultane-
ously estimates both the model order and model param-
eters. Moreover, the algorithm does not search the entire
space for the possible model order. The algorithm only con-
siders a small subset of the entire space. This results in sig-
nificantly reduced computation as compared to algorithms
that search over possible model orders using ML estimation.

3. SUMMARY OF THE PROPOSED
ALGORITHM

As described in the previous section, the proposed model
order determination algorithm is based on the FFT peaks
of the given signal. However, the FF'T has limited resolu-
tion and thus cannot detect (and estimate) closely spaced
modes. To solve this resolution limitation problem, we
present an algorithm to split the FFT peaks into some
larger number of peaks based on the resolution limit ob-
tained from the CRB. This splitting algorithm introduces
additional modes. Consequently, we increase the model or-
der in this step, and often initially overestimate the model
order. To prune any extra modes, we design a pruning algo-
rithm which is based on the resolution limit and statistical
detection tests.

For the sake of brevity, we summarize the essential idea
of the algorithm; details are presented in [1]. The model-
order-revealing ML algorithm is summarized as follows.

1. Obtain the locations, magnitudes, and phases of the
FFT peaks of the signal. Obtain the estimated noise

power o2,

2. Using the estimated noise power, calculate the reso-
lution limit and the maximum number of resolvable
modes per Fourier bin (Fbin). Split the peak locations
according to the splitting algorithm described in [1].

3. Perform ML estimation on the split estimates using
nonlinear minimization of the negative log-likelihood
function (Equation 4). We use the complex signals-
generalized version of the algorithm in [12].

4. Discard possibly extraneous modes using the MDL in-
formation criterion (see [1] for details.)

5. If any modes are discarded in Step 4, go to Step 3. If
not, the estimation is completed.

4. CONSISTENCY OF THE PROPOSED
ALGORITHM

In this section we establish the consistency of the proposed
model order determination algorithm in terms of SNR.
First, we note that the MDL criterion for our case is given
as

MDL = mlog (L(’a‘)) + 3—2’i1og (m), (5)

where L(:9\), m, and 7 are defined as above. To show the
consistency, we want to show that as o — 0,

3(n — n)log(m)
Prob ————z(ﬂ") >e 2m

1

-0 Va#n (6)

It is noted that as o2 —)0,%%!% — 0 for # < n and
a * 3(h~n) log({m
ﬁ%‘%—)lforﬂ)n.ﬁowever,ﬁ<n=>e Im >0,
h .
3(f—n)log(m})
and i >n=>e Zm > 1. Therefore, the probability

of error (Equation 6) goes to zero as 0 — 0. This is also
verified in the following computer simulation studies.

5. SIMULATION STUDIES

In this section we provide computer simulations to demon-
strate the performance of the proposed algorithm. We
also compare the algorithm with existing model order se-
lection algorithms. In particular, we compare with Fuchs’
a.pproachg[Q] and the SVD-ITC approach [10]. Note that
the approaches in {9] and [10] were designed for real sinu-
soids, and here we generalize the approaches to be suit-
able for complex exponentials, For Fuchs’ approach, the x?
threshold is chosen so that the probability of underestimat-
ing model order is equal to 0.1 percent. For the SVD-ITC
approach, we only consider the backward linear prediction
incorporated with the MDL criterion scenario. For both
Fuchs’ and the SVD-ITC approaches, the prediction order
(size of the data matrix) is chosen to be about m/3 to im-
prove estimation accuracy (see, e.g. {13]), where m is the
number of data points.

5.1. Example One: Two Well Separated Modes

In the first example we use a data sequence which is com-
posed of n = 2 exponentials at frequencies of 2x/m and
—2n/m where m = 25 is the data length, The magnitudes
of the exponentials are chosen to be one. The phases are
Z€T0.

Figure 1 shows the correct model order detection rate ver-
sus SNR per mode for this example, using 100 independent
Monte-Carlo simulations. Here, SNR per mode is defined
as

SNR per mode = 10log,,

min; (|a?|)
2 b
o
where a3 = a3 = 1 for this case. From the plot, we can see
that the proposed algorithm (curve Y&M) successfully de-
tects the model order for SNR/mode above 1 dB; in partic-
ular, the algorithm is consistent. Below 1 dB SNR, the de-
tection performance degrades quickly. The phenomenon is
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Figure 1. Detection results of Example One using the pro-
posed (Y&M), Fuchs’, and SVD-ITC (R&B) algorithms.
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Figure 2. Detection results of Example Two using the
proposed (Y&M), Fuchs’, and SVD-ITC (R&B) algorithms.

the so-called threshold effect in [14]. The detection thresh-
old for Fuchs’ approach is 4 dB and that for the SVD-ITC
approach (curve R&B) is about 0 dB. Note, however, that
neither Fuchs’ algorithm nor the SVD-ITC approach gives
perfect detection rates even for SNRs above 10 dB; the con-
sistency of the algorithms is not discussed in [9] and [10].

5.2. Example Two: Two Closely Spaced Modes
In this example we use the following data.

2y = g (2r(0-8)atn/t) | 3208 o — 01 ... 24

This is the Kumaresan and Tufts example [15, 16].

Figure 2 shows the correct detection rate versus SNR per
mode. Again, 100 independent Monte-Carlo simulations
were run for the statistics, and SNR per mode is defined
as before. From the figure, we see that the proposed al-
gorithm can detect the correct model order for SNR/mode
above 5 dB with false alarm rate below 2%. Again, we see
the threshold effect for this example. The correct detection
threshold is about 5 dB for the proposed algorithm. Fuchs’
algorithm nor the SVD-ITC approach perfectly detect the
model order for the SNR range we tried. The detection per-
formance threshold is about 15 dB for Fuchs’ approach and
13 dB for the SVD-ITC approach. The proposed algorithm
requires an SNR/mode which is about 7-10 dB lower than
that required by Fuchs’ and the SVD-ITC approaches to
achieve the same performance for this example.
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Figure 3. Detection results of Example Three using the
proposed (Y&M), Fuchs’, and SVD-ITC (R&B) algorithms.

5.3. Example Three

We also compare the three algorithms on an example similar
to the one in [9, 10]. The data sequence is given as

2, = V20sin(2xf1q) + V2sin(2rf2g + ) ¢=0,1,...,63,

where fi = 0.2, f = 0.2+ 1/64, and ¢ = 0. Although
the signal is real, we use complex representation i the ex-
periments, which means we have 4 complex exponentials
instead of 2 sinusoids, '

Figure 3 shows the detection performance results. For
compatibility with examples presented in [9, 10], we adopt
prediction order L = 32 (ot L = m/3) in computing results
for Fuchs’ and the SVD-ITC approaches. Because of the
computation required, we show results for Fuchs’ method
at only one SNR. From the figure, we see that the proposed
algorithm has the best performance in terms of detecting
the model order. The three algorithms seem to have a sim-
ilar detection performance threshold (0-1 dB).

The results for Fuchs’ algorithm and for the SVD-ITC
approach are slightly worse than those reported inaSQ, 10
because we use complex signals instead of real signals an
did not randomize the phase. Simulations we performed us-
ing real signals (not reported here) gave performance results
similar to those in [9, 10]. :

5.4. Discussion

From the above experiments, we find that the proposed
algorithm is consistent in SNR. Fuchs’ approach and the
SVD-ITC approach seem to be consistent from the deriva-
tion of the algorithms. However, the experiments show sig-
nificant misestimation of order even above 10 dB SNR.

For the detection performance threshold, the three algo-
rithms have similar results for well separated signals (Ex-
ample One and Three). However, for closely space signals
(Example Two), the proposed algorithm outperforms the
other two approaches by about 7-10 dB. Below the thresh-
old SNR, we found that most of the misestimated cases
for the proposed algorithm and Fuchs’ approach are un-
derestimated. However, for the SVD-ITC approach, the
misestimated cases are overestimated for high SNRs and
underestimated for low SNRs.

Although the SVD-ITC approach uses the MDL princi-
ple, the detection performance is in general worse than the
one obtained from our proposed algorithm. We hypothesize
the performance degradation is due to the data matrix for-
mation, which does not fully use the whole data sequence.
The problem is similar to the well-known windowing effect
in FIR filtering. The effect is most pronounced when the
signals are closely spaced and the data length is small.
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Table 1. Computation required for the algorithms. Results
were obtained from MATLAB flop counts (Unit: flop).

Ex. 1 | Ex. 2 Ex. 3

Y&M 4.52M ] 1.86M | 10.27M
SVD-ITC [ 68.4K | 68.4K 1.51IM
Fuchs 5.85M | 5.856M | 7085.5M

Next we compare the computational cost of each order de-
tection procedure. The computation required by each algo-
rithm for each example is summarized in Table 1. From the
table, we see that the SVD-ITC approach requires the least
computation, the proposed algorithm more, and Fuchs’ ap-
proach the most. We note that the computations for the
SVD-ITC approach and Fuchs’ approach are for detecting
the model order only, and the computations for the pro-
posed algorithm include both detecting the model order and
estimating the ML parameter estimates. For Fuchs’ algo-
rithm, the computation for detection only is worse than
that of the proposed algorithm for both detection and esti-
mation. If an ML estimation procedure is used to estimate
the model parameters after detecting the order, the compu-
tation difference will be even more significant. However, for
the SVD-ITC approach, even if an ML estimation procedure
is used to estimate the model parameters, the computation
should still be about one third or one half of the computa-
tion needed for the proposed algorithm. This is because the
proposed algorithm performs the ML estimation cycle for
several times to determine the model order. Although the
SVD-ITC approach is attractive in terms of computation,
the detection performance is not promising, especially for
closely spaced signals,

Also from the table, we see that the computation of the
proposed algorithm for Example Two is lower than that
of Example One although the data lengths are identical.
This is because the average number of ML estimation cy-
cles required in Example Two is about one-half of that for
Example One. For the proposed algorithm, most of the
computation required is due to the ML estimation step.

For Fuchs’ approach, the computation is much higher
than that of the SVD-ITC approach or the proposed algo-
rithm. Most of the computation is in estimating the covari-
ance matrix of the perturbed eigenvalues and inverting the
covariance matrix. The approach is expected to have bet-
ter detection performance for longer data lengths in keep-
ing with the asymptotic assumption adopted in deriving the
method. However, for longer data lengths (as in Example
Three), the computational cost is unattractive.

6. CONCLUSIONS

We have presented an approach for determining the model
order of complex exponential signals. The detection of
model order and estimation of model parameters were
treated simultaneously in the proposed algorithm.

We have shown that the proposed algorithm gives model
order estimates that are consistent in terms of SNR. We
have used computer simulations to verify the result.

Computer simulations demonstrated the model order de-
tection performance of the proposed algorithm. We have
also compared the algorithm with existing order selection
algorithms in [9, 10]. We found that the algorithm generally
outperforms the other two approaches in terms of detecting
the model order, especially for closely spaced signals. The
computation required for the proposed order determination
algorithm is between the other two approaches with the ad-
vantage that the proposed algorithm also provides the ML
parameter estimates.
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