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ABSTRACT

A new two-dimensional (2-D) technique is developed to estimate the polarimetric characteristics of scattering
centers that exist on radar targets. This technique uses a 2-D damped exponential model to approximate the
scattering from radar targets. The validity of this model is investigated relative to the scattering characteristics that
exist on the targets of interest. Simulations are shown which validate the technique.

1. INTRODUCTION

A new two-dimensional (2-D) technique is developed to estimate the polarimetric characteristics of scattering
centers that exist on radar targets. First, a candidate list of canonical scattering centers is developed. The scattering
characteristics of the scattering centers, which consist of the monostatic scattering as a function of frequency, angle,
and polarization, are estimated. Next, a new full polarization 2-D parametric model and estimation technique, called
the Full Polarization 2-D TLS-Prony Technique, is introduced. This technique is an extension of several already
developed.}:2:3 Damped exponentials are used to model the frequency and angular behavior of the scattering centers.
The estimation technique uses a total least squares approach to determine the parameter estimates and a singular
value decomposition (SVD) for noise cleaning purposes.? From these estimates, the polarimetric characteristics of
each individual scattering center are determined using the concept of a Transient Polarization Response (TPR).4

Scattering response characteristics of the canonical scattering centers can be generated using techniques such as
the Method of Moments and the Geometrical Theory of Diffraction. The candidate list of canonical scattering centers
used in this paper is as follows: point scatter, sphere, corner, edge, dihedral, trihedral, right-circular cylinder, and
flat plate. Models for each have been developed using the generated scattering responses® and are presented here.
The frequency and angular behaviors are modeled by damped exponentials. The damped exponential is an accurate
model for the frequency behavior of the scattering centers listed while it is not as accurate for the angular behavior,
but still accurate enough so that the estimation procedure can obtain good parameter estimates.®

The Full Polarization 2-D TLS-Prony Technique models the frequency and angular behavior using a 2-D exten-
sion of Prony’s Model. The parameters are determined sequentially from the model. First, the scattering center’s
frequency parameters are estimated, then their angular parameters are estimated, both from the full polarization
data. Next, amplitude coefficients are found for each polarization. From these parameters, the polarimetric charac-
teristics are determined. The damped exponential estimates determine the locations of the scattering centers while
the amplitude coefficient estimates determine their polarimetric properties. This technique allows a large 2-D full
polarization data set to be reduced to a parameter vector consisting of four complex numbers for each scattering
center, which in most cases results in a large data reduction. Super-resolution is also achieved using this technique,
due to the parametric modeling aspect.

An outline of this paper is as follows. In Section 2 we investigate the electromaguetic behavior of the canonical
scattering centers and we develop the scattering center model for a radar target. In Section 3 we describe the
Full Polarization 2-D TLS-Prony Technique. Section 4 presents simulations using the technique. Finally, Section 5
concludes the paper.



2. ELECTROMAGNETIC MODELING OF RADAR SCATTERING

2.1 Electromagnetic behavior of canonical scattering centers

Before a target can be broken down into its primary scattering centers, the scattering characteristics of canonical
scattering centers must be estimated and modeled. In this paper, the scattering characteristics consist of the monos-
tatic radar return as a function of frequency of illumination, angle of incidence, and transmit and receive polarization
for a continuous wave (CW) radar. A great deal of work has been done in the area of plane wave scattering prediction
for simple shapes. Exact analytical scattering solutions exist for only a few simple shapes, such as a sphere and an
infinite right circular cylinder.

A goal of this work is to develop a list of canonical scattering centers which are commonly found on the radar
targets of interest. This list must be based upon knowledge of what basic scattering mechanisms are present on
radar targets. Eight canonical scattering centers are presented here. They are the point scatterer, sphere, corner,
edge, dihedral, trihedral, right-circular cylinder, and flat plate. This group is not all inclusive for all potential radar
targets, but contains scattering centers found on many radar targets. The physical description of the canonical
scattering centers are now described. For this work, all of the scatterers are assumed to be perfect conductors.
The point scatterer is, by definition, a point. The sphere is a standard spherical shell. The corner, edge, and flat
plate are defined in Figure 1(a). The flat plate that the edge and corner lie on is considered infinitesimally thin. A
typical dihedral is sketched in Figure 1(b), a typical trihedral in Figure 1(c), and a typical right-circular cylinder in
Figure 1(d).

The scattering characteristics of each were analyzed by Sacchini® using the available techniques such as the Method
of Moments and the Geometrical Theory of Diffraction, and are only summarized here. From this analysis, models
were developed to estimate the scattering behavior of each of the canonical scattering centers. These models were
determined using two main criteria. First, the models must be simple enough for use in inverse scattering algorithms.

Second, they must be as accurate as possible from an electromagnetic standpoint. The model characteristics are
listed in Table 1.

Table 1: Approximate Frequency and Angle characteristics of canonical scattering centers.

( Scatterer | Frequency Dependence | Angular Dependence ||
1. Point Scatterer, Sphere constant constant
2. Corner, no grazing w! constant
3. Corner, grazing w! by ()
4. Edge, no grazing constant constant
5. Edge, grazing constant by ()
6. Dihedral, azimuth scan w 8, ()
7. Dihedral, elevation scan w Ulp)
8. Trihedral w U (v)
9. Cylinder, 8 = 90° w bp ()
10. Cylinder, 0° < 8 < 90° ﬁ constant
11. Cylinder, 6 = 0° w p ()
12. Flat Plate (specular) w 6y ()

In Table 1, w is the radian frequency, U () is a step function of angle, and 6, (¢) is an impulse-like function of
angle. U (¢) is defined as
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and 6, (¢) is defined as
1, =0
‘5}7((/9):{ 0, :;?50 . (2)

Note that ¢ is an arbitrary angular coordinate which is needed to state the models. For example, from the elec-
tromagnetic analysis, it is known that the dihedral in Figure 1(b) has its impulsive type behavior at ¢ = 0° and
6 = 90°. The variable ¢ is the angular variable along any angular swath starting at this point, since §, (¢) has its
impulsive behavior at ¢ = 0°.6 For the canonical scattering centers with impulsive angular behavior, the angle at
which the impulsive behavior occurs corresponds to the ¢ = 0° angle. Also, for the canonical scattering centers with
a step angular behavior, the angle at which the step behavior occurs corresponds to the ¢ = 0° angle. Of course,
for the canonical scattering centers with a constant angular behavior, the origin of the ¢ coordinate is insignificant.
Also note that € in Table 1 is the § in the standard spherical coordinate system. and the right circular cylinder’s
axis is along the z-axis.

For the corner, the angles which are parallel with one of the edges that defines a corner are called the ‘grazing’
angles. For the edge, the angles which are parallel with or perpendicular to the edge are called the ‘grazing’ angles.

2.2 Electromagnetically based scattering model for a complicated target

Tt is assumed that the high frequency scattering from an electrically large complicated target such as an aircraft
or a tank can be accurately approximated by a sum of scattering from a finite number of predominant scattering
centers.4? The scattering from a complicated target is thus approximated from the following model:

T
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is the scattering matrix for the 4-th scattering center on the target, and where Ei (v, 0, ¢), Ei (w, 0, ¢), E{(w, 0, ¢),
and Ej (v, 0, ¢) are the incident and scattered horizontally and vertically polarized electric fields, respectively. Also,
6 and ¢ are the standard spherical coordinates in a target fixed coordinate systemn (the target is located at the origin
of the coordinate system). S., can be further decomposed as

_ | P (0,9) P, (0,9) —ikory

or

S, (w,8,8) =P, (0,¢) F, (w)e ¥, (6)

P, will be called the polarization matrix and is not a function of frequency. All of the terms in Equation (6),
namely, S.,, P, and F,(w), are, in general, complex. The distance between the phase center of the target and the
arbitrarily designated phase center of the ¥-th scattering center, projected along the radar’s line of sight, is given by
r,. Note that 7 is an implicit function of § and ¢. It is assumed that there are I' scattering centers on the target.
It is also worth noting that this is a full polarization scattering model.

The electromagnetic analysis has demonstrated that for the canonical scattering centers analyzed here, factoring
out the frequency dependence as a scalar from the remainder of the scattering matrix is reasonable.> However,
factoring out the angular dependencies as scalar functions turns out to be a poor assuinption for canonical scattering
centers such as the corner and the edge.®> Of course, for physically symimnetric scattering centers such as a sphere, the
angular dependence could be separated from the rest of the scattering matrix. Most radar targets of interest contain
many corners and edges, and thus a model that factors out the angular dependence from the rest of the scattering



matrix would not exactly model the phenomena which is occurring. The damped exponential model we introduce in
the next does factor out the angular dependence, but this drawback is not significant enough to preclude the use of
this model, as is demonstrated in the simulations in Section 4.

2.3 Damped exponential modeling of canonical scattering centers

Another model which can be used to approximate the scattering from a radar target is the damped exponential
model given by

r
d(m,n) = e ol 0}, (7)
y=1
where
pz, = 7th z-pole, z-component of 2-D exponential (complex number)
py, = ~th y-pole, y-component of 2-D exponential (complex number)
«y = ~th amplitude coefficient (complex number)
I' = number of scattering centers (integer)

and where m = 0,1,... M —1andn=0,1,...N—1. This is a 2-D extension of Prony’s Model. This model assumes
the radar target is comprised of I' scattering centers. The y-th scattering center’s scattering behavior, for a single
transmit and receive polarization, is modeled by the z-pole, y-pole, and amplitude coefficient triple, {ps_, py.,a}.
The magnitude of the z-component damped exponential, |p;, |, determines the dispersion of the 4-th scattering center
in the z-coordinate of the transform domain (time or range domain in this case) while the angle of the z-component
damped exponential, Zp._, determines the location of the 7-th scattering center in the z-coordinate of the transform
domain. Similarly, the magnitude of the y-component damped exponential, |p,_|, determines the dispersion of the
y-th scattering center in the y-coordinate of the transform domain while the angle of the y-component damped
exponential, Zp,_, determines the location of the y-th scattering center in the y-coordinate of the transform domain.

From Equations (3) and (6), we see that a single polarization version for the scattering from a complicated target
is given by

r , e—ikor
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where z € {h,v}, y € {h,v} and zy € {hh, hv,vv}. Comparing Equations (7) and (8), we see that the 5-th
individual scattering center’s frequency and angular dependencies are modeled by two damped exponentials, p;. for
the frequency dependence, and p,  for the angular dependence. Note that there are two angular dependencies in
Equation (8), # and ¢. When data is taken by a radar, it is taken over a specific angular swath, and this angular swath
is a function of both # and ¢, but it can be parameterized by the singular angular variable 1. Thus, there is really only
one angular variable over which a 2-D radar data set is taken. There is also an aniplitude coefficient associated with

the y-th scattering center in Equation (7), a, which accounts for the remaining terms in Equation (8) (namely, the
e=ikor

incident field value, E; (w, 8, ¢), which is usually constant and equal to 1, the term, the amplitude differences
between the angular variable p”(#, ¢) and py., and the amplitude differences between the frequency variable F(w)
and p;. ). These relationships are summarized in Table 2. Recall that the terms F.,(w) and Py (6, ¢) are, in general,
complex.

The frequency dependencies of canonical scattering centers are well modeled using the damped exponentials.?
However, only one of the angular dependencies, that of constant, is well modeled. The other two, that of U(¢) and
6p(¢), are not well modeled by damped exponentials.® Even though the damped exponential does not model all of
the scattering centers well, it is still an improvement in the modeling of radar scattering. Much of the previous
work in RTT assumed a point scatterer mode] for the scattering from all types of canonical scattering centers, The
extension to a 2-D damped exponential model is an improvement over the point scatterer model.



Table 2: Correspondence between terms in damped exponential scattering model and electromagnetically based
scattering model. Note that zy € {hh, hv,vv} aud y € {h, v}.

[ Term | Electromagnetic Model | Damped Exp. Model ||
Frequency Fy(w) Pz,
Angle py, (6,¢) Py,
Amplitude | <27 Ei (w,0,4), and amp. diffs. a,

3. THE FULL POLARIZATION TWO-DIMENSIONAL TLS-PRONY TECHNIQUE

The Full Polarization 2-D TLS-Prony Technique is a parametric technique for the estimation of 2-D exponentials
and their associated amplitude coefficients. The model used for the data is a 2-D extension of the 1-D Full Polarization
Prony model introduced by Steedly.® This model is also given in Equation (7). The estimation procedure is an
extension of the estimation procedure developed by Steedly.l Prony’s method coupled with a total least squares
(TLS) technique in 1-D has been successfully used to estimate frequencies in the presence of noise.?2 With the Full
Polarization 2-D TLS-Prony Technique, 2-D exponentials and amplitude coefficients are estimated by a two-step
method using a 1-D TLS-based Prony model and estimation technique in each step.

A method to examine full polarization data is presented here which is based on the concept of a Transient
Polarization Response (TPR).# According to the TPR concept, the target is illuminated with an impulsive circularly
polarized electromagnetic wave, and as the wave interacts with each scattering center on the target, each scattering
center will reflect back a wave with a polarization which is determined by the polarimetric characteristics of that
scattering center. This concept has been investigated in 1-D for both nonparametric* and parametric® techniques.
The nonparametric techniques use the IFFT of the full polarization stepped frequency data to form the TPR of a
target. The peaks in the TPR profile give the scattering center locations. Polarization ellipses are then given by the
polarization properties of the TPR at the scattering center locations. Thus, the amplitude and orientation of each
ellipse characterize the polarimetric properties of each scattering center. Parametric techniques employing the 1-D
TLS-Prony technique have been developed for the TPR.® This technique has the advantage of higher resolution than
the IFFT method and of direct estimation of the scattering center locations.

The technique presented here is a 2-D extension of the 1-D TLS-Prony based parametric TPR technique developed
by Steedly.® The 2-D TLS-Prony Technique algorithms presented by Sacchini, et. al.,! with some modifications,
are used to determine the scattering center locations and amplitude coefficients. The ellipse parameters are then
calculated from the amplitude coefficients.

3.1 Data model

Assume that we are given full polarization, 2-D scattering coefficient data. These coefficients are denoted
sni (f, ¥), sho (F,%) = sun (f,%), and sy, (f, ¢), where ¢ is the angular variable along the angular path on which the
data was taken. Depending upon the locations of the samples in the 2-D frequency plane, the scattering coefficients
can serve as the input data to the 2-D TLS-Prony algorithm. However, the algorithm requires data which lies on
a rectangular or square grid in the 2-D frequency plane. It may be desirable to interpolate the data which lies on
the polar grid onto a square or rectangular grid. In either case, the data which is input to this algorithm is denoted
as d'pp(m,n), d'py(m,n) = d'yn(m, n), and d'y,(m,n) where m = 0,1,...M —~1land n = 0,1,...N — 1 and the ’
denotes that the data has been noise corrupted. The first index, m, is referred to as the z-component, and the second
index, n, as the y-component. The z-component is analogous to the frequency component and the y-component is
analogous to the angular component in the 2-D frequency plane.



The 2-D TPR can be modeled in the 2-D frequency domain as

dpp(m,n) d , 1) KT a a
hh ") hv m hhk,z hvk‘1 m .1
[ dvh(m', 71-) d TTL n) ] kzllil: [ Quhyy Qoo ] pl‘kpyk,l (9)
where
Pz, = kth z-pole, z-component of the 2-D exponential
Py.. = k,Ith y-pole, y-component of the 2-D exponential
aph,, = k,Ith linear basis amplitude coefficient for Ah-polarization
ayh,, = k,lIth linear basis amplitude coefficient for vh-polarization
@py,, = k,lIth linear basis amplitude coefficient for hv-polarization
@yy,, = k,Ith linear basis amplitude coefficient for vv-polarization
K = number of z-poles
Ly = number of y-poles corresponding to the kth z-pole.

This is designated the linear-basis model. Note that due to reciprocity, ay, ,=aus, ,. Also note that this is the same
model as the one given in Equation (7), with the summation just written in a different form in order to more easily
explain the estimation algorithm.

The polarization properties of each scattering center are more clearly seen by considering the horizontal and
vertical responses to a circularly polarized incident wave. Left circular is arbitrarily chosen. 1t is assumed that there
are 1o helical type scattering centers on the target which would cause the left and right circular responses to be
different. Thus, the data is reduced from four sets to two by the transformation?
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The 2-D full polarization model can also be written in terms of the Al and vi-polarization based data as

d K I a

hI h m ., n
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where

an,, = k,Ith horizontal amplitude coefficient for hl-polarization

ay,, = k,lth vertical amplitude coefficient for vi-polarization.

This is designated the linear-circular basis model. Note that p;, and p,, , are identical to the poles for the linear-basis
model.

The problem now becomes one of parameter estimation, where the parameters in Equation (11), namely p, .
Dywas @hy, and ay,, for k=1,2,..., K and I = 1,2,..., Ly must be estimated from the data. The model orders, A
and L; also need to be chosen.

The horizontal and vertical amplitude coefficients associated with each pole contain the information which yields
the polarimetric characteristics of each scattering center. These polarimetric characteristics are in the form of an
ellipse. This ellipse, corresponding to a given scattering center, is characteristic of the polarization of the electric
field scattered from that scattering center. For each scattering center, the tilt, 7 ;, and ellipticity, ex i, of this ellipse
can be found, using the amplitude coefficients, from the following equations:*

Thy = —21—tan_1[tan(?ykll)cos(ékyz)] (12)



1. . .
€kg = §sm_1(s1n(27k,1)sm(6kyz)), (13)

where

ve1 = tan”! (‘—%—“_'> (14)

Ia'hk,ll

b1 = Lavk,l — Lap,,. (15)

The above calculations lead to use of only one quarter of the Poincaré polarization sphere. To avoid this ambiguity,
the following alterations to the tilt need to be made:4

g+ 5 v > % ‘
Teq = {m 47 iy <Tandr, <0 (16)

The major axis Ay ; of each ellipse can be determined as*
Ay = |lan,, | cos(T) + [ay, ,|e? % sin(7g,1)| - (1n

This set of parameters, {Ag 1, €51, Tk}, along with the locations of the scattering centers, provides a concise
description of a target. This parameter set characterizes a target as a set of I' scattering centers, each described
by location, amplitude, ellipticity and tilt of a scattering polarization ellipse. The location of the scattering center
determines where on the image the ellipse 1s placed. The origin of the ellipse is considered the location of the
scattering center.

The definitions of the ellipse parameters given above are consistent with the IEEE standard for the polarization of
an electromagnetic wave which is viewing the tip of the electric field vector as the electric field propagates away from
the viewer. However, in the simulations which are shown, it is desired to view the scattered field as it propagates
toward the viewer, which corresponds to how the radar would view the scattered field. All of the ellipses plotted in
this paper follow the convention of assuming that the viewer is at the radar and the scattered field is propagating
toward the radar.

3.2 Estimation algorithms

This section describes two algorithms for estimation of the z and y-poles along with both sets of amplitude coefli-
cients. The two full polarization algorithms are called Full Polarization Algorithm One (FPA1) and Full Polarization
Algorithm Two (FPA2). As you will see, FPA2 is more accurate, yet more computationally burdensome, than FPA1.
We assume that we are given horizontal (hl-polarized data) and vertical (vi-polarized data) data matrices defined as
follows

d’M(O,O) d,hl(lao) IhI(M —170)
, d/hI(O’l) dlhl(lal) d;zl(M'—lal) N
h = . . : (18)
& (O, N —1) dy(L,N —=1) - dy(M —1,N—1)
and
d:)l(oa 0) d:;l(llo) d:;I(M_ 170)
d(0,1) do(L1) e A (M—11)
Dl = i it 1 4 (19)
w0, N—1) dy(1L,N-1) -+ d;(M—-1,N—1)

Moving across a row in D} or D, is considered moving in frequency while moving down a column of either matrix
is considered moving in angle in the 2-D frequency plane.



3.2.1 Full Polarization Algorithm One (FPA1)

The five steps of FPA1 are described below. The z-poles, {pn}le, are first estimated using a TLS-Prony
algorithm. Second, a set of amplitude coefficients corresponding to these z-pole estimates are computed. The
amplitude coefficients are themselves used in a set of second TLS-Prony estimates to obtain the y-pole estimates,

{pyk,, flf__;, which is the third step. Finally, a least squares technique is used to estimate the amplitude coefficients

KL
{a 1} i1

FPA1 Step 1, estimation of the z-poles, p;,: All of the rows of D} and D) are used simultaneously in the esti-
mation of the z-poles. The backward linear prediction equations are given by

o d(0,0) 4,(1,0) d,(2,0) o d@Q0) T
dy;(1,0) d,,(2,0) dy,(3,0) d (@+1,0)
(M -Q-10  d,(M-Q0)  d(M-Q+1,0) ..  dy(M-10)
d;.l(orl) d;ﬂ(lrl) d;ﬂ(zzl) Id;ml(le)
dn(1,1) dy(2,1) d,1(8,1) d(Q+1,1)
a (M =Q—1,1) dM—-Q 1)  dyM-Q+1,1) .- d(M-11)
0N =) TILN=T) N1 d @ N1
dy, (1, N — 1) (2, N ~1) dy (8, N - 1) e dy (@4 1,N - 1)
. . . . r o1
N . N . b
dyy(M-Q-1,N-1d,(M-QN-1)d (M-Q+1,N—-1)--- d},(M-1N~-1) b; ~0 (20)
@.(0,0) @.(1,0) T.(2,0) T 2,(@,0) '
d,;(1,0) d,,(2,0) d,;(3,0) d,,(Q +1.0) b.
. . . 3 L YQ
dy (M -Q-1,0 (M - Q,0) A (M-Q+1,00 ... (M~ 1,0)
d;l(O,l) d,(1,1) d;x(zrl) d,,(Q, 1)
d,;(1,1) d,;(2,1) d,;(3,1) d,(Q+1,1)
dy(M-Q-11)  dy(M-Q1)  dyM-Q+1,1) ...  dy(M-11)
0,81 TN - T) ' TN - 1) T a0 N<T)
(1N = 1) dly(2, N - 1) dEN-1) o a,Q¥LN-)
[ d(M - Q- 1L, N-1) &M -QN-D &\(M-Q+1,N=1)-- d\y(M-1,N-1) |
or
1
S[ b ] =0, (21)

where @ is the order of prediction for the z-poles, and b is the coefficient vector of the polynomial B(z) given by
B(z) =14 b1z 4 by2® + -4 bgz9. . (22)

Q) can be any integer greater than or equal to K, while in practice choosing € > K results in more accurate parameter
estimates.? Note that all of the rows of D’y and D', are used simultaneously to estimate a single set of prediction
coefficients (and therefore, a single set of z-poles).

The TLS-Prony method considers the effect of noise perturbation of all of the § matrix, and the TLS solution
attempts to minimize the effect of these perturbations on the prediction coefficient vector 5.2:10 This is accomplished
by taking an SVD of the matrix S and truncating all but the first K singular values to arrive at an estimate 5.210



Inserting S in Equation (21) gives the modifies linear predication equation
sl 1
5 =0, (23)
b
from which the linear prediction coeflicient vector estimate b is found as

b=-5"5, (24)

where 51 is the first column of S and S, are the remaining columns and * denotes the Moore-Penrose pseudo-inverse.
A numerically robust solution for & can be found directly from the SVD of 5.2 Finally, the estimates for the z-poles
are found by

Pz, = ZETO, (E(z)) , q=1,2,...,Q. (25)

Because only K singular values of S are nonzero, there are at most K z-pole estimates which can correspond to
data modes. Therefore, only the K z-poles which have the largest energy will be retained (as discussed in Step 2
below).

FPA1 Step 2, estimation of the z-amplitude coefficients: Before the y-poles are estimated, the z-amplitude coef-
ficients must first be estimated. For the full polarization case, the z-amplitude coeflicients are defined as

Ch L ap l(m1n) n ‘
[ o ]:Z[ N :lpyq,n q:1)2""’Q' (26)

Cugn = avk,x(ma n)

With this definition, the model associated with Equation (11) using the estimated z-poles is written as

[ hl((:zz; } - ZQ:[ o ]Pi"q (27)

vl g=1 Vq,n

where ¢y, is the gth z-amplitude coefficient associated with the nth row of D, and where ¢, , is the gth z-amplitude
coeflicient associated with the nth row of D, .

Note that the equations in (27) are uncoupled for different values of n. Thus, each row of D'), and each row of D',
will give an z-amplitude coefficient estimate for each z-pole. The z-amplitude coefficients are an intermediate step
in the estimation procedure and are completely defined in Equation (27). Also note that the y-pole model orders,
{Lk}i{zl, may be different for each of the K z-poles. Equation (27) is used to solve for the ¢;, s and ¢, s using

1 1 “ e 1
Pho P v P || e
Poa Pz 77 Pag N N T =oT, (28)
pﬁ{—l pg-l pé\{?—l Cng,0 Cnga T Cng,nN-1
or .
PxC,,:D:, . (29)
where
n€ {h,v}. (30)

Both initial sets of z-amplitude coefficients are found from least squares solutions to Equation (29) using the z-pole
estimates; this can be written as

&, = (P*R) " PEDT, (31)



although numerically more robust solutions (using, e.g., the QR decomposition) are preferred to direct computation
of Equation (31).

We retain only the K z-pole estimates with the highest energy, where the energy is defined as

N-1 ) ) M-1 ,
k= Z (Ighq,n‘ + faaq,n ) Z Lﬁqu g =1,2,...,Q. (32)
n=0 m=0

The final z-amplitude coeflicient estimates are found using a procedure identical to the one used to determine
the initial of z-amplitude coefficient estimates outlined above. The only difference is that there are only K z-poles
which are used in Equation {28). Also, there are only Ly z-amplitude coeflicients (per polarization) to be estimated
for each of the R z-poles.

Note that the final set of z-amplitude coefficients are estimated from the K true z-pole estimates, as opposed to
simply taking the initial set of z-amplitude coefficients which correspond to the K highest energy modes. This re-
estimation of z-amplitude coefficients should allow the parameter estimates (when used in the model in Equation (7))
to better model the original data.

The z-amplitude coefficients serve as the input data to the second Prony model which determines the y-pole
locations and ultimately the amplitude coefficients. For each z-pole, there are two sets of N x-amplitude coeflicients,
each corresponding to a different y-direction data set (a different column of D'y, or I)';) and a different polarization.
The z-amplitude coeflicients hold the information which yields the y-pole’s locations in the transform domain.

FPA1 Step 3, estimation of the y-poles: The z-amplitude coefficient estimates are now used to solve for the y-pole
estimates. For each of the K high energy z-poles, the backward linear prediction equations for the model given by
Equation (26) become

r
Chyo Chi,x to Chi,n, T
Chi Chy,2 " Chr Ry 41
1
b}
c R Ch _ s C _ k .
Rrdomyor TheN By uE b |~0 k=12, K (33)
Cux.o Cog ... Cup, g, :
Cug,q Cug 2 e C'Uk,Rk+1 bk'
Ry
L cUk,N-—Rk—l cUk,N—Rk e Cox, N1 1
or
1
Fhx [ | =0 (34)

where Ry is the order of prediction for the y-poles, and b* is the coefficient vector of the polynomial B* (z) given by
BF(z) =1+ bkz + 0522 4+ -+ bk, 2. (35)

Ry can be any integer greater than or equal to Ly, while in practice choosing Ry > Lj results in more accurate
parameter estimates.?

Equation (34) is used to solve for the estimate of b*, 3’“, in a total least squares sense, analogous to the manner
described in FPA1 Step 1, to arrive at a minimum norm (TLS) estimate, where the Ry + 1 — Ly singular values of

F* are truncated to arrive at a noise cleaned estimate F'* (see FPA1 Step 1 for details).
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Using this definition, the model in Equation (11) can be expressed as
dpi(m, n) N g
hl ) _ hy m
I: dvl(m9n) :I B Z I: Qy :I p17p27 (38)
=1 7

The two sets of amplitude coefficients, one corresponding to each polarization, are found from a least squares solution
using Equation (38). Finally, the ellipse parameters are calculated from the pole and amplitude coefficient estimates
using Equations (12) to (17).

4. SIMULATIONS

In order to demonstrate the utility and the limitations of the Full Polarization 2-D TLS-Prony Technique, full
polarization radar scattering data is analyzed here. The structure analyzed is a thin metal perfectly conducting
square plate 0.5 meters long on a side. For the plate, multiple frequency, multiple angle, full polarization data is
utilized. For a specific polarization, aspect angle, and frequency, a data point is the complex number corresponding
to the magnitude and phase difference between the electromagnetic wave incident on the target radiated by the
continuous-wave (CW) radar and the electromagnetic wave received back at the radar. This is consistent with the
definition of the scattering matrix in Equations {3) and (4). Thus, we are using samples of the scattering matrix
for equally spaced discrete frequencies and discrete angles. This is exactly the data that could be collected by a
coherent, focused, spotlight mode Synthetic Aperture Radar (SAR).

The plate is oriented as shown in Figure 2, with the radar located in the zy-plane. The scattering data was
simulated using the GTD-based code described by Marhefka.® All of the scattering mechanisms which are modeled
by the GTD code were used to generate the data. For example, the corner scattering coefficients, the edge scattering
coefficients and the double-bounce coefficients are included in the data set. However, the corner scattering coeflicients
are the dominant terms in the data.

The locations, damping factors, and polarimetric properties of the scattering centers which exist on the plate
are estimated using the Full Polarization TLS-Prony Technique. This structure contains corners and edges at both
grazing and non-grazing angles. Thus, the ability of the 2-D TLS-Prony Technique to estimate non-point scatterer
type scattering centers is demonstrated.

The data sets analyzed consist of the full polarization monostatic scattering matrix from the plate for incidence
angles of —7.5° < ¢ < 97.5° with 8 fixed at 90°, where § and ¢ are the standard spherical coordinate angles.5 The
frequency range is from 9 GHz to 9.48 GHZ in 16 MHz steps. The angular step size is 0.1°. Each data set is thus
31x31 (number of frequencies x number of angles). This corresponds to a 3° polar swath of data. The unambiguous
range for this data set is 9.3684 meters in each direction. Note that this data, which lies on the polar grid, is used
directly by the 2-D TLS-Prony Technique, without being interpolated onto a square grid. It is assumed that since
these polar data sets are over a relatively small angular swath (3°) and small bandwidth (5%), it is a reasonable
approximation to assume that the polar grid is close enough to a square grid to treat the data as if it lies on a square
grid. The results are shown in Figure 3.

The polarimetric characteristics of the scattering centers are represented by polarization ellipses calculated from
the pole and amplitude coefficient estimates as discussed in Section 3. The plotting of the ellipses on the image
plane requires a quantity called the ellipse factor. The units of the amplitude coefficients (which are the same as the
scattering coeflicients) are in meters. Due to the small magnitude of the scattering coeflicients (nominally around
10~3 meters), the size of the ellipses must be scaled up in order to view them on the plots. Thus, the ellipse factor is
the dimensionless ratio of the size of the ellipses as viewed on the plots which follow to the actual size of the ellipses.

Examining all of the plots involving the plate, it can be seen that the ellipses yield some physical information

concerning the scattering centers. For the ¢ = 0° case, the ellipses on the leading edge of the plate are oriented
parallel to the edge, as is expected from electromagnetic theory.6 Also, for the ¢ = 90° case, the ellipses on the leading
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edge are lines oriented in the same direction as the edge. This is also as expected from electromagnetic theory.6 The
intent of this analysis is to provide physical characteristics associated with scattering centers on a radar target. The
polarization ellipses accomplish this by displaying the polarimetric characteristics of each scattering center.

5. CONCLUSIONS

This paper developed a new 2-D technique to estimate the polarimetric characteristics of scattering centers that
exist on radar targets. First, a candidate list of canonical scattering centers was developed and the scattering
characteristics of the scattering centers were estimated. Next, a new full polarization 2-D parametric model and
estimation technique, called the Full Polarization 2-D TLS-Prony Technique, was introduced. This technique is
an extension of several already developed. Damped exponentials were used to model the frequency and angular
behavior of the scattering centers. The estimation technique used a total least squares approach to determine the
parameter estimates. From these estimates, the polarimetric characteristics of each individual scattering center
were determined using the concept of a Transient Polarization Response (TPR). Simulations were shown which
demonstrate the utility of this technique. One of the technique’s greatest advantages over conventional Fourier-
based techniques is superresolution. Another advantage is data reduction. Two-Dimensional data sets are inherently
large, and this technique obtains pole and amplitude coefficient estimates which contain all of the important target
information which form a reduced data set.
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Figure 3: Full polarization flat plate example. Pole locations estimated by FPA2 are located at the centers of the
ellipses. The data is a 3° polar swath centered around (a) 0°, (b) 15°, (c) 30°, (d) 45°, (e) 60°, and () 90°.
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