Applications of the bispectrum in radar signature analysis and target identification
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Abstract

This paper considers the classification of radar targets using features extracted from the bispec-
trum of the backscattered signals. The classification performance of the bispectrum-derived features
is compared with that of features extracted from the impulse response and the frequency response of
the unknown target. In each case, the classification performance is evaluated using compact-range
radar signal measurements of a set of five commercial aircraft. A number of scenarios of noise
environment and azimuth ambiguity are consider. The case where extraneous scatterers are present
in the vicinity of the measured target is also examined and the effects of the extraneous scatterers
are discussed.

I. Introduction

Radio frequency signals scattered from a radar target contain significant information about the
physical target geometry. Radar backscatter signals are often measured as amplitude and phase
at uniformly spaced frequencies. These measurements, as a function of frequency, characterize the
transfer function of the target as seen by the radar. The inverse Fourier transform of the measured
finite data sequence is a time-domain profile of the illuminated target. This profile is known as
the “impulse-response” of the target (or “transient response’5 for finite bandwidths)*. A peak in
the impulse-response appearing at time ¢ is an indication that a fraction of the illuminating signal
propagating along the target is scattered at time to. Therefore, a sequence of responses in the
time-domain profile can be attributed to a sequence of scattered signals along the target. The
impulse-response can, of course; be displayed as a function of range r using t = 2r/¢, where c is the
speed of light.

The impulse response displays all scattering mechanisms in a one-dimensional profile. In this
form of representation, responses due to signals scattered directly from target sub-structures are
superimposed with responses due to multiple interactions and other scattering mechanisms. The
result is an apparent lack of correspondence between peaks in the impulse-response and physical
locations and characteristics of the scattering components. Thus, it is difficult to deduce accurate
information about the target geometry using the impulse-response alone.

1In what follows, the term “impulse response” generally refers to any type of time-domain, or range-domain profile.
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When employing Fourier-based processing of the impulse response, it is also possible to overlook
some of the unresolved details concerning the target scattering features, due to limited resolution.
Thus, responses that are closely spaced in time but correspond to different types of interactions are
inseparable in the Fourier transformed impulse-response.

This paper focuses on the interpretation of the responses of bispectral processing of radar signals
and the use of the resulting bispectral features to identify unknown targets. The purpose of this
investigation is to identify some of the advantages and limitations of the application of bispectrum
in radar signature analysis.

Interpretations of the bispectral features of radar signals that identify certain multiple inter-
actions are given in this paper. Examples of real aircraft models such as the Boeing 707, DC10,
and Concord are considered. Results on the classification of these targets based on the bispectrum
of noisy measured returns are presented. These include classification in additive Gaussian and
non-Gaussian noise.

The classification results obtained using bispectral features are compared with those obtained
using impulse response features. A classification scheme using both the impulse response and the
bispectrum is also discussed and evaluated.

This study is motivated by important properties of the bispectrum such as the detection of
quadratic phase coupling and the suppression of zero mean additive Gaussian noise. We point
out that the bispectral response of a radar target, while not a substitute for the impulse-response,
may be viewed as an additional display of signatures that can be used to achieve a more complete
description of the various scattering mechanisms and enhance the target classification process.

II. Time-Domain Bispectral Features

The bispectrum is defined as the two-dimensional Fourier transform of the third order cumulant
of the data. Cumulants represent the triple correlation of the data sequence and are usually a
function of time so that the bispectrum is typically a function of frequency. Consider, for example,
the data ensemble {z(k)}4,. The third order cumulant of {z(k)} is defined as

R(m,n) = E{z(k)z(k + m)z(k + n)} (1)

assuming that the sequence {xz(k)} is third order stationary. The bispectrum of {z(k)} can be
obtained from R(m,n) using Fourier transform [1].

B(wy,ws) = ZZR(m,n)W(m,n) exp {—j(wim + wyn)} (2)

where W(m,n) is a two-dimensional window that has the same syrnrnevtry properties as R(m,n).
Details concerning the third order cumulants and bispectra processing are found in [1].

In radar signal processing, the data sequence that represents the backscattered signal is often
recorded as a function of frequency. The third order cumulant is then defined as
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R(fy, f2) = E{H*(N)H(f + [)H(f + f2)} (3)

where H(f) is the complex-valued coherent backscatter response of the radar target at frequency
f, and E{-} denotes statistical expectation. The bispectrum is then obtained as a function of time
as

B(ty,t2) = Y > R(f1, f2)exp {—j(t1/1 + t2f2) }. (4)
Hi f2
The term “Bispectrum” is somewhat misleading in this application, as it is a function of time, not
frequency. However, we use this terminology because it has become standard. The bispectrum can
also be expressed as a function of range (ry,r;). Finally, if the data H(f) is deterministic then the
expectation in the third order cumulant is replaced by a summation over frequency.

The bispectrum can be explicitly defined in terms of the time (or range) components of the data
thus providing some intuition into the character of bispectral processing. For the application to
radar signal processing, the spectral components simply denote the impulse response of the target
as seen by the radar, so that the bispectrum is defined as

B(t,t2) = (h(t)h(t2)h(t1 + t2)) (3)

where (-) denotes the ensemble average.

Bispectra derived from the above definition have been used to detect implicit dependencies
between different responses in the target impulse response [2]. These dependencies can be related
to multiple interactions between scattering subcomponents along the target. Therefore, a peak in
the bispectrum at (¢;,¢;) indicates that an implicit coupling is detected between the time response
at t; and the time response at time #; [2]. A

This paper is concerned with the classification performance of bispectral features extracted
from radar target backscatter measurements. In order to further motivate this investigation, we
note that the information made available through bispectral processing is not apparent in either
the spectrum or the impulse response. Therefore, a pattern recognition machine that uses both the
impulse response and the bispectrum may, in certain scenarios, have a significant advantage over a
classifier designed to employ only one of these sets of features. The focus in this paper, however, is
on the feasibility and performance of classification using bispectral features as compared to using
other target features rather than the design of the optimal classifier.

ITI. Specification of Classification Algorithms

Each of the M targets employed in this investigation is represented by a vector H;(f) of a set
of K stepped frequency measurements of the radar backscatter of that target. These M sets of
K data points form a set of catalog measurements representing the set of aircraft of interest. An
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unknown target measurement H,(fx) is simulated by disturbing one of the M catalog vectors with
noise or some form of extraneous scattering signals as

Hu(fi) = Hi(fi)+n(fi) 0<k<K -1 (6)

for : € {1,..., M}, where n(fi) represents the disturbance term.

Using the spectra of the unknown and catalog targets, we can compute the impulse responses,
h.(k) and h;(k) (where k denotes the time index) using the Discrete Fourier Transform. We can
also compute the bispectra B,(#;,%2) and B;(t1,t2) using the method described in [1]. It is these
latter terms which we use for classification.

The classifiers employed in this study base their decisions on either the Euclidean distance
between the unknown and the catalog representations or the cross-correlation between the two
representations. As such, they do not require or incorporate any prior information concerning the
statistical properties of the measured data. The classification algorithms implemented here are also
based on the assumption that the zero-time response of the unknown and catalog targets is fixed
and known.

This study considers the three types of classification algorithms described below. The goal of
each algorithm is to identify the catalog measurement j whose bispectral response B;(-,-) “matches”
(in the senses defined below) the bispectral response of the unknown target B,(:,-).

A. Cross-Correlation of Bispectral Responses:

For classification with the cross-correlation algorithm, target j is chosen whenever
i = arg rniin{/tl /t (Bi(t1,t2) — Bu(ts,12))? dtldtg} (1)
— argmin { /t /t B(ty, t2)dtrdts + /t [ Bin, t)dnd, (8)
t 1 Jt2 1 V12
-/ Bi(tl,tz)Bu(tl,tg)dtldtg}
1 2
Since the first two terms in (9) are fixed, this entails maximizing
/n [ Bi(ty,t2) Bults, ta)dtadts 9)

and since the target zero-phase reference is assumed to be known, this is equivalent to maximizing
fil ft2 Bi(tl,tg)Bu(tl,tg) dtl dtz
1
[fu S lBu(tl,tz)Pdtldtz] ’ [ftl J lBi(tl,tz)lzdtldtz]

where T,(0,0) is the normalized cross correlation of the catalog target bispectral response i =

Fivu(o’ O) =

(10)

L
z

1,2,..., M and the test target response u. Using two-dimensional Fourier transform identities and

Parseval’s theorem, we find that this cross-correlation can be written (for the discrete frequency
case) as
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The test target is classified as target j if
j = argmax{Tl;.(0,0)} ¢=1,...,M. (12)

This classifier is reasonably computationally efficient and makes use of much of the available bis-
pectral information.

B. Nearest Neighbor Rule:

This classifier is used to identify an unknown target based on the backscatter data without em-
ploying any signal processing. Given that the measured backscatter is H, = [H.(fo), .., Hu(fx-1]
(where K is the number of frequencies used) then choose target ; whenever

) = arg miin{(Hu - H)T(H,-H)} i=1,....M (13)

C. Cross-Correlation of Impulse Responses:

This classifier identifies an unknown target based on its time-domain response A, (k) where k is
the time index. For this algorithm, target j is chosen whenever

i hu(k)R( k)
Vo hu(m)P S, [hi(n) 2

This is equivalent to maximizing the cross-correlation between the unknown target impulse response
and the catalog impulse response.

J = argmax [

],z’:l,...,M (14)

IV. Classification Performance of Noisy Radar Signals

A comparison between the performance of the cross-correlation classifier using the bispectrum
and the performance of other classifiers is given below. The comparison includes classification in
additive white Gaussian noise, additive colored Gaussian noise, and additive non-Gaussian noise.
Classification with azimuth ambiguity and azimuth estimation error of 10° is also presented. The
probabilities of target misclassification at different signal-to-noise ratios are estimated using Monte-
Carlo simulations. It is assumed that the targets have equal a priori probabilities of occurrence.
Thus, N test samples are drawn randomly and then used to determine whether the classifier gives
the correct decisions for these samples or not.

The data base used in the classification examples has been frequently used in radar target
identification studies [3, 4]. The data base consists of experimental measurements in the frequency
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band from 1 — 12 GHz of scale models of commercial aircraft. The scaled data corresponds to
measurements of the radar cross section (RCS) of full scale aircraft in the HF /VHF frequency band
(8-58 MHz). Details of these measurements can be found in [5].

Decision statistics for each target are computed at a fixed noise level, and total statistics of
classification error for all targets are obtained. One hundred experiments were performed for each
test target for a total of 500 experiments. (For this experiment, a 95% confidence interval for a
misclassification probability of 30% is 4%.) The entire test is repeated at different noise levels.
Finally the misclassification (error) percentage is plotted versus the signal to noise ratio.

The performance of the cross-correlation classifier using bispectral features is dependent on the
bispectral estimation procedure (or the estimation of the triple correlation), see {1]. The amount of
segmentation used in computing the triple correlation has a significant effect on the performance of
the classifier.

The triple correlation lag used and the number of data points also influence the performance of
the classifier. In addition, removing the average from both the unknown and the catalog improves
the classifier performance. It was experimentally found that segmenting the data into 5 records of
21 samples each with a correlation lag of 10 (see [1]) gave nearly the best classification performance
over the cases considered, so these values were used in the examples shown below.

Figure 1 shows the classification performance for five commercial aircraft, with complete azimuth
information, using additive white Gaussian noise. In this case, the catalog consists of scattering
data for five commercial aircraft at 0°,10°, and 20° azimuth, and 0° elevation. We note that the
performance of the nearest neighbor (NN) algorithm is optimal for this case.

From these results, we see that the bispectrum classifier is outperformed by the impulse response
classifier by a small margin. This figure indicates that bispectral features can be used effectively
in radar target identification. Increasing the number of data samples and employing an optimized
classification scheme may improve the performance of the bispectrum classifier and reduces its
sensitivity to the triple correlation estimation procedure.

Figure 2 shows the classification performance for the case of additive colored noise, generated by
passing white Gaussian noise through a moving-average (MA) filter with coefficients [1.0,0.8]. In this
case, the target azimuth is assumed to be completely known. The NN rule applied to the frequency-
domain data outperforms the time-domain classifiers. Also in this case, the performance of the
bispectrum classifier compares favorably with the performance of the impulse response classifier.
The degradation of the time-domain classifiers compared to the nearest neighbor rule is slightly lower
than the additive white noise case, which may suggest a comparable performance of all classifiers
under other colored noise conditions.

Figure 3 shows the classification performance when additive non-Gaussian noise is used (the
Square root of a Weibull distributed random variable added to both the in-phase and quadrature
components of the data). The azimuth is assumed to be completely known. The performance of
the bispectrum classifier is improved and is comparable to that of the other classifiers, which may
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Figure 1: Classification performance of five commercial aircraft with known azimuth and additive

white Gaussian noise.

indicate a significant role for the bispectrum in classification of unknown targets in a non-Gaussian
noise environment.

Figure 4 shows the classification performance when the azimuth is known only to be within
+20°. Although the nearest neighbor rule is not optimal in this case, it outperforms the time-
domain classifiers. Further, the performance of the bispectrum classifier degrades compared to
the impulse response classifier wlien the azimuth ambiguity range increases. In fact, if the target
is assumed to be known within £30° (not shown in the Figures) then the performance of the
bispectrum classifier degrades significantly compared to the impulse response classifier.

These figures show that the bispectrum is sensitive to changes in target azimuth position. This
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Figure 2: Classification performance of five commercial aircraft with known azimuth and additive

colored Gaussian noise generated by an MA filter.

sensitivity may be explained by the fact that changing the azimuth may introduce additional mul-

tiple interactions and delete others. Although these interactions do appear in the impulse response,

they appear more strongly in the bispectrum [2].

V. Classification of Signals with Extraneous Scatterers C—

In this section, we discuss the effect of extraneous scatterers in the unknown target frequency
response (scatterers not included in the catalog) on the performance of the classifiers. This type
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Figure 4: Classification performance of five commercial aircraft with azimuth known to within +20°
and additive white Gaussian noise.

age of misclassification when scattering from extraneous point scatterers (described in the captions)
Is added to the frequency response of all five targets. Scattering from the unknown target is as-
sumed noise-free for the purpose of examining the effects of extraneous responses. The extraneous
signatures used in these figures are three point scatterers where the location of the response due
to each scatterer is random and uniformly distributed over [—%, %], where T' = (Af is the
frequency increment of the measured data).

The following conclusions can be drawn from these experimental results. First, it appears

1
Af?

that classification with nearest neighbor rule is the most sensitive to the presence of extraneous

uncataloged scatterers. In additiou, we see that classification with impulse response is less sensitive
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Figure 5: Comparison between classification using frequency-domain data, impulse response, and
bispectral response as a function of SER for complete azimuth information (three extraneous scat-

terers used).

to extraneous scatterers

The results presented above also indicate that classification with the bispectrum is less sensitive
to the presence of extraneous scatterers than the nearest neighbor classifiers.
shown that the bispectrum classifier is even less sensitive to uncataloged scattcrers if the responses
from such extraneous scatterers do not happen to coincide with a valid response of the unknown

target.

Signal—-To—Extraneous Scctterers [dB]

than the NN classifier.
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VI. Conclusions

In this paper, target classification using bispectral features was evaluated and compared to
classification using spectral responses and time-domain responses. The results in his paper show that
bispectral processing of radar signatures may enhance the target identification process particularly
under conditions characterized by additive colored noise, additive non-Gaussian noise and scattering
from extraneous scatterers. It is also evident that bispectral features of unknown radar targets may

be less sensitive to scattering from extraneous scatterers.
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