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CLASSIFICATION OF RADAR SIGNALS USING THE BISPECTRUM
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ABSTRACT

This paper uses features extracted from
the bispectrum of radar signals for
classification of unknown radar targets.
The classification performance is com-
pared with the performance of other
classifiers that are not based on higher
order spectral processing of the mea-
sured radar data. The radar signals used
in this study are experimental measure-
ments that correspond to scattering from
real radar targets. The data is corrupt-
ed with different types of disturbances
that are likely to occur in a typical
radar system.

INTRODUCTION

This paper presents a comparison of the
classification performance of target rec-
ognition systems that are based on bispe-
ctral features of unknown targets and those
based on spectral features. There are two
reasons for using bispectral features of
radar targets for classification purposes.
First, the bispectrum suppresses additive
disturbances that are zero mean with symmet-
ric probability density functions. Second,
bispectral processing detects implicit
correlations between spectral components
that may be present in the data and that are
not recovered using spectral processing;
this property has been investigated in {1},
where it is shown that the bispectrum of
radar signals can be used to detect multiple
interactions between scatterers.

Classification performance using bispectral
features is compared with that obtained
using spectral features and time-domain
scattering features. Although the classi-
fiers used are suboptimal, their performance
provides significant information about the
guality of features used and the robustness
of such features under different data condi-
tions. The data conditions investigated in
this study include classification of noisy
signals where the additive noise is modeled
as Gaussian, and Weibull. The case where the
azimuth position of the target is unknown is
also examined.
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II. TIME DOMAIN BISPECTRAL FEATURES

The bispectrum is defined as the Fourier
transform of the third order cumulant of the
data. Cumulants represent the triple corre-
lation of the data sequence and are usually
a function of time, and the bispectrum is
then a function of frequency. In radar
signal processing, the third order cumulant
is defined as

R(£,, £,) =E[H" (f) H(f+£,) H(£+£,)] (1)

where H(f) 1is complex and represent the
backscatter response of the target at fre-
quency f, and E[.] denotes the expectation.
The bispectrum is then obtained as a fun-
ction of time

B(t,, t;) :Ea EfzR(fl,fz)exp[—j(tlfl+tzf2)]

The bispectrum can also be expressed as a
function of range using t = 2r/c, where C
denotes the speed of light. If the data H(f)
is deterministic then the expectation in the
third order cumulant is replaced by a summa-
tion. The term '"bispectrum" is somewhat
misleading in this application, as it is a
function of time, not frequency, however, we
will use this term because it has become
standard terminology.

The bispectrum can be explicitly defined in
terms of the spectral components of the
data, thus providing some intuition to bis-
pectral processing. For the radar problen,
the spectral components simply denote the
impulse response of the target as seen by
the radar, and the bispectrum is defined as

B(t,, t,) =<h(t;) h(t,) h(t+Et,) > - (2)

where <,> denotes the ensemble average.

The above definition of the bispectrum has
been used to detect implicit dependencies
between the different responses that appear
in the target impulse response [1].

These dependencies can be related to mul-
tiple interactions between scattering sub-
components along the target. Therefore, a
peak in the bispectrum at (tl,t2) indicates
that an implicit coupling is detected be-
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tween the time response at instant tl and
the time response at instant t2 [1]. Note
that neither the spectrum nor the impulse
response of the target can recover the in-
formation made available through bispectral
processing. Therefore, the key to a radar
target recognition system based on time-
domain scattering features is to use both
the impulse response and the bispectrum
features in a single pattern recognition
machine.

III. TYPES OF CLASSIFIERS USED

The classifiers simulated in this study do

not require any prior information about the’

statistical properties of the measured data.
These classifiers either measure the Euclid-
ean distance between the signatures of the
unknown target and the signatures of the
catalog target or measure the cross-correl-
ation between the two. For computational
efficiency reasons, these classifiers assume
that the unknown target zero-time response
is fixed and known with respect to that of
the catalog.

This study considers three classifiers as
described below.

1) Bispectrum Classifier:

The goal is to find a catalog element (i)
whose bispectral response matches the bis-
pectral response of an unknown target (u).
That is one wishes to minimze

minjff (B, (t,, t,) ~B,(t,, t,)) *de, dt,
&Yt

If the first two terms are fixed, then this
entails maximizing

[ [ Bt e, (ey e ey,
¢, 1,

and since the target =zero-reference is
assumed to be known, this is equivalent to
maximizing the normalized cross-correlation
between the catalog target bispectral re-
sponse, and the unknown target response.
Using Fourier transform identities and
Parseval's theorem, we find that the cross-
correlation can be written as (for the
discrete fregquency case)

The test target is classified to catalog c¢

r,(0,0) =

IDFTIR;(f,, £,) Ry(£,, £,)]

1 _
D IRININTAICER S ST REI
if
[Z,(0,0) =max, [T%,(0,00],i=1, ..., M

This classifier is reasonably computation-
ally efficient and wuses all bispectral
information available.

2) Nearest Neighbor Rule: This classifier is
used to identify an unknown target based on
the backscatter data without employing any
signal processing. Given that the measured
backscatter is

Hy=[H, (1)  Hy(2), oo Hy(K)]

where K is the number of frequencies used.
A target (i) is chosen if

(H,~H;)T(H,-H;} =min; [ (H,-H;) T(H,-H.) ]

for j=1,..,M, where M is the number of

targets.

3) Cross-correlation of Impulse Responses:
This classifier identifies an unknown target
based on its time-domain response h(k) where
k is a time index. A target (i) is chosen
such that

— Y, A, (k) Ak

T T Y Th 1

This is equivalent to maximizing the cross-
correlation between the unknown target
impulse response and the catalog target im-
pulse response.

IV. CLASSIFICATION PERFORMANCE

A comparison between the performance of the
bispectrum based cross-correlationclassifi-
er and the performance of the other classi-
fiers is summarized in this section. The
probabilities of target misclassification at
different signal-to-noise ratios are esti-
mated using Monte-Carlo simulations. It is
assumed that the targets have equal proba-
bility of occurrence. Thus, N sample tests
are drawn randomly and then used to deter-
mine whether the classifier gives the cor-
rect decision for these samples or not.

The performance of the cross-correlation
classifier using bispectral features is
dependent on the bispectral estimation
procedure (or the estimation of the triple
correlation, see [1}). The level of seg-
mentation used to compute the triple cor-
relation has a significant effect on the
performance of the classifier. The triple
correlation lag used and the number of data
points also influence the performance of the
classifier. Finally, removing the average
from both the unknown and the catalog im-
proves the classifier performance.

The data base used in the classification
examples consists of experimental mea-
surements in the frequency band from 1-12
GHz of scale models of commercial aircraft
[37. The scaled data corresponds to mea-
surements of the radar cross section (RCS)
of full scale aircraft in the HF/VHF fre-
quency band, (8-58) MHz.
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Decision statistics for each experiment are
computed at a fixed noise level, and total
statistics of classification error for all
targets are obtained. One hundred experi-
ments were performed for each target (for a
total of 500 experiments). The 95% confi-
dence interval for these experiments at a
missclassification probability of 30% is 4%.
The entire test is repeated at different
noise levels. Finally, the missclassificat-
jon percentage (error) is plotted versus
signal-to-noise ratio. It was experimentally
found that segmenting the data into five
records of 21 samples each with a correla-
tion lag of 10 points, gave nearly the best
classification performance of the cases
considered.

Figure 1 shows the classification perfor-
mance for five commercial aircraft with
complete azimuth information using additive
white Gaussian noise. The catalog consists
of scattering data for five commercial
aircraft at 0, 10, and 20 degrees azimuth.
The performance of the nearest neighbor
algorithm (NN) is optimal in this case. The
bispectrum classifier is outperformed by the
impulse response classifier by a small
margin. This figure shows that blspectral
features can be used effectively in radar
target identification. Increasing the number
of data samples and employing an optimized
classification scheme may improve the per-
formance of the bispectrum classifier.

Figure 2 shows the classification perfor-
mance obtained when additive colored noise
generated using AR filtering of white noise
(the AR filter coefficients can be found in
[4]). The nearest neighbor rule (which is
suboptimal in this case) applied to the
frequency-domain data outperforms both time-
domain classifiers. Also, the performance of
the bispectrum classifier compares favorably
with the performance of the impulse response
classifier and is not as degraded as the
additive white Gaussian noise case, which
may indicate that the bispectrum can pro-
duce favorable results under other colored
noise conditions. Figure 3 shows the classi-
fication performance when additive non-
Gaussian noise is used (the square root of
a Weibull distributed random variable added
to both the in-phase and the quadrature com-
ponent of the data. The performance of the
bispectrum classifier has improved even
better than the previous two cases. Figure
4 shows the classification performance when
the azimuth of the target is not exactly
known and an error of 10 degrees is permit-
ted. The nearest neighbor classifier outper-
forms the other classifiers in this case,
and the performance of the bispectrum cla-
ssifier degrades significantly compared to
the impulse response classifier. This figure
shows that the bispectrum is sensitive to
changes in the aspect angle of the target.
This sensitivity may be explained by the
fact that changing the azimuth position of

the target may introduce additional multiple
interactions and eliminate others. Although
these interactions do appear in the impulse
response, they appear more strongly in the
bispectrum [1].

Figure 5 shows the classification perfor-
mance when the classifier is mis-informed
about the target azimuth position with an
error margin of 10 degrees. That is a target
at azimuth A degrees is always compared with
a catalog target at A + 10, or A - 10 de-
grees. This type of mismatch in design
specifications affects the classification
performance of all classifiers including the
bispectrum classifier.

V. CONCLUSIONS

The performance of radar target identifi-
cation systems based on the bispectrum is
examined in this paper. Although, the number
of data samples is relatively small and may
be insufficient to produce very accurate
bispectral estimates, one may conclude that
the bispectrum classifier may outperform
other known classifiers under conditions of
colored noise and non-Gaussian noise. Fur-
ther, it seems that the bispectral signa-
tures of radar signals are sensitive to
changes 1in the target aspect angle. Re-
cently, we have been studying classification
in the presence of extraneous uncataloged
objects, and the performance of the bispect-
rum classifier seems very encouraging.
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Figure 1: Classification performance (known
azimuth and additive white Gaussian noise).
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Figure 2: Classification performance (known
azimuth and additive colored noise).
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Figure 3: Classification performance (known
azimuth and additive non-Gaussian noise).
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Figure 5: Classification performance (radar
mis-informed about target aspect with
degrees error and additive white Gaussian
noise).
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