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Abstract

This paper extends the CRB derivation in [1] to the
case where signals consist of arbitrary exponential
terms in noise. Expressions for the CRBs of the pa-
rameters of an exponential model with one set of poles
and multiple sets of amplitude coefficients are derived.
The poles of this model are not constrained and may lie
anywhere in the complex plane. The results of the pa-
per provide a complete description of the CRB of pole
estimates for arbitrary exponential signals in noise.

I. Introduction

The problem of estimating model parameters of noisy
exponential signals is an active area of research. The
performance of these parameter estimation methods is
often measured by the accuracy of the estimated poles,
since these pole locations contain such information as
formant frequencies or directions of arrival of signal
components. This problem is considered in [1], and es-
timators are derived for the case where the poles are
confined to lie on the unit circle. To evaluate the ac-
curacy of the estimators, a general expression for the
Cramer-Rao Bound (CRB) is derived for the angles
of the estimated poles under the assumption that the
poles of the signal lie on the unit circle.

This paper extends the CRB derivation in [1] to the
case where the signal consists of arbitrary exponential
terms. In this extension, the poles of the signal may lie
anywhere in the complex plane. An expression of the
CRB is derived for both the angles and the magnitudes
of the poles, and for the amplitudes associated ‘with
these poles. This work can also be seen as an extension
of the CRB expressions developed in [2].

Using these expressions, this paper then compares pole
estimation accuracy as functions of pole magnitude,
data length, and pole separation. It is shown that for
small data lengths, poles slightly inside the unit cir-
cle are more accurately estimated than poles on the
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unit circle. In addition, the transition from the 1/m3
(where m is the number of data points) variance bounds
decrease for poles on the unit circle to the variance de-
crease as poles move off the unit circle is also detailed.

II. The Cramer-Rao Bound Derivation

A. Data Model
Assume we have N “snapshots” of data vectors y(t),

each of length m:

y(®) = [ wo(t) n() ymor() T t=1,2,.. ., N.

Each data vector is modeled as a noisy exponential
sequence

()= S m(Op! +eg(t) ¢=0,1,...,m=1 (1)
i=1

There are n exponential modes in the data; the n poles
{p:}i=, do not vary from snapshot to snapshot, but the
amplitudes z;(t) may vary.

Equation (1) may be compactly written as
y(t) = A(p)=(t) + &(t), )
where the noise vector e(t) is given by,
et)=[ eolt) art) - e ]
the amplitude vector z(t) is given by
z(t) = [ zo(t) z1(2) emo1(t) |7,

and A is the m x n Vandermonde matrix derived from
n signal poles, {p;}

1 1 1
n p2 vt Pn

A=| 2 B B ®
plm—l p;n—l pm—l

Here, it is assumed that the e(t) are uncorrelated zero
mean white Gaussian noise vectors with variance o.
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B. CRB Covariance Matriz
From equation (2), the likelithood function of the data
is given by

1
(ﬂ.o.)mN

1 Y "
exp == [u(t) — Az()]" [y(t) = A=z(t)] ¢ .

L(y(1),...,y(N)) = X

Thus, the log-likelihood function is

In(L) = —mN In(x) — mN In(c)—
| N

23T () - o7 (AT [y(t) - Az(t)]. (4)

a

We define «; and w; to be the magnitude and angle of
each pole p;, thus p; = ajel®s.
Define the parameter vector 6 as

0—_—[0 MT w - w, oap e ag ]T

)

where M is a vector containing the real and imaginary
components of the amplitudes:

T

M=[3TQ) () Ny (V) ],

where Z(t) = Re {z(¢)} and Z(t) = Im {z(¢)}.

From the partial derivatives of equation (4) with re-
spect to o, {Z(t)}, {Z(t)}, {w:i}, and {e;}, the Fisher
information matrix is found to be

Iy =
b -
T - _ _
H —H Aw] Aal
f{ H Awl Aa:l
H —‘FI Ac./N AcrN
H H AwN AaN
AL, AT Aly Aly Tu  Tua
L A%, AL Aly Aly Ti. To |
where
H = EA”A
[od
2
Agr = ;A”Dwx(k)
2
Dok = ;A”DGX(Ic)
9 N
_ H H
I, = ;;Re{x (t)DH D, X(t)}

N

Two = ;;Re{XH(t)DfDaX(t)}
9 N
T, = ;ZRe{X”(t)DfDaX(t)}.

t=1

Each X(t) is a diagonal matrix given by

z1(1) O
X(®) =
O za(t)

and D, and D, are matrices obtained by differentiat-
ing each element in A(p) (see equation (3)) with respect
to its pole angle and magnitude, respectively.

For a given model, the Fisher information matrix I,
can be inverted to provide the CRB covariance matrix
for the parameters o, {Z(t)}, {(t)}, {w:}, and {a;)}.

C. CRB Covariance Matriz for Pole Angle and Pole
Magnitude Only
In many cases one is interested only in the behavior
of the pole magnitudes and angles. For this case, we
define
T

61=[w1 W2 o W Q@ Qg - an] .
Then the CRB for 6; is found using partial inverse of
a partitioned matrix and given by

o= )
wao a

-1
i":Re AHGAL AEGA,,
ARGA,, ARGA,, ’
where G = H~1.

Note that one can also obtain the CRB for the pole
accuracy in terms of its real and imaginary parts by a
simple Jacobian coordinate transformation of CRBy,.

III. Examples and Observations

This section presents examples which illustrate the be-
havior of pole CRBs with respect to pole magnitude,
data length, and pole separation.

A. Pole Magnitude and Data Length

In this simulation, a model with a single pole and with
one snapshot of data was chosen. The amplitude co-
efficient associated with the pole was chosen such that
the signal energy was unity. The noise power was also
kept constant at o = 1.
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The CRBs for the pole angle and magnitude appear in
Figures 1 and 2, respectively for various pole magni-
tudes and various data lengths. From Figure 1 we see
that the pole angle CRB is (logarithmically) symmet-
ric with respect to the unit circle. The pole magnitude
variance (Figure 2) is not symmetric, and smallest at a
pole radius less than one. If we normalize these bounds
by the square of the pole magnitude, the magnitude
variance becomes log-symmetric.

The CRBs for both pole angle and magnitude are
asymptotically lowest when the pole is on the unit cir-
cle, and that on the unit circle the CRB is decreasing
by 1/m? (m is the data length). This is consistent with
the well-known 1/m? variance decrease, since the am-
plitude coefficient was varied in this experiment in or-
der to keep the energy constant. Note, however, that as
the number of data points is reduced, the pole magni-
tude which gives the minimum CRB is less than unity.

Note also that the decrease in the CRB as m is in-
creased is limited when the pole is off the unit circle
and that the maximum decrease is smaller when the
pole is further away from the unit circle. This corre-
sponds to high decay/growth rates which result in sig-
nificantly large data points only at one end of the set or
the other, making additional data points insignificant.

B. Angle Separation

In this simulation we consider two poles at ;e d«/2
and aqe~72%/2 for various data lengths and angle sep-
aration Aw. Again, o = 1 and each amplitude is chosen
such that the mode energy is unity. Figure 3 shows the
CRB for the angle of each pole versus pole angle sep-
aration when a3 = a3 = 1 (i.e. both poles are on the
unit circle). The CRBs for the pole magnitudes are
equal to the pole angle CRBs because these poles are
located on the unit circle. These results are consistent
with {3]. :

Figure 4 shows the angle CRBs for pole 1 when o) =
.85 and a; = .95. The CRBs for pole 2 have a similar
shape, but are lower for the larger data lengths. The
CRBs for each pole magnitude are proportional to the
angle CRBs.

The bounds in Figure 4 exhibit the same type of charac-
teristics as in Figure 3. One major difference, however,
is the fact that as Aw — 0 the CRBs remain finite in
Figure 4. This is due to the fact that the poles are at
different radii. For large Aw and larger m the variances
are higher in Figure 4 than in Figure 3; this is expected
in light of the single pole results.

C. Amplitude Coeﬁﬁcient CRBs
Inversion of the Fisher information matrix Iy gives the

CRBs for the amplitude coefficients as well as the poles.

As an example, Figure 5 shows the CRBs for the am-
plitude coefficient real part for the previous single pole
example. The CRB results for the amplitude coefficient
imaginary part are identical to those for the real part.
The sharp decrease in the curves as the pole magnitude
becomes greater than 1 is due to the sharp decrease in
the values of the amplitude needed to keep the mode
energy equal to one.

D. Pole Error Ellipses

The CRB gives the variance bound for the pole mag-
nitude, angle, and also the cross correlation between
the two. These can be used to generate an error ellipse
around each pole. As an example, Figure 6 is a plot
of the 2 standard deviation error ellipses for ten poles
each with mode energy equal to one, using m = 100
data points and ¢ = .1. Note that all of the ellipses
are circles, indicating that real and imaginary parts of
the pole error are uncorrelated. This is the case in all
examples tested to date, but no general proof of this
property has been found.

IV. Conclusions
We have derived expressions for the CRBs of the pa-

rameters of an exponential model with one set of poles
and multiple sets of amplitude coefficients. The poles
of this model may lie anywhere in the complex plane.
The CRB for pole angle is log-symmetric about the unit
circle with minimum on the unit circle, while the CRB
for pole magnitude has its minimum inside the unit
circle for finite length data sets and is not symmetric.
Simulation results have also shown that error standard
deviation ellipses about poles turn out to be circular.
The CRBs for estimates of the amplitude coefficients
in terms real and imaginary parts are also available.
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Figure 1: Pole angle CRBs. Figure 4: Pole angle CRBs for p;.
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Figure 3: Angle CRB as a function of pole separation. model.
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