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INTRODUCTION

This paper is concerned with detection and estimation of
the scattering centers of a target from coherent, stepped
frequency measurements. In particular, we are interested
in the following questions: 1) how closely spaced can
scattering centers be before it is impossible to resolve
them, and 2) what is the relationship between the detec-
tion probability of a scattering center and the false alarm
probability as a function of scattering center SNR.

To address these questions, we hypothesize a paramet-
ric model of target scattering. This model assumes the
frequency-domain scattering to be a sum of exponential
terms. If the exponential terms are undamped, then the
model specializes to a point-scatterer assumption. If the
exponential terms are not undamped, the model incorpo-
rates frequency-dependent radar cross section of scatter-
ing centers (see (1)). We consider a particular class of al-
gorithms for estimating the parameters in this exponen-
tial model, the so-called total-least squares (TLS) Prony
algorithm (2). The TLS-Prony technique has gained
popularity as a parameter estimation algorithm for the
exponential model because it provides accurate parame-
ter estimates at moderate computational cost (3); it has
also been successfully applied to both one-dimensional
and two-dimensiaonal radar scattering data (4,5).

Under the exponential model assumption of scattering,
the resolution and detection bounds can be reformu-
lated in terms of parameter estimation accuracy for
the exponential model. We present the asymptotic (as
SNR — oco) probability density function (pdf) for the
exponential model parameter estimates using the TLS-
Prony algorithm. We then use this asymptotic pdf to
derive scattering center resolution and detection bounds
for the TLS-Prony algorithm, and compare these results
to Cramér-Rao bound (CRB) results. Monte-Carlo sim-
ulations are also presented to compare with the theory.
The resolution bounds are obtained from the standard
deviation bounds of the pole angles in the exponential
models. The detection bounds are obtained by consid-
ering the probability that the energy of an estimated
mode exceeds a pre-defined threshold. In each case, the
probabilities are obtained by considering a high-SNR ap-
proximation of the statistical probabilities of exponential
model parameter estimates.

One of the advantages of a model-based scattering cen-
ter estimation procedure is the capability of resolving
scattering centers more accurately than is possible using
fast Fourier Transform (FFT) techniques. We show that
for sufficiently high SNR, both the CRB resolution and
the TLS-Prony resolution is better than can be obtained
using the FFT.
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DATA MODEL AND TLS-PRONY
ESTIMATION PROCEDURE

ata Model

Assume the data vector y of length m is modeled as a
noisy exponential sequence

ve=Y mplte, g=0L...,m-1 (1)
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There are n distinct exponential modes in the data.
Here, it is assumed that {e,} is a zero mean complex
white Gaussian noise sequence with variance o. Equa-
tion 1 may be compactly written as

y=Az+e, 2

where e (m x 1) and z (n x 1) are vectors, and
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TLS-Prony Estimation Procedure

In this subsection we give an overview of the TLS-Prony
technique (2) which is used to estimate the parameters
of the exponential model presented in Equation 2.

First, Lth order backward linear prediction equations are
formed:
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In general, L > n; however, choosing L > n results in
more accurate parameter estimates (6).

The solution of Equation 4 involves obtaining an SVD of
the matrix [ y Y ] and truncating all but the first n

singular values to arrive at an estimate [ n y ] The
linear prediction coefficient vector estimate b is found as

b= —17+§, where ¥ denotes the Moore-Penrose pseu-
doinverse. Finally, the pole estimates are found by

p; = zero; (ﬁ(z)) , j=12,...,L W)

where ﬁ(z) =1+bz+-+ brzE. Once the poles have
been determined, the amplitude coefficients can be found



as the least squares solution to
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Note that L mode estimates are obtained, of which n
are “true” modes. For L > n, L — n of the mode esti-
mates are extraneous. If n is known then the true modes
can be identified as the n highest energy estimates (3).
However, in practice n is typically unknown; in this case
the number of singular values retained is a fixed upper
bound of , and true modes could be separated from ex-

traneous modes by using a mode energy threshold (as
discussed below).

STATISTICAL ANALYSIS

In order to establish a resolution bound and probabili-
ties of detection and false alarm, we need the statistics
for the estimated parameters in the TLS-Prony model.
For the resolution bounds and detection probabilities, we
need only the statistics for the “true” modes (that is, the
n modes with highest energies). For this case, the statis-
tics of the parameter estimates have been found in (3,7).
However, for the false alarm probability, we also need
the statistics of the L —n extraneous modes. The deriva-
tion of the extraneous mode statistics appears in (8); the
main result is summarised in the following Theorem.

Theorem 1: Assume y is as given in Equation 1. Let p =
{pi};_, and z = {z;}"_, be asin Equation 1, and let p° =
{ps}" and 2° = {z} }o" denote the L — n extraneous
modes obtained in the TLS-Prony procedure when o =
0. Let 6 denote the 4L X 1 vector containing the angles
and magnitudes of p, z, p°, and z°, respectively, and
let # denote the TLS-Prony estimate of #. Then the
asymptotic (as ¢ — 0) probability density function of 8

is Gaussian: =N
6§~ N(8,0-%), 9)

where X is a covariance matrix which depends on m, L,
and {z:,pi} ;.

The proof of the Theorem and an explicit expression for
L4, can be found in (8). Also in (8) is an expression for
Y¢ when 8 is reparameterized in terms of the real and
imaginary parts of the poles and amplitude coeficients.
We note that the above Theorem gives a theoretical ex-
pression for the complete pdf of the estimated parame-
ters; this pdf can then be used to study the resolution
properties and detection probabilities of scattering cen-
ters, as is discussed below.

A RESOLUTION CRITERION AND BOUND
ANALYSIS

Consider two poles on the unit circle, p; = a;e’*! and
P2 = aze’“?. We define the resolution limit r as

T =204, +204,,

(10)

where the angle variances of p; and p, are 02, and gl ,
respectively. When two poles are at this limit, the 95%
confidence intervals of the angle estimates for each pole

become disjoint.

The CRB resolution limit is found by using CRB ex-
pressions for the pole angles in two pole model. The
CRBs for the pole angles are inserted into 0., and o,
in Equation 10; such expressions can be found, for ex-
ample, in (9). This limit gives a lower bound for all
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unbiased estimators since it is based on the CRB. The
resolution limit for the TLS-Prony estimation algorithm
is similarly given by using pole angle variance statistics
for the true poles; these are readily obtained from o - Xy

(see (8)).
Bound Analysis for Two Undamped Modes

In this study we consider two equal energy modes located
on the unit circle at p; = *f/™ and p, = e~i*f/m
for a data length of m = 10, where f is the separation
of the two modcs in Fourier bins. For the TLS-Prony
simulations a prediction order of L = 4 was used.

Figurc 1 shows the bounds for the CRB, TLS-Prony sta-
tistical theory, and TLS-Prony Monte-Carlo results. The
axes are normalized to make the curves independent of
data length for the CRB curve and the TLS-Prony sta-
tistical theory curve. From these curves we can see that
the TLS-Prony theoretical bound is quite close to the
CRB over a wide range of SNR. Recall that the CRB
and TLS-Prony bounds are both derived using small
perturbation analysis, so hold only for high SNR. The
TLS-Prony Monte Carlo simulations show good agree-
ment with the theoretical bound above 15 dB SNR. We
can see that above 20dB SNR/pole/bin the TLS-Prony
method virtually achieves the CRB.

Below 20dB SNR/pole/bin, the Monte-Carlo simulations
give much higher variance than both the theoretical TLS-
Prony curve and the CRB curve. Note, however, that
the TLS-Prony analytical variance expression was de-
rived under the assumption of high SNR, and is not ex-
pected to be accurate at low SNR. In addition, the CRB
is not necessarily a tight bound at low SNR. Thus, it
is not clear what the minimum achievable variance is in
this region. For example, it is not known whether (or
how much) an iterative maximum likelihood procedure
would result in lower variance in this region.

We note that above about 18 dB SNR/pole/bin, the
TLS-Prony technique gives resolutions of less than one
Fourier bin. Therefore, the resolution of the TLS-Prony
technique is better than FFT-based techniques since
FFT-based techniques can only resolve to within one
Fourier bin. If windowing is used in conjunction with
the FFT-based methods, their resolution is even larger
than one Fourier bin (e.g., it would be about 1.8 Fourier
bins using a Hamming window).

DERIVATION OF PROBABILITIES OF
DETECTION AND FALSE ALARM

In practice, one does not know a priori how many scat-
tering centers are present. In this case, one would accept
or reject a mode estimate as a scattering center based on
some threshold. We consider a threshold on the energy
of the estimated exponential mode, as this corresponds
to radar cross section of an estimated scattering center.

In the TLS-Prony method, one obtains estimates of L
poles and L corresponding amplitude coefficients. From
this, one can compute the energy E; of each of the L
modes by

m-—1
Bi=p% o) j=12..,L (11
q=0

where 8, and «; are the magnitudes of the jth ampli-
tude coefficient and pole, respectively. We consider an
estimated mode to be detected as a valid scattering cen-
ter if its energy exceeds a prespecified threshold, and we



reject the mode as an invalid scattering center if it does
not. We then can present detection results in the form
of receiver operation characteristic (ROC) curves.

Probability of Detection

We define a detection to be the case in which all of the
true mode energy estimates exceed an energy threshold,
E°. We thus now derive the energy statistics for the
true modes (s.e., j = 1,2,...,n). These statistics can
be found from the statistical pdf given in Theorem 1.
It can be shown (8) that the energies are noncentral x?
distributed; for high SNR, the noncentral x? distribution
is well-approximated by a Gaussian distribution. Using
first-order approximations, it is possible to derive the
mean and covariance of this distribution. Thus, from
Theorem 1 we have the following corollary.

Corollary 1: Let

E=|E E E. ", (12)

denote the parameter vector for the mode energies of
the true modes (i.e., the mode energies corresponding

to p and z). Let E denote the estimated energies corre-
sponding to the TLS-Prony parameter estimates. Then
the asymptotic (as ¢ — 0) pdf of E is given by

E~N(E,0-%g), (13)
where T depends on m, L, and {z;,p;}}-;. An explicit
expression for Tg can be found in (8).

Given the true mode energy distribution, the probabilty
of detection, Pp, is given by

PD=Pr(E>E°,E’Z>E°,...,ET, >E°). (14)

This probability is readily computed using Equation 13.

To verify that the theoretical energy distribution given
above, Monte-Carlo simulations were performed for a
two mode case. In this case, the data consists of two
equal energy modes, with z; = z, = 1, located on the
unit circle spaced one Fourier bin apart at p; = ¢/**/™
and pp = e~32*/™ for a data length of m = 10. A pre-
diction order of L = 4 was used, and two singular val-

ues were retained. The SNR for these simulations was
10dB/pole.

Figure 2 shows a comparison between the theoretical pdf
and a histogram obtained from Monte-Carlo simulations
(note that both modes have the same theoretical pdfs
and had similar histograms). It can be seen that the
theoretical energy distribution is a good approximation
to simulation results in this case.

Probability of False Alarm

We define a false alarm to be the case in which one or
more of the extraneous modes is above the energy thresh-
old, E°, and thus misidentified as a true mode. We
can derive the statistal properties of the estimated ex-
traneous mode energies in a similar manner as above. In
this case, however, the “true” energies of the extraneous
modes are zero, so the extraneous modes are distributed
as central Chi-squared with two degrees of freedom, x3
(see (8)). This is stated in the following corollary.

o~y L=n
Corollary 2: Let {E,-e denote the estimated en-

i=1
ergies corresponding to the TLS-Prony parameter esti-
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mates of the extraneous mode energies. Then the asymp-
totic (as o — 0) pdfs of these energies are given by

Ef~xi(o-Tp)  i=12,...,L-n.  (15)
where Eg; does not depend on 0. An explicit expression
for Xp; can be found in (8).

Given the extraneous mode energy distributions, the
probabilty of false alarm, Pr4, is given by

Pra=1-Pr (B < BB <E°... B, < E°)
(16)
Note that since the extraneous mode energy distribution

is Chi-squared with two degrees of freedom, Pr4 can be
evaluated using a Rayleigh distribution.

Figure 3 shows a comparison between the theoretical pdf
for the extraneous modes in the previous two modes
example and a histogram obtained from Monte-Carlo
simulations. Note that the theoretical predictions agree
closely with Monte-Carlo simulations.

ROC Analysis for Two Undamped Modes

Using the above detection and false alarm probability
results, we can derive ROC curves for scattering cen-
ter detection at various SNRs. Figure 4 presents such
curves for the case considered in Figures 2 and 3, but
with varying SNR (note that 1 — Pp is actually plotted
along the vertical axis). For an SNR at or above 10dB
per pole, Pp is always above 0.9 even when Prg4 is very
small (e.g., 10~7). However this is not the case for lower
SNR. Note that for low SNRs Pp never reaches one even
if Pr 4 is one. This is because the true mode energy dis-
tributions were approximated as Gaussian, and the tail
of this Gaussian distribution gives a nonzero probability
of a negative energy (the noncentral x3 distribution does
not have such a tail). For high SNR, the approximation
becomes more valid.

In computing the curves in Figure 4, it was assumed
that the extraneous mode energy distributions are inde-
pendent. Note that this is a worst case assumption, since
Pr 4 would decrease if the extraneous mode energies were
dependent.

CONCLUSIONS

In the paper we presented resolution bounds and detec-
tion results for estimating the scattering centers. These
bounds are based on an exponential model of target scat-
tering, which generalizes the point scattering model. The
popular TLS-Prony algorithm was used to estimate the
parameters of the exponential model. A high SNR sta-
tistical analysis of the TLS-Prony algorithm was first
presented. Then, based on the results of the statistical
analysis, both resolution bounds and detection results
were presented. The resolution bounds were compared
with both the Cramér-Rao Bound and with Monte-Carlo
simulations. It was shown that for an SNR above 18 dB,
the TLS-Prony method is capable of resolution to less
than a Fourier bin.

The probabilities of the detection and the the false alarm
were derived based on the mode energy distributions for
both the true and the extraneous modes. For high SNR
true mode energy distributions can be approximated as
Gaussian distributions, but extraneous mode energy dis-
tributions are central chi-squared distributed. These de-
tection and false alarm probabilities can be presented as
ROC curves for scattering center detection for examples
of interest.
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