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ABSTRACT

A new method for estimating two-dimensional (2-D) poles
and amplitude coefficients in a Prony model is presented.
This method involves two parts, each utilizing a 1-D singu-
lar value decomposition-based technique, and is capable of
locating frequencies anywhere in the 2-D frequency plane.
Simulations are shown which demonstrate the performance
of the algorithm.

1. INTRODUCTION

For many years the problem of two-dimensional (2-D) fre-
quency and amplitude coefficient estimation from a 2-D
data set has been investigated. This problem has ap-
plications in sonar, radar, geophysics, radio astronomy,
radio communications, and medical imaging [1]. Many
techniques have been applied to the problem such as
Fourier-based methods, data extension, maximum likeli-
hood method (MLM), maximum entropy method (MEM),
autoregressive (AR) models, and linear prediction (LP)
models {2].

Prony’s method coupled with total least squares (TLS)
techniques in one-dimension (1-D) has been used success-
fully to estimate frequencies in the presence of noise [4]. In
this paper, 2-D frequencies and amplitude coefficients are
estimated by a two-step method using a 1-D TLS-based
Prony model and estimation technique in each step. This
method is capable of locating frequencies anywhere in the
2-D plane.

A related method, developed by Hua [3], also estimates
2-D frequencies. In Hua’s method, two estimation steps are
performed to separately estimate the z-components and y-
components of the 2-D frequencies. Then, a matching step
is performed to find the correct z and y-component fre-
quency pairings. The method we present is similar to Hua’s
in some respects, but different in others. We first estimate
the z-components of the frequencies. We then use the am-
plitude coefficients corresponding to each z-component fre-
quency to estimate a set of y-components. In this way we
avoid the requirement of a matching step. Our algorithm
is computationally less expensive than Hua’s method, and
more amenable to parallel implementation. We also present
a second algorithm in which the first algorithun is used twice,
first to estimate z then y-components and then y then z-
components. The second algorithm gives more accurate pa-
rameter estimates than the first algorithm. This second al-
gorithm does require matching, but the computational load
is still significantly smaller than the one in 3].
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2. DATA MODEL AND ESTIMATION
ALGORITHMS

2.1. Data Model
Assume we are given noisy 2-D data which has the form

d'(m,n) = d(m,n) + w(m,n), (1)

wherem =0,1,...M—1land n =0,1,... N—1 and w(m,n)
is 2-D noise sequence. We will refer to the first index of
d(m,n) as the z-component, and the second index as the
y-component.

The noiseless data is assumed to fit the damped expo-
nential model

K Ly
dmm =30, 2L, )

where
pz, = kth z-pole, z-component of 2-D exponential
Py, = Kk, lth y-pole, y-component of 2-D exponential
as,t = k,lth amplitude coefficient
L, = # of y-poles corresponding to kth z-pole. (3)

Given noisy data d'(m,n), we wish to estimate the param-
eters in Equation 2. Below we present two TLS-based al-
gorithms for estimating these parameters, Algorithm One
and Algorithm Two.

2.2. Algorithm One

Algorithm One consists of four steps detailed below.
Step 1: Estimation of the z-poles.

The first step in the parameter estimation problem is to
estimate the z-poles. We now define a matrix composed of
the noisy data as

O,N-1) (1N —-1) - d(M—1,N - 1)

Each row of D’ can be used to provide an estimate of
the z-poles. However, all of the rows of D' will be used si-
multaneously in the estimation of the z-poles. A total least
squares (TLS) backward linear prediction approach similar
to [4] is used. The backward linear prediction equations are

DIT(O) 1
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or § [ é } ~ 0, where each D'(n) is a Toeplitz matrix given
by

(0, n) d'(1,n)
d'(2,n)

©d(Q,n)
s dl(Q +1,n)

d(M=-Q-1,n) (M- Q,n) ... d'(M = 1,n)

and where Q is the order of prediction, and b is the coeffi-
cient vector of the polynomial Bq(z) given by

BQ(Z)=1+b12_]+b22_2+...+sz—Q_ (6)

Ideally, @ can be any integer greater than or equal to the
model order K in practice, choosing Q > K results in
more accurate parameter estimates [5]. Note that all of
the rows of D’ are used simultaneously to estimate a single
set of prediction coefficients (and therefore, a single set of
z-poles).

Equation 5 is used to solve for b in a total least squares

sense to arrive at a minimum norm (TLS) estimate of b,
where the Q + 1 — K smallest singular values of S are trun.
cated to arrive at a noise cleaned estimate S (see [4] for
details).

The estimated z-poles are found by

]A;lq = (zcroq (55(2)))4

Of these Q poles, only the K z-poles which have the largest

cnergy are retained.

Step 2: Estimation of the z-amplitude Coeflicients.
Define the z-amplitude coefficients as

g=12...,Q. (7)

Ly i
an =3 euri,  a=12..0 (8

Then from Equation 2 we have

Q
d(m,n) = Z lcq,np;';. (9)

9=
Note that the equations in 9 are uncoupled for different
values of n. Thus, each row of D' will give an z-amplitude
coefficient estimate for each z-pole. These estimates serve
as the inputs to the second Prony model and determine the

y-poles. Also note that the y-pole model orders, { L ,{\':J,
may be different for each of the J z-poles.
Equation 9 is used to solve for the ¢, ns as follows
1 1 1 €10 C1,2 T LN
Pri o Pay oo pag €20 €2,2 - cp Noy
. . ' =D'T,
M1 M- M- : : .
R ik Q.0 Q1 ttr egN o)
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The z-amplitude coefficients are found from a QR decom-
position based least squares solution to Equation 10 using
the z-pole estimates.

Step 3: Estimation of the y-poles.

The z-amplitude coefficients can now be used to solve for
the y-poles. For each of the K& high energy u-poles, the
backward linear prediction equations for the model given
by Eqnation 8 become

Ck,0 Ck,1 T CkRy L

where Ry is the order of prediction for the y-poles, and b*
is the coefficient vector of the polynomial B“};k (2).

Equation 11 is used to solve b in a total least squares

sense to arrive at a minimum norm (TLS) estimate of ¥,
where the Ry +1 — I, singular values of S are truncated.
The y-pole estimates are thus given by inverses of the

zeros of B*(z) as in Equation 7. This procedure is carried

out K times to estimate the y-poles corresponding to each

of the K z-poles.

Step 4: Estimation of the Amplitude Coecfficients.
Using Equation 8, we can write

1 .

Ak,1 Ck,0
Pyk,i Py, - Pyk, R, ag,2 Cr o1
= ) .(12)
N=1 N1 N1 ’ :
Puia Pues o Py, | Lakr, Ck,N 1

The amplitude coefficients are found from a QR decompo-
sition based least squares solution to Equation 12 using the
y-pole estimates along the z-amplitude coefficients. As be-
fore, only the Ly y-poles which have the largest energy are
retained. This is done by computing the R, y-mode ener-
gies for each of the kth z-poles and retaining those Ly poles

whose corresponding energies are highest.

2.3.  Algorithm Two

Algorithm Two utilizes the first three steps of Algo-
rithm One twice and then a matching step aud final am-
plitude coefficient calculation step.  The original data,
d'(m,n), is the mput to Algorithm One. The first three
steps are carried out yielding 2 and y-pole estimates,
{pa, }io ) and {pyk,,}f;l‘ Next, the data is transposed (i.e.
d"(n,m) = d’(mn,n)), and Algorithm One is applied to

. -t

d"'(n,m) to arrive at a second set of poles, {]';w }}{\'=1 and

L! .
{p;“'“}“‘;‘l. Note that the model orders K and Ly are

related to A and L¢,, depending on the structure of a par-
ticular model, and are in general different.

The two sets of estimates are combined, and more ac-
curate part of the estimates from each set is retained. The
more accurate part of each estimate is the set of poles which
were estimated first. A matching algorithm is used to com-
bine both sets of pole estimates yielding a single set of pole
estimates.

The matching is performed using the following metric

A((pzk,pyk,,),(pik,,p;k,.“)) =

Vs = Pt e~ 7 (13)

for the distance between 2-D exponential modes (Pays Pys )
and (p;, ,p;k‘ ) estimated from the two estimates in

Step 1. These distances are calculated for all of the pos-
sible pairs. Then the closest match is made and the re-
spective pole pairs and distances are eliminated from con-
sideration. The next-to-closest match is theu made in the
same fashion and so on, until there are 1o modes remaining
{from one of the two sets of pole pairs parts (any leftover
pole pairs are discarded). Note that the z-poles, py, and
p_‘l.kt, from each of the two estimations are retained and

the y-poles are discarded as discussed above. Thus, the y-

ke . -c bk T .
ol k.2 kiRt ! ~0 (11) poles are only necessary for the pairing performed in the
: : : ' matching step. Note that the p;k, take on the role of y-
Ck,N=Ry—1 Ck N—R, - cx n_; bl;gk poles in the original model. The final set of matched pole
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pairs for Algorithm Two are thus designated {6z, pyy}L.:l,
where the p's are given by the paired pz’s and pl’s and

. K K?
I' = min {Zk;lL"’ k'=1L:‘}’
Using this definition, the model in Equation 2 can be
expressed as

r
dmm) =37 avpl o}, (14)

Equation 14 is used to solve for amplitude coefficients,
{a}E2,, as follows

P(0) a; d'(0)
P(1) az d'(1)
= : (15)
P(M —-1) ar d'(M -1)
where each P(m) and d'(m) are given by
T e
Py Py, Pz, Py, Py Py;
Plin) = . - . (16)
PEey Tt T el P oyt
and

d'T(m,N —-1) }] .

(17)
The amplitude coefficients are found using the pole esti-
mates from a QR decomposition based Jeast squares solu-
tion to Equation 15.

d'(m) = [ d’T(m,O) d’T(m,l)

2.4. Implementation Issues

In this section we present operation counts for the four steps
of Algorithm Oue and for the eight steps of Algorithm Two.
These operation counts are given for the case when the daty
is real. For complex data considered in the examples below
the counts were observed to be about a factor of 2 to 3
larger for the SVDs and about 4 times larger for the QR
decompositions.

2.4.1. Operation Count for Algorithm One

To obtain the operation counts for the four steps of Al-
gorithm One, we need counts for the SVD computations
and the computation of the QR decompositions used for
the least squares solutions.

The approximate floating point operation (flop) counts
for Steps 1-4 where the given data is real are given by [6]

AN(M - Q)Q+1)* +8(Q +1)°

2

1
f':One
2
(CZ)ne = 2MQ? - EQB

W
fe? = AN = Ri) (Be + 12 + 8 (R + 1)°
One Zk=1( ( &) (Re + 1) + 8 (R + !

K 2
K} ~ . 2 3
feby . = § . <2NRk - Ekk> : (18)

To achieve near optimal performance (with respect to
the CRB), the model order used for Steps 1 and 3 of Algo-
rithm Oue should be integers near Q=2 and Ry = £
Using these substitutions and further approximations we
arrive the following estimate for the total flop count

1 1. .
feone % 3 M°N + FEN°. (19)

Note that the & estimations of Steps 3 and 4 are indepen-
dent of each other and can thus be done in parallel.

2.4.2.  Operation Count for Algorithm Two

Since Algorithm Two first utilizes the first three steps
Algorithm One we obtain fchpe = fChne, ek, = fc3,..,
and fc,, = fcd,. for the flop counts of those steps. For

Steps 4-6, the roles of M and N reversed, and Q' and R}
are used instead of Q and Ry. We thus obtain the following
for their flop counts

o % AM(N = Q) (Q +1)2 + 8 (Q° + 1)°

5 ~ 2 Z 3
{CTwo x2NQ'Y — 3Q
-t

Frwo > Xy, (400 AL (R +1)7 45 (a0 1)7).

The flop count for Step 7 is negligible compared to the other
steps. For the QR decomposition in Step 8 the approximate
flop count is given by

8 . 2 2.3
(Swo = 2 NT? - 219, (20)

Again, to achieve near optimal performance (with respect
to the CRB), the model order used for Steps 1, 3, 4, and 6

of Algorithm Two should be integers near Q = RY, = M
Ry = Q" = £ [7]. Using these substitutions aud further ap-
proximations we arrive the following estimate for the total
flop count

1 . 1 I 1 p . 2
Py B cMINF NN 4 - NIA 4 2 e g 2MNT? =28,
fwo % 3 NS M 3

Note that the K estimations of Step 3 are independent and
the A estimations of Step 6 are independent and can thus
be done in parallel.

3. SIMULATIONS

Below we present numerical simulations to assess model va-
lidity and noise effects. The example considers the estima-
tion of three 2-D undamped exponentials; this example was
also cousidered in [3].

In this example we compare the variances of frequency es-
timates to their CRBs at various signal to noise ratios SNRs
for the three 2-D frequency scenario presented in [3] using
Algorithm Two. Data was generated using the madel in
Equation 2 for M = N = 20 and

[f’rl Py, @y ] — [ £I270.24 £7270.24 1 ]

[]‘“ Pur. 12 ] — [ 8;2n0.24 £J2m0.26 1 J
3 2 24

[p;;, Pys, a2 ] — [ £7270.26 eI 2m0.24 1 J

We can see that from the angles of the above poles the cor-
responding frequencies are 0.24 and 0.26. For the purposes
of identification we will label the (z-pole,y-pole) pairs above
with frequencies (0.24,0.24), (0.24,0.26), and (0.26,0.24) as
2-D frequencies f;, fa, and f3, respectively. Note that these
frequencies are spaced at four-tenths of a Fourier bin in both
directions (1 Fourier bin= 75 = 0.05).

One hundred differcut nojse realizations were run for each
integer SNR between 0 and 50dB utilizing Algorithm Two.
The SNR is defined as the total signal power divided by
the total noise power. Figures 1 and 2 show the simulation
results for the z-pole frequencies and y-pole frequencies,
respectively. Specifically these figures show the estimated
frequency variances for the various SNRs (they are given by
the dashed lines as indicated). The corresponding CRBs are
given by the solid lines; the CRBs of the model were found
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using the expressions in [8]. The algorithm parameters were
set at Q = 8,K =2, R1 = Ry =8, Ly = Ly = 2 for this
example. Note that we have used Q = %’5 and Ry = %
because these values give maximum parameter accuracy in
the SVD estimation step [7].

From Figures 1 and 2 we can see that the threshold SNR
is about 15dB. For SNRs above 15dB, the variances are
within 4dB of their respective CRBs; below 15dB the al-
gorithm fails to reliably resolve the frequencies. The sim-
ulation variance lines even cross the CRB due to the fact
that the poles are no longer resolved and thus the estimates
cannot be used in the variance calculations. The results
in [3] are for an SNR per pole of 10dB, which corresponds
to a total SNR of 17.7dB used here. In comparison, the
estimation scheme in (3] gives variances which are about 3
or 4dB better for the z-pole frequencies of f; and f3 and
the y-pole frequencies of f; and f, and variances which are
about 8dB better for the z-pole frequency of f, and the
y-pole frequency of f3.

We next consider the SVD operation counts for this ex-
ample. The SVD steps are major computational parts.
Each noise realization required SVDs of two 240x9 matri-
ces and four 9x11 matrices where only the singular values
and right singular vectors were computed. For the same
example, the algorithm in [3] required SVDs of two 49x 169
matrices for each noise realization where the singular values
and left singular vectors are computed. Looking at expres-
sions in [6] for SVD computations we can see that Algo-
rithm Two requires significantly fewer flops than the algo-
rithm in 3] for the SVDs. We note that the SVDs for both
algorithms can be performed with fewer computations by
computing the eigendecomposition of smaller square ma-
trices. Using this idea the total number of computations
are reduced for both methods and there is still significant
savings with Algorithm Two over the algorithm in (3]

4. CONCLUSIONS

We have presented a new method for estimating 2-D poles
and amplitude coefficients. This method utilizes a 1-D TLS-
based Prony model and estimation technique. This process
has computational advantages over methods which have in-
dependent steps such as the one in [3] since the second step
involves several smaller estimations rather than one esti-
mation as large as the first. This procedure also has the
advantage not requiring a pairing of z and y-poles.

Simulations demonstrate the algorithms ability to esti-
mate 2-D poles and amplitude coefficients in the presence
of noise reasonably well. The estimates in [3] are slightly
more accurate than the estimates for this technique, but this
technique offers significant computational savings over [3].
For Algorithm One, the y-pole estimation is less accurate
than the z-pole estimation due to a propagation of error in
the z-pole estimation. If more accuracy is required in both
the z and y-pole estimates then Algorithm Two can be im-
plemfn]te(l which still has significant computational savings
over [3].
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