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Abstract

In this paper we present an analysis of parame-
ter variance statistics for the SVD-Prony method ap-
plied to damped exponential signals. We derive the
covariance matriz of the estimated parameters for this
method. The parameters include the magnitudes and
angles of the poles, and the magnitudes and angles of
the amplitude coefficients. We verify the theoretical
results using Monte-Carlo simulations studies. We
also compare the variance resulls to the correspond-
ing Cramér-Rao bounds for several cases.

1 Introduction

The problem of estimating model parameters of
noisy exponential signals is an active area of research.
These models have a single set of complex poles and
one or more set of amplitude coefficients (snapshots).
The performance of these parameter estimation meth-
ods is often measured by the accuracy of the estimated
poles, since these pole locations contain such informa-
tion as formant frequencies or directions of arrival of
signal components.

One of the popular estimation schemes is the SVD-
Prony estimation {1]. The multi-snapshot general-
ization is considered in this paper. This paper pro-
vides a complete statistical derivation for the multi-
snapshot case where signals consist of arbitrary expo-
nential terms in noise. We have derived its asymptotic
statistics, including the covariance matrix of the esti-
mated parameters. The parameters include the mag-
nitudes and angles of the poles, and the magnitudes
and angles of the amplitude coefficients.

Using these expressions, it is shown that the angle
and magnitude parameters are uncorrelated. It is also
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shown that if relative magnitude of the pole or ampli-

tude coeflicient estimate is considered (z.e. 2, where o
is the true magnitude), then the corresponding angle
and relative magnitude variances are equal.

This paper also examines pole estimation accu-
racy as functions of pole magnitude, data length, and
pole separation using the variance expressions. We
compare these variance results to the corresponding
Cramér-Rao bounds and verify the theoretical results
using Monte-Carlo simulations. In addition, we show
that the transition from the 1/m® (where m is the
number of data points) variance bounds decrease for
poles on the unit circle to the variance decrease as
poles move off the unit circle is also detailed.

The effects on poles inside and outside the unit cir-
cle using backward or forward linear prediction in the
SVD-Prony estimation scheme is also detailed.

2 Estimation Procedure Review

2.1 Data Model

Assume we have N “snapshots” of data vectors y(t),
each of length m:

N
(1)
Each data vector is modeled as a noisy exponential
sequence

v(t) = [ w(t) wn() yma () ], t=1,.

v() =Y m(t)pf +ey(t) ¢=0,1,...,m—1.(2)
i=1

There are n distinct exponential modes in the data;
the n poles {p;}i-., do not vary from snapshot to snap-
shot, but the amplitudes z;(t) may vary. Here, it is
assumed that {e,(t)} are uncorrelated zero mean com-
plex white Gaussian noise sequences with variance o.



Equation 2 may be compactly written as

y(t) = Ax(t) +e(t), (3)

where e(t) = [ eo(t) e1(t) em-1(t) |, z(t) =

[ zo(t) z:(2) 2a-1(t) ], and A is the m x n
Vandermonde matrix derived from n signal poles

]T

1 1 1
141 P2 Pn
A= ) ) ) (4)
UL T e ppt

2.2 Parameter Estimation

The multi-snapshot backward linear prediction
equations are given by:

Ybx —y, (5)
where T
b=1[b by br | (6)
and where
yo(1) y1(1) yr(1) 7
( v (1) %2(1) yr+1(1)
ym—(L‘-{-l)(l) ym_.L(l) ym—'l(l)
: (7)
Yo (N) 1 (N) yL(N)
y1(N) y2(N) yr+1(N)
L Y241y (V) pmer (V) vm—1(N) |

Here L is the order of prediction; b is the coefficient
vector of the polynomial B(z) given by

B(Z):1+b12—1+622—2+"'+bLZ_L. (8)

For the noiseless case, [ can be any integer greater
than or equal to the model order n; in practice, choos-
ing L > n results in more accurate parameter esti-
mates. Note that all of the N snapshots are used
simultaneously to estimate a single set of prediction
coefficients (and therefore, a single set of poles).

The solution of Equation 5 involves obtaining a sin-
gular value decomposition of the matrix [ y Y ] and
truncating all but the first » singular values to arrive

[1]. This leads

at a noise cleaned estimate [ % J
to the modified linear prediction equation

Yb=3 (9)
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from which the linear prediction coefficient vector es-
timate b is found as

b=-V+j, (10)

where * denotes the Moore-Penrose pseudoinverse.
Finally, the estimates for the poles are found by

~ 1

e Z€10; (E}(z)) ,

Once the poles have been determined, the equation
for the amplitude coefficients can be formed. Equa-
tion 3 leads to the following equation for the amplitude
coeflicients,

i=12,..,L (11

: Co] L |
Fm-1 ~m—1 r(1) zL(N)
1 P
= [ s(1) y(v) ]
or .
AX =Y,. (13)

The amplitude coefficients can be found from a least
squares solution to Equation 13,
X=(23) Ay, = dvy,, (14)
where * denotes complex conjugate transpose. Be-
cause only n singular values of Y are nonzero, there
are at most n pole estimates which can correspond to
true data modes. Therefore, only the n poles which
have the largest energy are retained. Thus estimates
A and X become matrices of sizes m x n and n x N,
where the L — n columns and rows, respectively, cor-
responding to the lowest energy modes are deleted.

3 Statistical Analysis

To analyze parameter statistics we now derive their
covariance matrix. This is given in the following the-
orem.

Theorem: Assume data is given by Equation 2. We
define w; and oy, to be the angle and magnitude, re-
spectively, of each pole p;, thus p; = a;eiw:, Similarly
we define 7(t) and 3(t) to be the angle and magnitude
vectors, respectively, of each vector of amplitude coef-

ficients 2(¢). We now define the following parameter
vectors:
T
6 = [4"() 8T 7(N) BTN ]
T
Hp = { Wi Wn Qg Qn ]
0 = [6F o7 1", (15)



and let @ denote the SVD-Prony estimate of 6, which
are given by the n highest energy mode estimates
found in Equations 11 and 14.

Then the asymptotic (high SNR, where SNR is
defined as total signal power divided by total noise
power) pdf of # is given by

§~ N(6,5), (16)

where

B =
U(1,1)

b3 T, )T~ )
-7, (1)U, 1)

T;'(WHTQ, )TN ) -

U(1,N)

U(&,n ﬁ(N,1)ﬁ“;-1(1) ﬁ(&, N)

where * and ¥ in Equation 17 are real and imaginary
part operators, respectively, and where

U(t,r) = R(ZR'(r) - ROQ(r) - Q" ()R (r)
+%Tx(t)A+A+*T;(r)6t,
V(t) = —-R(t)Z+Q"()
Z = SLFGSTDD'S™GI'T;
Qt) = %TPFGS*‘D(t)A*"T;(t)
R(t) = T.()ATCAT'(t) (18)

Here, T3 (), T5(t), Tp, To, C, and F' are diagonal

matrices given by
1 1 1
T:(t) = dia; , ,
® (smmm am)
1 1 1
Ta(t) = d1ag< , e, )
o EIONE NN
= ams(idd)
P p2 Pn
T = dla,g(i,L, ,-—1—)
1 g (¢ 7Y
C = diag(0,1,...,m—=1)
1 1 1
F = dia, (—-—,—,...,—) 19
g M N2 Mn (19)
and 7n; and G are given by
1
2p;
N = [ bl bg bL :! . (20)
Lp;.L'l

-7 T, N)

V(N vy -!
-T;l(N)ﬁ(N,U THNT(N, )T~ 1) - —TFUNT(N,N)  TFHNIT(N, N)T; 1 (V) —T;UNIV(N)  TFHNV(N)TL !
v 1) vVeTsTl(1) V(N Ve(NT; UV 7z Vipts
—T7YVe(1) TIIVET; (1) —T7IVe(N) TIIVE(NIT; (V) i T 177!
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P1 pi pi
P2 D3 1 4]

c=|"" " : (21)
Pn P2 pE

The matrix D is a (m— L) N x mN block diagonal
matrix given by

D = diag(B, B, ..., B), (22)

(1, N)T3 =1 ()
T T, NT;~H(N)

V)
-T; (V)

var:=t
T (V)T

T(N,N)T3 71 (N)

(17)

where B is (m — L) x m and given by

B =
1 b by br 0 0 0
0 1 b b1 b 0 0
- 0 1 b1 br_1  bg 0
0 --- 0 0 1 br_s br_1 b
(23)

The matrices D(t) are each given by the tth column
block of D and § is the noise free version of Y. a

Proof: See [2].

Corollary: The elements of 4(t) are uncorrelated
with the corresponding elements of 5(t) and the ele-
ments w are uncorrelated with corresponding elements
of a. o

Proof: Note that the corresponding covariances in
Y, are the diagonal elements of the product of the
imaginary part of a Hermitian matrix and a diagonal
matrix and are thus identically zero. o

We can also note that the angle variances are equal
to the magnitude variances except for the transforma-
tion matrices Ty (t) and 7,. Without these transforma-
tion matrices, Xy would correspond to a relative mag-
nitude parameterization, where magnitude relative to
the true magnitude is estimated, rather than absolute
magnitude. When real and imaginary parts of the
amplitude coefficients and poles are considered as pa-
rameters, the resulting variances can be derived using
a simple Jacobian coordinate transformation and are
equal.

Another property which can be pointed out is ab-
solute phase invariance. We can see that the terms in



Equation 18 remain unchanged as T (t) — W, (1)
and p; — €/%p; due to cancellations. Thus the covari-
ance matrix depends only on relative phase between
the poles and between each set of amplitude coeffi-
cients for each snapshot.

4 Simulation Studies

Simulations have been performed using the statis-
tical analyses above. Recently a CRB formulation has
been developed for multi-snapshot damped exponen-
tials in noise [3]. These CRB results are compared
with the variances of the estimated poles using the
SVD-Prony method to examine its performance.

4.1 Variance Results for Single Exponen-
tial Case

In this simulation, a model with a single pole and
with one snapshot of data was chosen. The experi-
ment entailed moving the pole along the positive real
axis (the results are independent of the pole angle, so
an angle of zero was chosen) from 0.1 to 10 and cal-
culating the variances using Equation 17 for data sets
of lengths 2, 5, 10, 20, 50, and 100. For comparative
purposes, the amplitude coefficient associated with the
pole was chosen to be a positive real number such that
the mode energy (a2 7;51 P*!) was unity for each pole
location and data length. The noise power was also
kept constant at o = 1. The model order was as-
sumed to be one third of the data length, which has
been shown to be optimal [4, 5].

The variances for the pole angle and magnitude ap-
pear as the dashed lines in Figures 1 and 2, respec-
tively; the corresponding CRBs appear as the solid
lines in these figures. From Figure 1 we see that the
pole angle variances are just above the CRBs inside
and near the unit circle. Qutside the unit circle the
variances become much higher (except for the m = 2
case) than the CRBs. This is due to the fact that
backward linear prediction is used in this SVD-Prony
method; note that with backward linear prediction ex-
traneous poles are placed outside the unit circle, thus
making estimation of poles outside the unit circle more
difficult. Using forward linear prediction will give the
opposite results for poles inside and outside the unit
circle. Similar observations apply to the pole magni-
tude variances (cf. Figure 2)

From these two figures we see that inside the unit
circle the variances for pole angle are higher than the
variances for pole magnitude and vice-versa outside
the unit circle. This is due to the fact that angular
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Figure 1: Pole angle variances for single pole data,
(n=1).

uncertainty becomes greater as a pole moves closer
to the origin. Note that the pole angle variance ap-
proaches infinity as the pole approaches the origin,
which is what one would expect since its angle is un-
defined at the origin.

We see that the variances for both pole angle and
magnitude are asymptotically (as m — oo) lowest
when the pole is on the unit circle, and that on the
unit circle the variances are decreasing by 1/m? (m
is the data length). This is consistent with the well-
known 1/m3 variance decrease, since the amplitude
coefficient was adjusted in this experiment to keep the
mode energy constant (if the amplitude coefficient is
left unchanged, the variance decrease is 1/m®). Note,
however, that as the number of data points is reduced,
the pole magnitude which gives the minimum variance
is less than unity.

When the pole is not on the unit circle, the vari-
ances do not decrease to zero as m — oo. Because
of the decay or growth of the exponential mode, and
because the mode energy is kept constant, increasing
m results in adding data points with lower and lower
amplitude. Thus, the variances do not continue to
decrease.

The variances for the amplitude coefficient angle
and magnitude are also available and appear in [2].

4.2 Some General Observations

Using the covariance matrix, one can determine a
confidence region corresponding to an estimate of each
pole. This region can be plotted as, for example,
a two standard deviation confidence “ellipse” about



pole magnitude variances
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Figure 2: Pole magnitude variances for single pole
data (n = 1).

each pole. Figure 3 is an example of such a plot, where
the pole locations are indicated by “x” symbols. In
this experiment there are ten poles, each with an en-
ergy of one. Here, m = 100 data points and the noise
power is o = 0.001. This gives an SNR of 10dB per
mode. The dashed ellipses (they are actually circles
due to the corollary and the equivalence of the real
and imaginary part variances as noted in Section 3)
shown in Figure 3 represent the two standard devia-
tion boundaries around the ten pole locations. 87%
of poles found in a Monte-Carlo simulation would be
expected to fall within these circles. Note that the
boundary circles are significantly smaller for the poles
which are located close to the unit circle. The solid
circles represent the corresponding CRB bounds. One
hundred Monte-Carlo simulations were performed and
the estimated poles appear as dots in Figure 3. From
these estimates, we can see that the statistical analy-
sis is in general confirmed; the exception being some
bias in the estimates of the pole closest to the origin.

5 Conclusions

We presented a statistical analysis for estimated
poles of the SVD-Prony algorithm. We have provided
complete expressions for the covariance matrix of the
parameters of an exponential model with one set of
poles and multiple sets of amplitude coefficients. The
poles of this model may lie anywhere in the complex
plane. Using these expressions several useful proper-
ties of the covariance matrix were established.
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Figure 3: Two standard deviation bounding circles for
each pole, using a tenth order model, with m = 100
data points, o = 0.001, and each mode energy set to
unity.
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