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ABSTRACT

In this paper we present a statistical analysis of the poles

and amplitude coeflicients estimated using a TLS-Prony
method where signals consist of arbitrary damped expo-
nential terms in noise. Both the true and extraneous modes
are considered in the analysis. The derivation for this pro-
cedure is based on a first order perturbation analysis; thus
the analysis assumes high SNR. We derive the complete
covariance matrix for the estimated pole and amplitude co-
efficient parameters. We also develop the statistics of the
mode energies for both the true and extraneous modes. To
first order the distributions of the true mode energies are
well approximated by Gaussian distributions, and the en-
ergies of the extraneous modes are central x* distributed.
We verify the theory with Monte-Carlo simulations.

1. INTRODUCTION

The problem of estimating model parameters of noisy ex-
ponential signals has been an area of considerable attention
in the past few years. This problem has applications in a
number of areas, including speech processing, deconvolu-
tion, radar and sonar signal processing, array processing,
and spectrum estimation. One popular algorithm used in
this community is the so-called TLS-Prony algorithm pre-
sented in [1, 2]. A number of authors have considered vari-
ous aspects of this method [3]17] However, none of them
has considered the statistical characteristics of the extra-
neous modes introduced in the algorithm. Nevertheless, it
is very important to understand the characteristics of the
extraneous modes since they affect the performance of the
true mode estimation. Also, based on the statistics of the
extraneous modes we can further develop statistical tests
for model order selection.

In this paper we present a statistical analysis of the poles
and amplitude coefficients estimated using a TLS-Prony
method, where signals consist of arbitrary damped expo-
nential terms in noise. Both the true and extraneous modes
are considered in the statistical derivation. The statisti-
cal derivation for this procedure is based on a first order
perturbation analysis; thus the analysis assumes high SNR.
We derive the complete covariance matrix for the estimated

We show that to first order the distributions of the true
mode energies are well approximated by Gaussian distribu-
tions, and the energies of the extraneous modes are central
x? distributed. These energy results can be used to predict
the performance of mode energy based criteria for distin-
guishing between true and extraneous modes.

An outline of this paper is as follows. In Section 2 we
present the data model. In Section 3 we present the first
order statistics of the model parameters and the mode en-
ergies. In Section 4 we present some examples using the
statistical expressions. Finally, in Section 5 we conclude
the paper.

2. DATA MODEL AND ESTIMATION
PROCEDURE

2.1. Data Model

Assume a data vector y of length m is modeled as a noisy
exponential sequence

n
yq=Zz.-p?+eq ¢g=0,1,...,m—-1 (1)
i=1

There are n distinct exponential modes in the data. Here,
it is assumed that {e,} is a zero mean complex white Gaus-
sian noise sequence with variance . Equation 1 may be
compactly written as

y=Az+e, (2)
wheree=[ e e - - em ]T,x:[ 1 Tp v+ Tn ]T,
and
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Note that we can comsider the extraneous modes in-
troduced in an Lth order TLS-Prony estimation algo-
rithm (presented below) as true modes by setting the

pole and amplitude coefficient parameters for both the true correspondin amplitude c9eﬂicients to zero. In this
and extraneous modes in terms of their real and imaginary case, A and z in Equation 2 are defined as z =
parts. We verify the statistical theory with Monte-Carlo [ z1 = zn 0 0|7, and
simulations.
Using these expressions, we also develop the statistics of 1 1 . 1 1 e 1
the mode energies for both the true and extraneous modes. P P2 DPn  Pas1 -+ PL
*THIS RESEARCH WAS SUPPORTED IN PART BY THE A= . . . ’
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH, IN PART m-1 _m-1 m—1  m-1 m—1
BY THE AVIONICS DIVISION, WRIGHT LABORATORIES, Py p EERI 4 Ppy1 70 PL
AND IN PART BY THE SURVEILLANCE DIVISION, ROME (4)
LABORATORIES. where p;,i =n+1,n+2,..., L are extraneous poles.
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2.2. Parameter Estimation
The backward linear prediction equations are given by:

1
v : Y1[;]=0 (®)
where .
b=[b b b |7, (6)
and where
Yo Yy yL
Y Y2 et YLy
[y Y= . . . (M
Ym—(L+1) Ym—-L °° Ym-1

Here L is the order of prediction and b is the coefficient
vector of the polynomial B(z) given by

B(z) = 14 by2" +b2” 4+ brz" ®)

The choice of L affects the accuracy of the b; coefficients [5].

The TLS-Prony method considers the effect of noise per-
turbation of both Y and y, and the TLS solution attempts
to minimize the effect of these perturbations on the pre-
diction coefficient vector b (see [2] for details). This is ac-
complished by obtaining an SVD of the matrix [ y Y
and truncating all but the first n singular values to arrive
at an estimate [ M Y ][2] This leads to the following
modified linear prediction equation

Yom -3 (9)

from which the linear prediction coefficient vector estimate
b is found as N =
b= -9, (10)

where t denotes the Moore-Penrose pseudoinverse. Finally,
the estimates for the poles are found by
P; = zero; (B(z)) s 1=1,2,...,L. (11)
One method for distinguishing between true and extra-
neous modes is to use mode energy as a test statistic. The
main contribution of this paper is the statistical analysis of
the poles and amplitude coefficients for both true and extra-
neous modes, from which the performance of mode-energy
test statistics can be derived.
Once the poles have been estimated, the amplitude co-
efficients can be found using the pole estimates and Equa-

tion 2. This leads to the following least squares equation
for the amplitude coefficients,

11 e 1T
21 > ) z
. . . xy (12)
or -
AT~ y. (13)

The amplitude coefficients can be found from a least squares
solution to Equation 13,

zT= (2'2) - Ay = By, (14)

where * denotes complex conjugate transpose.

3. STATISTICAL ANALYSIS

To analyze parameter statistics we now derive their covari-
ance matrix. This is given in the following theorem. As-
sume data is given as in Equation 1. Let p; and p; be the
real and imaginary part, respectively, of each pole pi, thus
pi = Pi+jpi. Similarlylet Z and Z be the real and imaginary
part, respectively, of each amplitude coefficient z;.

Define following parameter vectors:

0. = [T Z2 -+ Fr # i "
6, = [, P b h P2 - B’
o = [T o7 ]". (15)

The following theorem gives the first order pdf of )

Theorem 1: Let 8 denote the TLS-Prony estimate of 6
which is given by the estimates found in Equations 11 and

14. Then the first order (as ¢ — 0) pdf of 8 is given by
8~ N(6,%0), (16)

where _ L .
g -0 h oW
5=210 U V-1
9= 5 ‘{IT V’]T ?1 22 )
Vol -V 2T =2,

where the U, Vi, and Z; matrices are defined in the Ap-
pendix and * and * are the real and imaginary operator,
respectively.

Proof: See [8]. (u]

One can easily formulate a similar theorem using the an-
gles and magnitudes of the poles and amplitude coefficients.
In fact, it can be achieved via a Jacobian transformation
and is derived in [8].

Some conclusions can be drawn from the derivation of
Theorem 1. In [5] we derived symmetry properties of the
estimates of the true modes for the TLS-Prony algorithm.
However, these properties do not carry over to the extra-
neous modes. For instance, unlike the true poles, the real
and imaginary part of an extraneous pole are in general
correlated and have unequal variances. Therefore, the con-
centration ellipse of an extraneous pole may not be a circle.

Based on Theorem 1, we can further analyze the statistics
of the mode energies for both true and extraneous modes
iince one can compute the energy E; of each of the L modes

Yy

(17)

m-—1
E=gY o, i=12...,1 (18)

q=0

where z; = ﬂ;ej" and p; = o:e’*. Thus, from Theorem 1

we have the following corollaries.
Corollary 1: Let

E={ E E, E. |7, (19)

denote the parameter vector for the mode energies of the

true modes (i.e., the mode energies corresponding to z; and

pi,i=1,2,...,n). Let E denote the estimated energies cor-

responding to the TLS-Prony parameter estimates. Then
the first order (as ¢ — 0) pdf of E is given by

E~N(E,Tg), (20)
where
Tp =4 (K.QKT + K.Q1 Ky + K;Q KT + K, QK7 ),
(21)
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where

Q = LUJI-LUJT+ L0l + 7007

Ql = jz‘_/l‘j;r+ jzv2‘j3+ jzf/l‘j;r - jzfl;jg
@ = J,ZUT 4+ I+ 55T T - §, 20T
J. = diag(cos(11),cos(72),...,cos(a))
J. = diag(sin(y1),sin(12),...,sin(ya))
J, = diag(cos(wr),cos(wz),...,cos(wa))
J, = diag(sin{w;),sin(ws),...,sin(wn))
. E, B, E.
K, = d —, ==,
a8 (/31 B2 B )
R B B2 ﬁ'z )
KP = dlag(alfl,az 2,...,an n
2 _ mad™ —1)a2(mt)
£ = o —mai™ + (m — 1a; (22)

(1-ad)?

Here U?, V!, and Z} are the same as their counterparts in
Equation 17 except for replacing A* and F by A* and F*
which are the first n rows of A* and F, respectively (see
substitutions in Appendix).

Proof: See [8]. =]

Corollary 2: Let {E£}2=" denote the estimated energies
corresponding to the T‘Ls-ﬁ‘rony parameter estimates of the
extraneous mode energies. Then the first order (as ¢ — 0)
pdfs of these energies are given by

Ef~xj(os)  i=12...,L—-n (23)
where
os; = fZRe{RIBiR" - RIB—B'R{"+ A} A}""}
— qfm
foo= o (24)

€2
1-a;

Here R = A}“CATIT,FGS* and A}° is the (n + i)th
row of At. Note that ogs are the variances of the Gaussian

components of the central 3 distributions.
Proof: See [8]. o
Using the energy distributions one can compute receiver
operation characteristic (ROC) type curves for mode esti-
mation. It is also possible to develop mode detection, and
model order selection criteria, based on these energy distri-
butions via a pre-defined energy threshold.

4. EXAMPLE: TEN DAMPED EXPONENTIAL
MODE CASE

We consider a model consisting of ten exponential modes.
For this case, m = 40 data points, L = 14, and o = 0.001.
The amplitude coefficients are chosen so that each true
mode energy is unity. Figure 1 presents a comparison be-
tween the TLS-Prony estimate theoretical variances and
variances obtained using Monte-Carlo simulations. The
theoretical variances are shown as two- and three-standard
deviation concentration ellipses around each pole. The dots
in Figure 1 are pole estimates for both true poles and extra-
neous poles from each of the 200 Monte-Carlo simulations.
From these estimates, we can see that the statistical analy-
sis is in general confirmed. It is clear that the concentration
ellipses of the true poles are circles (as proven in [5]). How-
ever, the concentration ellipses of the extraneous poles are
ellipses for this case.

Figure 1. Two- and three-standard deviation concentration
ellipses for both true poles and extraneous poles (with arrows)
for the case of m = 40, L = 14, and o = 0.001.
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Figure 2. Theoretical energy pdf and histogram for a true
mode.

We next verify the theoretical energy distributions given
above. Figure 2 shows a comparison between the theoreti-
cal pdf and a histogram (obtained from Monte-Carlo sim-
ulations) for a true mode in the previous example. It can
be seen that the theoretical energy distribution is a good
approximation to simulation results in this case. Other true
modes have similar results.

Figure 3 shows a comparison between the theoretical pdf
and a histogram for an extraneous mode in the previous
case. Note that the theoretical predictions agree closely
with Monte-Carlo simulations. Other extraneous modes
have similar results.

5. CONCLUSIONS

In this paper we have presented a statistical analysis of
the well-known TLS-Prony algorithm. We have considered
both true and extraneous modes in the method. The pa-
rameters include the real and imaginary parts of the poles
and the amplitude coefficients. We have also presented a
statistical analysis of the energies of the true and extrane-
ous modes. We have shown that the true mode energies
are well-approximated by Gaussian distributions, and the
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Figure 3. Theoretical energy pdf and histogram for an extra-
neous mode.

extraneous mode energies are approximately central x? dis-
tributed with two degrees of freedom. Simulations have

validated the analysis.
APPENDIX

U = RBiR}~RB-B'R} +A*A*"
W = ("'R132+BS)R2T+(—RIBI+B.)R;
V2 = (—R132+BS)R;_(_R‘BI+B*)R;
7y = RsB:Rj + RiBi R} + RyBiR; + RoB.R;
Z, = RsBzR;r"‘R?B'ZRI_R’BlR;_RZB"R;
R, = AYCAT!T,FGS*
R2 = FGP&L'\I’
R, = FGS*
Bl = BB‘
B, = BB;
B = [ LD D L ppsen |
r m—L)x(m~L m=L)x(m—
[rRe=D L 0D
Bg = : :
i I(LT;L)x(m—L)" I§""L)"("“”
'1 bT 0 0 . 0
0 1 T o 0
0 --- 0 1 0 o0
T
LO - 0 0 1 b ]y
s T T T
v = diag(¢pT, 97,0 )Lx(m—L)L
F = dlag(l,l,y—l'
m nL
no= [ 1 2p; --- Lpf’_l ]b
P p; ) 51
G = P p.2 p2
pL P} pL

C = diag(0,1,...,m—1)
T. = diag(i,—l—,...,l,o,...,o)
r1 T2 Tn LxL
. 1 1 1
T, = dlag<—,—~,...,~—). (25)
n p2 L
Here [ s S ] is the noise free versionof [ ¥y : Y |,

Pg =1I, — §*S*t, I, is the L x L identity matrix, ¢ =
S5**tSts, and IZ*° is an r X ¢ matrix of zeros except for
ones on the uth subdiagonal (the Oth subdiagonal is the
main diagonal).
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