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Abstract. We present an algorithm for model order determination and corresponding maximum
likelihood parameter estimation for complex exponential signal modeling. The algorithm exploits
initial nonparametric frequency location estimates to significantly reduce the search space for the
correct model order and parameter estimates. An FFT is used to obtain initial frequency region
estimates. An initial overdetermined model order and initial frequency estimates are obtained using
the CRB resolution limit and the FFT peaks. After iterative minimization, a post-processing step
eliminates the extraneous sinusoidal modes using CRB resolution limits and statistical detection
tests. Because the algorithm searches on only a limited set of model orders and parameter regions, it
is computationally tractable even for large data lengths and model orders. Simulations are provided
to illustrate the performance of the proposed algorithm.
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1. INTRODUCTION

Exponential modeling arises in many areas, in-
cluding speech processing, deconvolution, radar
and sonar signal processing, array processing, and
spectrum estimation (Parthasarathy and Tufts,
1987; Steedly and Moses, 1991; Lee et al., 1990;
Cadzow, 1982). There are two main research is-
sues involved in the exponential modeling prob-
lem. One is the determination of the model order,
i.e., the number of modes in the signal. The sec-
ond question is the estimation of the model pa-
rameters.

Model order determination using information-
theoretic criteria has been addressed in (Yin and
Krishnaiah, 1987; Wax and Kailath, 1985; Wax
and Ziskind, 1989; Wu and Fuhrmann, 1991).
These algorithms search the entire model order
space in order to find the correct model order ac-
cording to some information criterion (AIC, MDL,
etc.). For nonparametric algorithms (e.g., Wax
and Kailath (1985)), the computation cost is mod-
est but performance suffers even for moderate sig-
nal to noise ratios (SNRs). In contrast, paramet-
ric algorithms (Wax and Ziskind, 1989; Wu and
Fuhrmann, 1991) give good results but are com-
putationally expensive.

Several authors have used singular value analysis
in the detection problem (Cadzow, 1982; Rao and
Gnanaprakasam, 1988). The basic idea there is
to identify the dominant singular values (SVs) by
some criterion (for instance, a pre-chosen thresh-

old). The number of the dominant SVs is the
model order. Rao and Gnanaprakasam (1988)
developed a statistical criterion to determine the
threshold. Bakamidis et al. (1991) developed a
technique based on the synthesis of the noiseless
signal using the principal component analysis and
the SVs. The fitted error power is then compared
to the assuming known noise power. The best fit
(in terms of the estimate of noise power) gives the
best noiseless signal estimate. The number of SVs
used in the synthesis is then chosen to be the es-
timate of the correct model order.

Most of these methods become computationally
unwieldy if the data length and model order be-
come large. For example, the SVD-based meth-
ods involve computing the SVD of a matrix whose
minimum dimension is approximately N/3, where
N is the data length. For large N (N = 1024,
for example) this decomposition is computation-
ally expensive. The parametric order estima-
tion methods (Wax and Ziskind, 1989; Wu and
Fuhrmann, 1991) essentially require testing all
model orders up to a maximum order which is re-
lated to the data length. This requires a large
number of (iterative) nonlinear minimizations,
and is also computationally prohibitive. For such
applications, the computational overhead makes
these algorithms difficult or impossible to use in
practice.

In this paper we propose a computationally
tractable alternative for model order determina-
tion. The algorithm uses an initial nonparamet-



ric frequency estimate, obtained using an FFT,
to reduce considerably the set of candidate model
order hypotheses. In addition, we significantly re-
duce the initial condition points for nonlinear min-
imization procedures by use of an FFT initializa-
tion which is combined with a mode splitting algo-
rithm to account for the limited FFT resolution.
The splitting algorithm is based on the CRB reso-
lution limit. Because the initialization procedure
tends to initially overestimate the model order, we
include a post-processing step to test for and elim-
inate extraneous modes in the model. This pro-
cess of intelligently searching for model order and
parameter estimates in a reduced subset of the
entire space results in significant computational
savings.

An outline of this paper is as follows. In Sec-
tion 2 we present the data model and the problem
formulation. In Section 3 we discuss the statisti-
cal background for the proposed model order de-
termination and derive the proposed algorithm.
In Section 4 we present simulation studies which
demonstrate the ability of the proposed algorithm.
Finally, in Section 5 we conclude the paper.

2. DATA MODEL AND PROBLEM
FORMULATION
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Consider a data vector {y, },2,

nential samples

of complex expo-
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where a; € R, w;, ¢; € (—m, w]. We assume
that the exponential modes are all distinct, i.e.,
wp # wy for k # 1. We also assume that {e,} is a
zero mean complex white Gaussian noise sequence
with variance 2.

There are two main questions in exponential mod-
eling. One is the estimation problem, i.e., to
estimate the parameters, {a;}" ,, {#:}%,, and
{w;}?; in the model. The other problem is to de-
termine the number of modes in the signal. In this
paper we consider a combined parameter/order
estimation algorithm.

To address the order determination problem, we
use results of maximum likelihood (ML) estima-
tion of the parameter vector:
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Under the assumptions made, the negative log-
likelihood function for an estimate 6 of 6 is given
as (Bresler and Macovski, 1986; Stoica et al.,

1989)
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where x4 (0) is an estimate of the noiseless version

of y, parameterized by 9. The ML estimate is then
given by

§ML = arg m@i\nL (5) . (4)

Note that the ML estimate given in Equation 4 is
only valid if the number of modes in the estimate
is correct, i.e., 1 = n. By increasing the number
of modes in the estimate, we can always reduce

the loss function L (5)

We design an algorithm which obtains the correct
model order and the corresponding ML parameter
estimates. We first obtain initial estimates using
FFT peaks. We then apply a splitting algorithm
that is based on a criterion derived from the CRB
results to refine the initial estimates. We next ap-
ply an ML procedure (using Equation 4) to these
refined initial estimates. In the computer simula-
tions provided, the ML estimation using artificial
neural networks in Ying et al. (1993) is used; how-
ever, other methods (e.g., Stoica et al. (1989) or
Ziskind and Wax (1988)) could be used. After the
ML step, we use a pruning algorithm to prune the
extra modes in the estimate. We repeat the ML
estimation and the pruning cycle until no mode is
pruned. The number of modes in the final esti-
mate is the estimate of the model order; the final
estimate is also the ML estimate of the model pa-
rameters.

We note that the above proposed algorithm es-
timates the model order and model parameters
simultaneously. Moreover, the algorithm does not
search the entire space for the possible model or-
der. The algorithm only considers a “small range”
of the entire space. Also, it is shown by the com-
puter simulations that the algorithm provides a
consistent estimate of the model order (as SNR
— oo or data length m — o).

3. DERIVATION OF THE PROPOSED
ALGORITHM

As described in the previous section, the proposed
model order determination algorithm is based on
the FFT peaks of the given signal. However, the
FFT has resolution limits and thus cannot detect
(and estimate) closely spaced modes. To solve
this resolution limitation problem, we design an
algorithm to split the FFT peaks into some larger
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Fig. 1. Resolution Limits for data length m = 25.

number of peaks based on certain resolution limit
obtained from the CRB. This splitting algorithm
introduces additional modes. Consequently, we
increase the model order in this step, and some-
times overestimate the model order. To prune any
extra modes, we design a pruning algorithm which
is also based on the resolution limit.

3.1. RESOLUTION LIMIT

The resolution limit concerns the question of how
close (in frequency) the modes can be for an algo-
rithm to resolve them. For any unbiased estima-
tor, the Cramér-Rao Bound (CRB) gives the best
performance one can obtain. We thus define the
resolution limit u for any two poles on the unit
circle, p1 = €71 and py = €72, as

u é C(le + 0w2) ) (5)

where the angle CRBs of p; and p, are o2

o, and
032, respectively (the CRB expressions can be
found, for example, in Lee (1992) or Steedly and
Moses (1993)). The parameter c is selected by
the user, and controls the confidence with which
two modes can be resolved; we use ¢ = 2 which
corresponds to 95% confidence intervals for the
frequency estimates of the modes. That is, when
two poles are at this limit, the 95% confidence
intervals of the frequency estimates for each pole
become disjoint. Note that this limit gives a lower
bound for all unbiased estimators since it is based

on the CRB.

To give an example of how the resolution lim-
its work, we plot the resolution bounds for data
length m = 25 in Figure 11. From the figure we
can see that given SNR/mode=0 dB, the resolu-
tion limit is about 0.65 Fourier separation bins

1 Here, two equal energy modes are used. The bounds
shown are the lower bounds for two equal energy modes
and data length m = 25 over all initial phases. That is,
Ow; = argming ow,; (¢).

(denoted Fbin) at data length m = 25. In an-
other words, if any two modes are less than 0.65
Fbin apart at SNR/mode=0 dB and m = 25, no
unbiased estimators can resolve them statistically
(namely, more than 5% of the two mode estimates
will be overlapped).

Note that two modes of equal energy give the best
resolvability among all pairs of modes; for unequal
energy cases, the resolution limits are larger than
the one for the equal energy case. This can be seen
from the CRB expression. In fact, from Equa-
tion 5, if one of the CRBs becomes larger, the
resolution limit u consequently becomes larger.
In addition, the two-mode resolution bound is a
lower bound for frequency resolution of multiple
modes. If three or more modes are closely spaced,
the CRB resolution limit is higher than the two
mode limit (Lee, 1992); thus, the limit shown in
Figure 1 gives a lower bound on the resolution
limit.

The maximum number of modes within a Fbin is
inversely proportional to the resolution limit. In
fact, the maximum number of modes in one Fbin
is defined as

=[- 6
v=T=1, (6)
where [a] denotes the smallest integer which is
larger than a.

To compute the resolution limit u, we only need
the data length m and the noise power 2. For
the unknown noise power case, one can use the
approach in Stoica et al. (1992) to obtain an esti-

—~

mate of the noise power o2.

3.2. SPLITTING ALGORITHM

The purpose of this splitting algorithm is to over-
come the resolution limitation problem inherent
from FFT. It is well known that FFT cannot re-
solve modes which are less than 1 Fbin apart. If
a windowed FFT is used, the resolution ability
degrades by an amount that depends on the win-
dow (Harris, 1978). In order to obtain “high res-
olution” results, we introduce additional modes.
Consequently, we increase the model order in this
step, and sometimes overestimate the model or-
der.

As described above, for any given data length m
and noise power o2, we can calculate the max-
imum number of modes in one Fbin, v. From
the peaks of the FFT, we obtain the initial esti-
mates for the parameters. We then use the max-
imum number of modes in one Fbin to split each
of the FFT peaks into v peaks. We keep the same
magnitudes and phases for split peaks but change



the frequencies. For instance, for m = 25 and
SNR/mode=0 dB, the resolution limit u is ap-
proximately 0.65 Fbin. Thus, the maximum num-
ber of modes per Fbinis v = [55z] = [1.538] = 2.
Given this information, we split a peak, say at
the 5th Fbin, into two peaks located at frequen-
cies b + %u = 5.325, 4.675. These become our
frequency estimates after splitting.

The splitting algorithm gives the maximum num-
ber of modes in the signal that can be resolved,
i.€., the possible maximum model order. This en-
sures the model order is not underestimated (with
a statistical confidence that depends on ¢ in Equa-
tion 5), and is likely overestimated. Our subse-
quent processing is aimed at eliminating any ex-
traneously modeled modes. This is done by the
pruning algorithm described below.

3.3. PRUNING ALGORITHM

In the splitting algorithm we often introduce ex-
traneous modes in the estimate. In this step we
prune these extraneous modes by a resolution test
and model complexity test.

After the ML estimation step, any extraneous
modes will fall into the following two situations:

1. Two or more estimated modes can corre-
spond to a single true mode. In this case
the modes are, in general, within each other’s
resolution limit and can be combined. The
combining job is done as follows.

la. Calculate the CRBs and the resolution lim-
its for the estimates from the ML estima-
tion. Note that to be able to calculate the
CRBs, we need to estimate the noise power
o? (e.g., Stoica et al. (1992)).

1b. Discard a lower energy mode if it is within
the resolution limit of some larger energy
mode. Combine only one mode at a time.

2. The magnitudes of the extra modes will be
small. In this case the extra modes are used
to model the noise, and we eliminate these ex-
tra modes by setting a threshold on the power
for a given SNR. For example, it is reasonable
to set the lower bound to be the average noise
level. Modes whose powers are smaller than
this threshold are eliminated. We have the
following empirical calculation for the thresh-
old,

pr = 10~ (VHSNRaw) /10 (7)

where m is the data length and S/N\Ravg is the
estimated average SNR defined as

L 32
SNRavg = 1010g;, "Efja (8)

a

Alternatively, we can use the MDL informa-
tion criterion to eliminate the noise modes.
The MDL information criterion measures the
complexity of the model. Given a set of es-
timates and the corresponding MDL, we first
discard a possible noise mode which, in gen-
eral, is the smallest energy mode. We then
refine the estimates using the ML procedure
and compute the corresponding MDL. We
compare the latter computed MDL to the
given MDL. If the latter MDL is smaller than
the previous case. We use the second set of
estimates as the new estimates. We repeat
the procedure until the best model structure
which has the smallest MDL is found. The
MDL information criterion for our case is
found to be

MDL = mlog (L(9)) + ? log (m), (9)

~

where L(0), m, and 7@ are defined as above.
Note that with m = 25, the above MDL cri-
terion is equivalent to a x? test with a sig-
nificance about 0.02 (Séderstrom and Stoica,

1989).

3.4. ALGORITHM SUMMARY

Below we summarize the model-order-revealing
ML algorithm presented above:

1. Obtain the locations, magnitudes, and phases
of the FFT peaks of the signal. Obtain the

estimated noise power 2.

2. Calculate the resolution limit and the max-
imum number of modes per Fbin. Split the
peak locations according to the splitting al-
gorithm described above.

3. Perform ML estimation on the split estimates
using nonlinear minimization of the negative
log-likelihood function (Equation 4); using an
algorithm in e.g., (Ying et al., 1993; Stoica et
al., 1989; Ziskind and Wax, 1988).

4. Check frequency separations of the estimates.
Discard the small energy estimates which are
within the resolution limit of some larger en-
ergy mode. Also, discard the possible noise
estimates using the energy criterion defined
in Equation 7 or the MDL information crite-
rion in Equation 9.

5. If any of modes are discarded in step 4, go to
Step 3. If not, the estimation is completed.

4. EXAMPLES

In this section we provide computer simulations
to illustrate the performance of the proposed al-
gorithm. For the following examples, a windowed
FFT is used. In particular, a Kaiser window with
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Fig. 2. Simulations results of Example One using the
proposed model order determination algorithm

B = 2.5 is used (it is a trade-off between a rect-
angular window and a Hamming window). Also,
we zero pad the data from the original length to
8192 to increase the accuracy on peak locations.
We set the peak threshold to be twice the mean
of the FFT magnitudes.

41. EXAMPLE ONE: TWO WELL SEPA-
RATED MODES

In the first example we use a data sequence which
is composed of n = 2 exponentials at frequencies
of 2 /m and —27/m where m = 25 is the data
length. The magnitudes of the exponentials are
chosen to be one. The phases are zero.

Figure 2 shows the correct model order detec-
tion rate versus SNR per mode for this example,
using 100 independent Monte-Carlo simulations.
From the plot, we can see that the proposed al-
gorithm successfully detects the model order for
SNR/mode above 3 dB using the energy criterion
and 1 dB using the MDL criterion. The algorithm
using the energy criterion still has a success rate
of about 82% for SNR/mode = 0 dB, 58% for
SNR/mode = -3 dB, and 33% for SNR/mode = -
6 dB. For most of the cases in which the model
order is miss-estimated, we found that the cri-
terion in Equation 7 fails to reliably discard the
noise modes. For the MDL information criterion,
we found that most of miss-estimated cases are
underestimated. This is because, at low SNRs,
the penalty of more complex model is stressed in
the MDL criterion. We also found a few cases in
which the pruning algorithm could not detect the
extra modes because the overdetermined model
was trapped in a local minimum.

Example Two
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Fig. 3. Simulations results of Example Two using the
proposed model order determination algorithm

4.2. EXAMPLE TWO: TWO
SPACED MODES

CLOSELY

In this example we use the following data. For
q=0,1,...,24,

T, = ej(27r(0.52)q+7r/4) + ej21r(0.5)q_

This is the Kumaresan and Tufts example (Ku-
maresan and Tufts, 1982; Rahman and Yu, 1987).

Figure 3 also shows the correct detection rate
versus SNR per mode. Again, 100 independent
Monte-Carlo simulations were run for the statis-
tics. From the figure, we see that the algorithm
using both criteria can correctly detect the model
order for SNR/mode above 5 dB with the fact
that MDL has larger false alarm. Note that for
this case (frequency separation 0.5 Fbin) the CRB
resolution limit in Figure 1 is about 4 dB.

In this example we found that the algorithm tends
to underestimate the model order below the crit-
ical SNR for both the energy and the MDL cri-
terion. This is because the ML algorithm cannot
resolve the two close modes, and the pruning algo-
rithm eliminates all but this one combined mode.

5. CONCLUSIONS

We have presented an approach for estimating the
model order of complex exponential signals. The
detection and estimation (of the model parame-
ters) problem were treated simultaneously in the
proposed algorithm.

The statistical properties of the proposed algo-
rithm were discussed. The algorithm first overes-
timates the model order as a result of the splitting
procedure and then prunes the extra modes using
the pruning algorithm. The splitting and pruning
algorithm were developed based on the resolution
limit which is derived from the CRB.



Computer simulations were provided to demon-
strate the performance of the proposed algorithm.
We have shown that for well separated modes the
proposed algorithm can detect correctly down to
3 dB using the energy criterion and 1 dB using the
MDL criterion. Under the condition of two closely
spaced modes, our approach can accurately detect
the model order down to about 5 dB for both cri-
teria.
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