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Abst

Several algorithms for recursively updating
the exact least squares AR and ARMA parameter
estimates have recently been developed. Commonly
called lattice algorithms, these metheds update
optimal coefficient estimates sequentially as new
data become available. The algorithms are charact-
erized by computational efficiency, requiring O(p)
multiplications and additions for each update. ThHe
lattice algorithms also exhibit desirable numerical
properties,

This paper applies lattice algorithms to
system identification problems. Both the known
input and the unknown input cases are considered
as are both AR and ARMA models. This paper also
discusses order determination, and addresses the
problems associated with measurcement noise and time
varying system parameters.

1. INTROBUCTION

identification is that
model for an unknown system from
knowledge of its imput and output sequences. (See
Figure 1). This problem is generally approached

by first specifving a particular structure for the
model and then estimating any unknown coefficients
in that structure. One such structure is the auto-
regressive~-moving average (ARMA) model, in which
the transfer function of the unknown svstem is

The problem
of identifying a

of system

represented by a quotient of two polynomials in 2_%
thaz is -1 q
b, +b,z " +....5b 2

i ( 1
R R e (1)

VY l+a.z "+....+a z ©

1 I

Here Y(z) and U(z) are the z-transforms of the in-

put and output sequences of the unknown system, and

the coeflficients bo,b],,...bq and @5y, ..y Are
to be estimated.
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Figure 1. The System Identification Problem.
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There are several well-known algorithms for
estimating the coefficients of an ARMA model. Of
these, the so-called least squares algorithms have
gained wide popularity. Ia least squared algo-
rithms the ARMA coefficients are obtained by
minimizing the square of some function associated
with the system and model. These algorithms often
provide good parameter estimates for a reasonable
computational effort.

Most least squares algorithms are block pro-
cessing algorithms, which operate on a block of
data to produce an estimate in a single prccessing
effort. There are, however, many system identifi-
cation applications in which block processing
algorithms are not well sulted. Examples include
tracking the parameters of a time varyving system
and adaptive identification for noise.cancelling,
¢hannel equalization, and system controlling.

For many of these applications it is desired to
continually update the parameter estimates as new
data become available. Algorithms that provide
thesc ongoing updates are called recursive
algorithms.

Because recursive algorithms are often used
in real time settings, it is important to keep the
computational effort required in each time inter-
val to a minimum. Until recently, however, re-
cursive least squares methods were required to
perform on the order of p2 (i.e., 0(p2)) multipli-
cations and additions for each update. To decrease
the processing effort, approximate least squares
algorithms requiring 0(p) =multiplications and
additions per update were developed. However,
these approximate methods often provided inferior
model estimates and were thus unsuitable in many
applications.

Recently, a class of fast recursive
squares algorithms have appeared. These so-calied
lattice algorithms solve the exact least sguares
problem at each time step and require only 0(p)
computations per update. Moreover, they have been
shown to exhibit good numerical properties and to
permit the capability of tracking slow time
variations in the unknown system.

In this paper we present some of the currently
available AR and ARMA lattice algorithms. We then
propose a new class of ARMA lattice wmethods, and
compare them to other currently available ones.

We also outline varlous modifications to these
lattice algorithms that provide better numerical
properties and enable tracking of time varying
system parameters.
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IT. AR MODELING

In autoregressive system identifications we

wish to estimate the ajy coefficients in the model
1 .
H(z) = 3 — = (2}
THaz t....taz ¥
1 P
given N meas urements y(1), v(2),....,y(}) of the
unknown system's cutput sequence. We shall assume

that the input sequence {u(k)} is unmeasurable,

soro mean, white noise.

A.  The Block Processing Algorizhm.
The least squares algorithm for obtaining the
AR coefficient estimates is predicated on the in-

verse transform of equation (2), namely

P
vy + ] ay(ke1) = ulk) (3)
1
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We may utilize equation {3) to choose the aj co-
efficients to most closely fit the input and output
sequences. Since input sequence measurements are
not available, we shall replace u(k) in equation

(3) by its expected value of zero. The criterion
we shall incorporate to determine clogeness of fit
will be the minimum squared error criterion. Thus,

the autoregressive coefficlents are chosen to be
the minimum squared error solution to the over-
determined system of equations

y+Ya =0 (4a)
where
4T PN

y = [y(m),y(mtl), ... ,y(a2)] (4B)
0 = . a 17T (he)
a [al,az,..., ap] {4c¢)
Y = [ym~1) ym-2) ... y(o—p) j (4d)

’V(m) y(m=-1) ... y(m¢l«p)[

P

‘Y(n D y(n-2) ... y(a~p) 1
and 0 is the zero vector.
For convenience of nectation, we shall assume
v(k) = 0 for k<l and k>N (5)

Equation (4) is the general form for the
least squares autoregressive estimation algorithm
(87, Specific versions of this algorithm are
realized by choosing particular values for the

indeces m and n. TFour commen choices are:

1) m=p+tl and n= : the covariance method.
2)y m=1 and n =N : the prewindow method.
3) m=p+l and n=N+p ! the postwindow method.
4y m=1 and n =N+p ! the correlation method.

The solution to eguation (4) may also be
presented

re—

(6)

It is a simple matter
R is given by

!

a = —-Tr

#

where R = YIY and T Y?X.

to show

that the (i,i)th element of

the system of p equations and p unknowns
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a =

y(m=1}v(m-3) (7)

m+1

ent of r is given by cquation (7) with

The clements of R and v are scrn to be
cstimates of mutocorrvelation lags for {y(k)}. 1In
this context, ecquarion {(6) represents an approxi-
mation of the well-known Yule Walker equations

J'Y
i 7 .

= A [ e >

ryv(k) 'h] g,k i) 0 k™1 (8)
P i

wvhere {ry.{(k)} s the autocorrelation sequence
associated with {v(k)J}.
The various data windowing methods mentioned

earlier correspond to various strategies for esti-
mating the autocerrelation lags rvv(x) in equation
(8). These four methods represent a tradeoff
between bias in the Yule Walker equation estimates
and computational speed. The covariance method
ssumes no knowledge of the outpit data outside the
measurement interval, but this method iz the most
computat 111y burdensome cof the four. Conversely,
the correlation method implicitly assumes that the
output data is zero on hoth ends of the measurement
interval, so there is a resulting bias in the Yule
Walker equation estimates. However, the correla—
tion ¢ computationally the fastest of these
four methods. The prewindow and postwindow methods
provide a compromise between the two extremes. An
analysis of the equation bias and the comput
for thticse four mcthods can be

fona

method i

tional
found in [17.

requirenoents

B. The Fast Recursive Algorithm.
The least squares algorithm presented above
involves solving the matrix equation (6). Dircct

entaills calculat-
the block of

and computing the
as

yr i thm
elements of R and r from
vil),v{(2),....,v(N)
cocl{ficient vector

implementation of this al
ing the
asuremery
autoregressive
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bloeck processi because
cffore is performed
of data to produce the desired solution.

Recently, a class of fast recursive implement-
ations for least squares AR algorithms has been
developed. These recursive implementations provide
exact solutions teo the least squares algorithm at
every time interval by updating previous estimates
as each new data measurement v(n) becomes available.
They are fast in the scnse that only 0(p) compu-
tations {(additions, multiplications and divisions)
are necded to update the estimate at each time

This is a
a osing

ing implementation,

e processing on a hleck

interval.

The derivation of these fast recursive imple-
mentations is somewhat tedious and will not be
presented here. The underlying principle in these
derivations, though, it to express the estimate at
time n as the sum of the estimate at time n-1
(which is known) and a corrcection term due to
new data point v(n). The algorithm is further
refined by expressing the mth order estimate at
each time as an crthogonal composition of the m-lst
order estimate and another correction term due to
the next higher ovrder. By calculating successively

the




higher orders at each time interval, the pth order
parameter estimate may be expressed as the composi-
tion of p orthogonal terms. These orthogonal terms
can be calculated by performing oniv 0(p)
computations, resulting in the fast calculation of
the pth order parameter estimate.

As an example of a recursive least square
algorithm, let us consider the prewindow version.
The initial conditions for the algorithm are:

£ b

T =1 =
m,0 m, 0

Am,O 0 m=0,1,2,....,p-1 (10)
As each new data point y(n) becomes available, we
have from previous calculations all variables with
time index n-1. We first set fO,nzzbO,n::Y(n)-
Then, for each order m=90,1,2,....,p~1 we
calculate
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m,n
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We can see that this algorithm requires 6y
additions, 6p multiplications and 6p divisions for
each time update.

The last three equations of the recursive
prewindow algorithm may be depicted as signats in
a filter, as shown in Figure 2.
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Figure 2. The Prewindow AR Lattice Fi'rer.

Such a filter is termed a lattice filter and its
corresponding update procedure is termed a lattice
algorithm.

It should bhe noted that the coefficients of
this Jattice filter are not the autorcpressive co-
efficients, but rather a set ol 2p "reflection”
coefficients pg,n and P%,n- To convert the reflec~
tion to the autoregressive coefficicnts, the
following equations are implemented recursively
form=1,2,...,p

'

A, -, T A PN 2
Am(ZJ Amvl(z) z &m,n m-l‘d’ (12
- __l b ~

7 Y+ A _(z
Am(z) z rm,n m—l(z’ Am~L(?)

where Ag(z) =§O(z) =1. The coefficients of Au(z)
are the desired autoregressive parameter estimates
from the pth order least squares algorithm.

In order to obtaln autoregressive coefficient
estimates at each time interval, p“* additional
multiplications and additions are required. How—
ever, these extra computations may be done concur-
rently with the lattice update computations, and
for small values of p these extra computations are
comparable in number to those required for the
lattice update. Moreover, since it is necessary to
calculate Ag(z) for m=1,2,...,p~1, the AR para-
meter estimates for the mth order least squares
algorithm are calculated for all lower orders at no
additional computational cost. These lower order
estimates are often very useful in determining the
"best" model order.

ITT. ARMA MODELING

The task of autoregressive-moving average
model identification is to determine the p a; and
qtl by coefficients iun the transfer function model
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where {u(k)} and {y(k)} are the input and output
sequences, respectively, of the unknown system.
Relow, we consider two methods for recursively cal-
culating the ARMA model's coefficient estimates.

A. The Two-Dimensional AR Lattice Algorithm

One fast recursive ARMA coefficient estimation
procedure is a direct extension of the AR method
discussed earlier (6], 1In this algorithm the ARMA
prucess 1s rewritten as a two-dimensional AR pro-
cess, and a corresponding two-dimepsional AR
lattice algorithm is nsed to estimate the desired
coefficients.

We can easily reformulate the ARMA medel into
a two-dimensional AR model by first rewriting
equation (13) as

A(2)Y(z) = bOU(z) + Bl(z)U(z) (14)

L + b z_2+,...+b 2 P,
2 P

For this method it 1s netessary to restrict

the numerator and denominator orders to be equal

(i.e. p=q). v combining equation (14) with the

equation U(z) =U(z) we obtain the desired two-

dimensional AR formulation.

A=) —151(2)1 [¥(z)] _ [poulz)]
0 1 v U=

where Bl(z) = blz

(33)

|
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The fast recursive algorithm corresponding to
this two-dimensional AR formulation is almost iden-
tical to the one-dimensional case. The update
equations are the same except that scalars are re-
placed by 2x1 vectors and 2x2 matrices. The com-
plete set of update formulas for the prewindowed
version of this ARMA algorithm can be found in [2]



and [6], and the corresponding lattice fillter fis
shown in Figure 3.
u(n)

v(n) |

u(n)

The Prewindow Two-Dimensional
AR Lattice Filter.

Figure 3.

The number of additions and multiplicaticns
quired to update the reflection coefficient
estimates 1is still O(p), but it is actually 3 to &
times as many as needed for the pth order AR lattice
since vectors and matrices are being multiplied.
However, the inereased computational requirement i
usually offset by a lower permissable choice of
model order p for the ARMA case.

It is important to note that the two-dimension-
al AR lattice algorithms require measurements of
the unknown system's input sequence. If these
measurements are not available, they must he csti-
mated. One proposed method for obtaining this
cstimate is to first set u(k) to zero and then
implement the update equations for time k. The
lattice filter output is then found to be an
estimate of u(k) (see Figure 3). With this esti-
mate of u(k), the lattice equations are implemented
a second time to arrive at the final estimate for
time k. We can see that this procedure requires
two passes of an infinite loop for successively
calculating (hopefully) better estimates of u(k).
By terminating the iteration after a finite number
of passes, a substantial bias on the reflection
coefficients may result., The characteristics of
this bias have not been studied. Therefore, when
the system input measurements are not available,
these two-dimensional AR lattice algorithm estimates
vossess unknown statistical properties.

re—

B. The Fast Recursive High Performance Method.

We propose an alternate approach to recursive
ARMA model identification. The proposed method
begins by estimating the model's autoregressive
coefficients using a lattice algorithm. Once these
AR coefficients have been estimated, they are used
to effect an efficient method for obtaining the
moving average coefficient information. This methal
does not require explicit knowledge of the unknown
svstem's input sequence. Furthermore, the auto-
regressive coefficient estimates cbtained by this
algorithm are consistent and have known bhias pro-
perties.

The proposed fast recursive ARMA procedure is
based on the "high performance' method of auto-
regressive coefficient estimation [1}. The high
performance method provides an effective meaus of
estimating the autoregressive ccefficients of
ARMA model given the output measurements v(1),v(2)
....,v(N) and assuming that the input sequence is

an
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zero mean, white nolsce. Basgically, an approxi-
mation of the model's underlying Yule Walker

equations is constructed using the given output
measurements. The details of this method's deriva-
tion are presented in {1}, where it is shown that
the desired autoregressive coefficient vector
estimate can be determined by solving the system

of p equations for a

T "
Xy +xa =0, (16a)
Here, the vectors y and a and the matrix Y are
ziven in equation (4) and
X = [y(m-1-q) vo-q¢) ...y(m—p-q) |

v (m~q) vimtl-a). .. y(m»—nﬂ-—q) (16b)

y(n-1-g) y(n~2—q)...y(ﬂ_P_Q)

Particular versions of this algorithm are defined

by choosing particular values of m and n. Again
four commonly chosen versions are the covariance,
prowindow, postwindow, and correlation methods,

obtained by choesing the same values for m and n

as in the auntorepgressive versions in the previous
section,

As o consequence of the similarity between
cquations (4) and (16), a similar fast reecurslve
implementation for the proposed AR coefficient
estimator can be derived. The resulting lattice

algoritim for the prewindow method is prescated in
[1]. The lattice filter corresponding to this
recursive algorithm is ghown in Figure 4.

-

—(+

Figure 4. The High Performance Lattice Filter.

lattice filter is essen-
parallel, with the

one delayed by g time intervals.
fficients are calculated using
the top and bottom halves of the
hus providing an interconnection between
The number of computations required to

this lattice at each time interval is
than double number required for
order autore 2ggive lattice.

the autorepressive coeffiicient estimates
have been obtained there are several methods for
obtaining of the ARMA model's bj co-
efficients. Few of these methods are computation—
allv efficient, however. method that shows
promise to estimate the autocorrelation lags

Tt can be scen that this
tially two AR lattices in
of the lower
flection coe
from both

input
The re
signals
lattice,
them.
update
glightly
the same
Once

lTess the

catimnates

One
q+l

is

2.0, Gan

where e{k) is the latrice



filter [see Figure 4]. It can be shown that if the
lattice filter has correct reflecticn coefficients,
then the tL(i) are unbiased and consistent esti-
mates [within a scalar multiple] of the coefiici-
ents of the polynomial B(z)B(z~1). Thus, in order
to obtain the bj coefficient estimates from the
rn{k) estimates, a (computationally expensive)
spectral factorization must be performed. However,
in those applications for which explicit knowledge
of the b] coefficients is not necded, this spectral
factorization may be avoided, and the fn(k) esti-
mates may be recursively updated in an efficient
manner since

fn(i) = fn_l(i) + e(n)e(n-1i) 1=0,1,...,9 (18)

This update requires ouly ¢+l multiplications and
g+l additions at each time step.

Finally, we should note that this proposed
lattice provides an effective menas of recursive
autoregressive parameter estimation when the output
measurements are corrupted by additive ncise. To
effect this we choose q =p-1 4 (the highest nonzero
noise autocorrelation lag) to generate the X matrix
in eguation (16) and we do not perform the moving
average calculations.

IV. MODIFICATIONS FOR THE LATTICE ALGORITHM

The scope of the basic lattice algorithms can
be extended through the use of two usclul modifi-
cations - the normalized form and the exponentially
weighted form. Both of these modifications are
briefly discussed below.

In most lattice algorithms there are some
parameters that are monotonicalily increasing with
time. Examples are ri n and r> in the prowindow
AR lattice. This presénts a p%é lem, since event—
ually these parameters will exceed the magnitude
limits of the computer implementing the algorithm.
To alleviate this problem, normalized
the lattice algorithms were developed. The normal-
ized versions eliminate the to these:
increasing parameters and often ensure that all
other parameters in the altgorithm have magnitudes
which are less than one, thus permittiog {ixed
point number representation. Moreover, these
normalized forms reduec the number of

versions of

need caleulnre

calceulations
per update, thus veducing the processiag require-
ment. Discussions of normalized forms are
[2]-15], and [7].

Another useful modification is the exponential
"forgetting factor'. This forgetring (actor permits
the algorithm to weight past estimates by success-
ively smaller amounts, thus enabling the parameter
estimates to track slow tims variations in the
system. The exponential weighting f

found in

factor is a
small modification to most algorithms, often
requiring only two or three additional multiplies

per time update to implement.

V. CONCLUSLONS

We have presented a class of fast recursive
AR and ARMA least squares identification algerithms
which provide a computationally fast means of re-
cursively estimating the coefficients of an AR or
ARMA model. The AR lattice algorithms have been

extensively studied, and as a result their
numerical and statistical properties are well
understood. ARMA lattice algorithms, on the other
hand, are newer, and their characteristics are not
as well understood.

After presenting an overview of least squares
estimation procedures and AR lattice algorithms,
we discussed two classes of ARMA lattice methods.
The first converts an ARMA realization problem to
a two-dimensional AR problem. When the unknown
gsystem's input measurements are available, the
statistical characteristics of the resulting para-
meter estimatez are known., When no input measure-
ments are available, however, this algorithm must
form an estimate of the input, and the resulting
procedure has an unknown statistical characteriza-
tion. The ARMA lattice algorithm we proposed, on
the other hand, does not require input measure-
ments and still provides known statistical proper-
ties for the autoregressive coefficients. The
major drawback with the proposed ARMA method is
that the model's b; coefficient estimates cannot
be explicitly obtalned in a computationally
efficient manner. It seems, then, that no onc
recursive ARMA estimation procedure 1s best for
all applications.

$ince both 0of the ARMA lattice algorithms are
fairly new, little work has been performed on
simulation experiments for each method, and almost
no work has been aimed toward experimentally com-
pariug the two methods. Furthermore, a few draw-
ks present in these algorithms may still be
eliminated. These areas would prove a useful
course of future study.
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