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CHAPTER I

INTRODUCTORY MATERIAL

Introduction

The radar cross section (RCS) of a target is an indication of the target’s
“brightness” or reflectivity at microwave frequencies [1,2]. The RCS of a
target is a function of the rotation angle of the target. Its value at a given
angle determines how visible a target will be to a microwave radar at that
rotation angle. To make a target more elusive, designers strive for a low RCS
over wide angular intervals.

Oon most radar targets, there are highly localized and reflective regions
known as scattering centers. Most of the contributions to the total RCS come
from scattering centers; therefore, to reduce the RCS, each scattering
center’s strength must be minimized. To gauge the success of existing
designs, and to guide future designs, knowledge of the strength and location
of each scattering center on the target is needed. It is therefore of interest
to compute the RCS distribution of a target, which is a two-dimensional
function indicating the sources of RCS on a three-dimensional target in a
known image plane. (An image of a given target is the projection of the
target’s scatterers onto a plane. The plane onto which the projection occurs
is the image plane.) When the RCS distribution is integrated over the image
plane, the total RCS of the target results. The RCS distribution therefore not
only indicates the overall brightness of a target, but it also gives the

locations and amplitudes of the scattering sources.



One important property of scattering centers 1is that they tend to be
visible over small intervals (typically 5-30° of angular rotation) [1]. That
is, as the rotation angle is changed, a given scatterer may become visible and
even vary in intensity over 5-30° before finally disappearing.

One technique for localizing scatterers on the image plane is by use of

inverse synthetic aperture radar, or ISAR [1,3,4]. In ISAR processing,
coherent data is collected over an angular interval typically 1-2° wide. This

data is processed to form an RCS distribution using the two-dimensional DFT or
similar algorithm [1]. However, ISAR processing is not always appropriate for
the scattering center localization problem. There are two main reasons for
this. First, ISAR processing is performed over a narrow angular interval, and
a given scattering center may not be present or detectable in that interval.
We require the localization of the scattering centers regardless of the
angular interval in which they occur. Second, the image plane upon which the
ISAR produces the RCS digtribution is not always known. The image plane normal
vector 1is a linear combination of the target rotation vector and the radar
line of sight vector {l]. In many practical situations the rotation vector is
not known, so the image plane is also unknown.

To overcome these problems, a tomographic approach of estimating the RCS
distribution was developed in [5]. In this method, tomographic cross-range
projections of the target’s RCS distribution function were formed over a wide
angular interval. The image was then reconstructed based upon the projections
using the convolution-backprojection algorithm. The main drawback of this

method is that it exhibits poor down-range resolution when imaging scattering
centers in existence for angular intervals less than 60°. Most scatterers are
in existence for less than 60°, producing distorted images.

In this paper, the method of [5] is extended to improve the down-range

resolution. We present a method of locating the main sources of RCS,
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regardless of the angular interval over which they are present; moreover, this

method locates the scattering sources in a known image plane. The image itself
is a wide-angle RCS distribution, based upon 180° or more of angular interval.

As before, a tomographic approach is used, but instead of using only cross-
range projections, a new method involving hybrid projections is used. A hybrid
projection is a variation of a cross- or down-range projection; it utilizes

change in pulse frequency as well as angular diversity. This method 1is
designed to accurately image scatterers which may exist for only 5-10°.

Because large rotation angles are used, the method described here 1is
limited to cooperative targets or turntable models, rather than targets in a
tactical situation. (The cooperation is needed to provide a large angle
change, not a known rotation vector.) This algorithm is well-suited for

fixing the locations of the sources of RCS on a cooperative target.

Notation

8 = rotation angle of target.

£ = fregquency of a pulse.

t, = fcosb.

fy = fsin6.

80 = rotation angle of first data point used to form a hybrid projection.

f, = radial freguency of the first data point used in the formation of a
hybrid profile. (£,° = £,° + £,

fy o = fy-component of the radial frequency f,.

fyo = fy—component of the radial frequency f.

o = projection angle of a projection.

Af = point to point change in frequency for data points used to form a

hybrid profile. (Not radial change, but along the direction of
transform.)

Af, = Afcosa.



Af, = Afsina.

N = number of angular increments used to form each projection (=size of the
Fourier transform).

M = number of projections used in forming the image.

Af_ = radial change in frequency between each profile used in the noncocherent

average to reduce speckle.

L = number of hybrid profiles which are averaged noncoherently to reduce
speckle.

d = distance between the radar and the target.

c = gpeed of light.

g(x,y) = reflectivity density function of the target.

RATA COLLECTION

The experimental setup considered here consists of a microwave radar
illuminating a rotating target with a stepped frequency waveform, as shown in
fig.l. The target is fixed with respect to the x-y axis and rotates with
respect to the u-v axis. The radar is fixed on the u-axis a distance d from
the origin. The target begins at a certain initial rotation angle 6,5, and the
radar transmits a pulse of frequency f=fo. The pulse propagates to the target,
engulfs its entire length, and is reflected back to the radar. The radar
measures and records the baseband in-phase and quadrature component of the
return pulse. The radar then transmits a pulse of frequency f=f_+Af, and
repeats the same measurement, while the target remains at its same initial
rotation angle. This process is repeated for each frequency through
t=f +Af(S-1), with S equal to the number of frequency increments.

Next, the target rotates with respect to the u-v axis through an angle A9,
and the entire set of S I-Q frequency measurements are repeated at this new
angle 6=6,+A8. This process is repeated for each angle through 6=6,+A8(R-1),
with R equal to the number of angular increments. In this manner, we tabulate

an annular locus of known data points in data (6-f) space, as in fig.2. In our
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Figure 1. The physical setup. Since the radar is fixed to the
u-v axis, the u-axis is the direction of down range.



Figure 2. The locus of known |-Q reflectivity samples.



gituation, R is chosen large enough so that the target rotates through a full
circle. The problem is to find the distribution of scattering centers based
upon this annular data. In this case, the image plane is the plane in which
the target rotates.

The above measurement procedure was described for a turntable target;
however, the process can be extended to actual moving targets as well. Instead
of a turntable providing the change in rotation angle, the target’s
progression in a circular path will effectively yield the same rotation angle
change. The problem of imaging “live” targets in this manner is considerably
more difficult because, a) the target is translating as well as rotating, b)
the target’s rotation axis changes as a result of roll and pitch variations in
the yaw motion, and c) the target’s rotation angle is not fixed during the
transmission of each burst. Because of these difficulties, experimental
results presented here are based on turntable models, rather than such live

measurements.



CHAPTER II

THE PROCESSING ALGORITHM

Introduction
Let the target be represented by the reflectivity density function g(x,y)-

The function g2(x,y) is the target’s RCS distribution [1]. The goal of the

algorithm described in this paper is to reconstruct g2(x,y) based upon the

annular data region (or a subset thereof) shown in fig.2. This goal is

achieved in a two-step process:

1) Obtain tomographic projections of g(x,y). A tomographic projection of g at

projection angle o is defined as

Pa(s) = [g(scos a-tsin a,t cos a+s sin a)dt
te e (1)

As shown in fig.3, the s-t coordinate system is rotated an angle a with

respect to the x-y coordinate system, so that

X=8C0S a-tsin a
y=ssin a+tcos a (2a,b)



Y
/} AN line of integration

t

S

/ x’}x

line of integration

Figure 3. A typical integration path used in forming a
tomographic projection. -



The integration of (1) occurs along lines parallel to the t-axis, as a

function of position on the s-axis.

2) Reconstruct g2(x,y) using the projections made in step one. The

convolution-backprojection algorithm, a common tomographic reconstruction
algorithm, is used to perform the reconstruction {[7].

The convolution-backprojecticon algorithm requires significant diversity in
the angles at which the projections are made in order to produce accurate

reconstruction. One difficulty with this requirement is that some scattering
centers of the target are in existence for a limited rotation angle (5-30°, as

mentioned earlier), making a large projection angle diversity difficult to
obtain. However, the hybrid profile method developed below is able to achieve
the projection angle diversity without the need for wide rotation angle
diversity, giving rise to improved image quality.

The main contribution of this work is the development of improved ways of
carrying out step one. These improvements allow the formation of projections
spanning a wide range of projection angles, while using a narrow range of
rotation angles. The key idea in generating these types of projections is the
hybrid profile. A hybrid profile can be best understood by considering its
relation to down-range and cross-range profiles. A down-range profile is
formed by transforming radially in 0-f space; that 1is, data points
corresponding to the same rotation angle and increasing frequency are
transformed with the discrete Fourier transform (DFT). The separation of
scatterers occurs in the down-range direction. Likewise, a cross-range profile
is formed by transforming along a circumference in data space: varying
rotation angle but maintaining constant frequency. A hybrid profile is formed
by transforming data points so that both angle and frequency are traversed

from data point to data point. As will be shown, a hybrid profile separates
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scatterers according to some “hybrid” direction, which is perpendicular to the
direction of transform in data space. Transforming so both angle and frequency
are traversed allows more diversity in the projection angle than if only angle

or frequency is traversed.
In earlier work [5], a similar method of reconstructing g2(x,y) using

tomographic projections was explored. However, this method used cross-range
profiles only, so far less diversity in the projection angle was cbtained. The
lack of diversity gave rise to good resolution in the cross-range direction,
but poor resclution in the down-range direction.

In this section we will also discuss the zero reference problem for the
hybrid profiles. Convolution-backprojection requires that the origin of each
projection corresponds to the same point on the target. Out of convenience,
this point is chosen to be the center of rotation. We discuss a method of
correcting the profiles so the center of rotation is coincident with the
origin.

Speckle is unwanted destructive and constructive interference occurring
between scatterers within the same resolution cell. Speckle occurs in the
formation of hybrid profiles, and some method of reducing its effects is
needed. The nature and solution of the speckle problem is well known [6,8],

and is also addressed in this section.

Limi ics: The ] . . . The RCS . 3 ,
Function., and The Target Response Function

In this section, we introduce three fundamental concepts key to the
understanding of the imaging algorithm: the reflectivity density function, the
RCS distribution, and the target response function.

First, assume the target is composed of a linear combination of ideal point

scatterers. The target is represented by a reflectivitv densitvy function of

the form

11



g0 y) = BAD(X =Xy Y - V) ;
i (3)

th

The quantity A; is the real, positive amplitude of the i scatterer located

at  (Xj,Y;). Moreover, assume g is space-limited, so that a frequency-domain-
sampled representation of g is possible.
Second, since g is the reflectivity density function, giving the voltage

2

gain as a function of position on the target, g“ gives the power gain, and is

called the RCS distribution. In practice, the delta functions of g(x,y) have

non-zero width, so that g2(x,y) is a legitimate function.

Lastly, we will derive an expression for the target response function
(Hg(f)) of a target represented by the reflectivity density function g(x,y).
The response function of a target is the baseband I-Q measurement as a
function of rotation angle and frequency at which the measurement was taken.

The derivation of the response function is as follows. Consider momentarily
a target composed of a single point scatterer located at (x,y). Under far-
field conditions, the response function at an angle 6 and frequency f is given

by:

j2x2[d ~x cos 6 -y sin 0]

H(f) = Ae
_ Ae]é—’;—f[d—x cos 6 -y sin e]

The scaler A is equal to the scatterer’s amplitude, and the quantity d-
xcos (0)-ysin(0) is the scatterer’'s down-range position. Since there is more
than one scatterer, the linearity of the system implies that the total target

response is

12



Annulus of
known data

Figure 4. A set of points in dataspace used in the formation
of a hybrid profile.



of points shown in fig.4, lying within the annulus of known data. The sequence
H(n) is equal to the value of H(fx,fy) at the points indicated in fig.4, so

that

Hn) = H(f,o +Af - nf o +Af, ) ; n=0,.., N-1
=0 ; else (5)

£ Af

The quantities f_, yorAfy and Af, are defined in the notation section of

Chapter I, as well as in Fig.4. The hybrid profile is defined as

h(k) = N- point DFTHn)] ;k=0,..,N-1
=0 ; else (6)

The hybrid profile is analogous to a down- or cross-range profile, but it
separates scatterers according to “hybrid” range, instead of down or cross
range.

The hybrid profile is parametrized by a,GO,Af, and fo. By appropriately
interpolating the frequency domain data, there need not be any restriction on
the data points used in the transform, provided they lie within the annular
region of data space. In this spirit, we assume H(fx,fy) is available over the
entire annular region. From the definition of H and the geometry of fig.4, (6)

becomes

h(k) = DFT {H(f,, +Af, - nf, +af, - n)l

X

4
TEXG o + A, M+ Y (E, + AT M)

I

4nt +® +® ;
DFTe ° [ [oxye |

Yy m=—00 X a-%

dxdy
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]A'(:Lfd = e —j-A::—n[fo(x cos 6 _+y sin 8 ) +naf(x cos o +y sin a)]
- DFTse [ Jaxye dxdy

y=-®® X=-® (7)

The quantity

U=XCcos 6,+Yysin 8,

in (7) can be interpreted as the displacement of a scatterer along the u-axis,

as shown in fig.l. Likewise, the quantity

S=XC0S a+Yysin a

is the displacement of a scatterer along an axis rotated a degrees with
regspect to the x-y axis, as shown fig.3. As will be shown later, the quantity
s is for a hybrid profile what down range is for a down-range profile, or what
cross range is to a cross-range profile.

We now have for h(k)

4nf +

hi) - DFT,Je ° " [ [ak ye

X=~w0 Y ==-0

- 140—"(f Ju+nat-s)

dxdy
(8)

The frequency, f, in (8) is n-dependent. The n-dependence can be made

explicit as follows:

2 2
1‘2=fx+fy

= (fxo + Af xn)2 + (f Yo +Afvn)2

16



f2 + cos(0, - a)f Af - n+ Afn 2

2

(f .+ naf cos(8, - a)) + (nAf sin(8, - a))

If nAfsin(6,-a) is small compared to f_, we may write

f=f,+nAf cos(6, - o) (9)

The largest nAfsin(8,-a) may be is (N-1)Afsin(6,-a). As shown in fig.4., this
quantity is the component of the transform perpendicular to the radial
direction. A small value compared to f_ implies that the rotation angle change
during the transform must be small. The rotation angle can be made small
either by orienting the hybrid profile close to a down-range profile (make 0, -
o small); or if this not possible, by keeping the actual length of the
transform small (reduce NAf). This approximation 1s desirable because f is a
linear function of n, which allows one to interpret the hybrid profile as a
tomographic projection.

With the approximation (9), equation (8) becomes

}4tdf° i = i%Af[d cos (8 ,- a)-s]n -j4c—nf°u
h(k) = DFT,Je | Jaxye dxdy
Xm-o ym-e (10)
To improve resolution, a window function is usually included in (10). Let

w(n) be the window function, and W(w) be its discrete-time Fourier transform.
(W(w) 1s thus periodic with period 2m) Using the definition of the DFT, we

write

17



N -1 —'Eink j4nd. e e jAn f{d cos -a)} ~-sin —'i’f—f u
h(k) = E w(nje LTSI f fg(x,y)e'°A[ (Fome) =g 17 dxdy

y=-0 X=-m

e, 0T - tu r2n, 4n
-e { [ axye W[Wk + ~5-Af(dcos(8, - a) - s)] dxdy

y=-® X= -®

Now let VV(x)==VV(i%ﬁx) . Note that W is periodic with period 2z, and W

bar is periodic with period 5%? . We have for h(k)
jhmdy T E Sy c
hk)-e ° ° f f gx,y)e ° ° W |sosk+dcos(0, -a) —s|dxdy
2NAf
e X (11)
The double integral is in terms of the x-y coordinate system. Consider

instead the rotated coordinate system (s,t) as given by

S=XCO0S a+Ysin a
t =ycos a-xsin a

In the new system, u, the down-range location of a scatterer, will be given by

18



u(s, t) =s cos(a - 6,) +t sin(a -0,)

In the new system we have for h(k)

4xd t® + 4
=t St - C
hk)=e ¢ ° gs, t)e ° ° W k+dcos(®,-a) - s|dids
. ;‘:m tim {2NAf (12)

The integration over t may be interpreted as a tomographic projection of a
phase-~shifted reflectivity density function. The tomographic projection,
Py(s), of g multiplied by the phase factor is given by the following

integral:

4nf
o u(s t)

" -
po(s) = [d(s t)e dt
t=-o (13)

The integration occurs along lines parallel to the t axis, collapsing the
phase-shifted g function onto the s axis. Note that the orientation of the s
axis is identical to the orientation of the sequence of points in data space
which are transformed to form the hybrid profile. Thus the orientation of the

8 axis is independent of the initial rotation angle, @ This is an

o-
advantageous property of the algorithm, in that the projection angle can be
controlled arbitrarily by selecting different transform orientations in data
space, without utilizing different initial rotation angles. It is this
property which allows one to achieve great angular diversity in the projection
angle while remaining at the same initial rotation angle, thereby utilizing a
small rotation angle interval.

There is a simple physical interpretation of the exponential phase factor

in (13). The phase shift on each part of g is proportional to u(s,t). The
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geometric meaning of u, as shown in fig.l, is down-range position as measured
from the origin. This phase shift is a manifestation of the time delay
existing between scatterers separated in down range.

With this projection interpretation, h(k) becomes

d4xd % .
hk) =€ ° ° [ pals) W[ﬁk+d cos(8, - ) —s]ds

S =-

The integration on s is a convolution between Py (S) and W bar(dcos(eo—a)+s):

4nd
]

h0g = € * “[pu(s) + W (s + d cos(8, - a)]

T

c
“ onar (14)

The bracketed quantity is a function of delay (t) between the projection and
the weighting function. The relation between the delay and k (the independent
variable of the hybrid profile) is given above. Equation (14) shows that the
hybrid projection Py (s) is convolved with the transform of the DFT window,
causing a reduction in resolution. Moreover, the window 1is delayed by
—dcos(Bo—a), causing ambiguity in the origin of the hybrid profile, by virtue
of the fact that d is unknown. Although the loss of resolution can be
ameliorated by an increase in the transform size, the origin ambiguity can
cause problems, and is discussed in Chapter II.

To summarize, a hybrid profile is formed by transforming I-Q measurements
along a line segment within the data space. The orientation of the segment
determines the projection angle, which determines the direction of hybrid
range. The hybrid profile is interpreted as a projection of a phase-shifted
g(x,y) onto an axis with the same orientation as the transform in data space.

By considering (14), we see that transforming a segment in data space

20



effectively performs the feollowing six operations:

1) The reflectivity density function, g(x,y), is phase shifted in

proportion to down range.

2) The phase-shifted density function is tomographically projected

at an angle a to form the one-dimensional projection Py (8) -

3) The above projection is convolved by the transform of the

window weighting function, W(w).

4) The convolved projection is shifted by —dcos(eo—a) mod c/2Af.

4 nf
. o

i d
5) The convolved, shifted projection is phase shifted by € ° .

6) The above projection is sampled every c/2NAf length units.

The phase shift is in proportion to the down—range position, and the
tomographic projection is perpendicular to the direction of the data space
transform. The hybrid profile is therefore quite similar to the tomographic
projection of (1). The two significant differences are 1) g has been phase
shifted before being projected (versus being projected only) and 2) the entire
profile is shifted by -dcos(6,-a) mod c/2Af. The first difference gives rise
to speckle, and the second gives rise to the zero reference problem. These two

phenomena must be corrected before convolution-backprojection can be used.

Speckle Reduction
In high resolution radar imaging, a resolution cell may contain more than
one scatterer. Although the scatterers are in the same resolution cell, they

may have different down range positions, causing each scatterer in the cell to
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have a different phase. However, the return provided by the radar is cocherent
sum of the scatterers’ complex amplitudes, giving rise to constructive and
destructive interference, known as speckle.

In our situation, each resolution cell is actually a strip. A given hybrid
profile bin (resolution cell) may contain more than one scatterer, and we are
therefore faced with the speckle problem for each strip-shaped hybrid profile
bin.

Mathematically, speckle occurs because the formation of the hybrid profile

involves a projection of a phase shifted g(s,t):

4:r‘f°( )
~ u(s, t
¢ ds

Pa(s) = [g(s t)e

t=-2

The phase factor involves u, which is down-range positiocn, as shown in
fig.2. Because the reflectivity density function is phase shifted in
proportion to down range, scatterers within a hybrid profile bin give rise to
gpeckle.

The classical approach to speckle reduction [6] can be used for hybrid
profile speckle reduction as well. The classical method is to re-resolve the
region of the target corresponding to the speckle-ridden resolution cell. This
entails computing p,(s) using several different initial frequencies f_, and
noncoherently averaging the resulting p,(s) profiles. In our situation, L
hybrid profiles are made using the same values of Bo,a,Af,N, etc., but
different fo; typical values of L are 5-15.

The next step involves the noncoherent averaging of the resulting L
profiles. Fig.5 shows a typical set of L hybrid profiles which are averaged to
reduce speckle within a single projection. The averaging is expressed

mathematically as
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L
- L 3 IDFT,{H(aAt , 08 6, +f,, + AF - 1, QAT ,8in 6,41, + AT, - )}
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It can be shown that if a single resolution cell with scatterers Aqyees, By

is resolved at frequencies f,...,fp giving complex amplitudes Ris+-.,Ry, then

Lo o

l 1 - 2 S e
im Y R « EAq
q=1 q=1

That is, averaging the squared magnitude of the returns gives the gum of the
squared amplitudes of the scatterers in that cell [6,p1124-1209},1[8].
Likewise, averaging the squared amplitude of the L hybrid profiles made at

different values of f_ produces a real function which is proportional to the

tomographic projection of gz(x,y). To summarize the process, a segment in data

space is windowed and transformed, then shifted so that the origin and center

of rotation coincide. This is repeated L. times at different values of f and

o
the resulting hybrid profiles are averaged noncoherently. This averaging is
needed to eliminate the speckle present in each of the hybrid profile bins.

In addition to desensitization to the phase shift phenomenon, the
noncoherent averaging is desired for a second reason. When collecting stepped

frequency measurements of an actual target, the target cooperatively traverses

a circular path. In doing so, it generates the desired yaw rotation. However,

24



as the craft traverses the circle, it will also undergo significant roll and
pitch motion due to sea state or buffeting winds, in the case of a ship or

aircraft respectively. Because of these effects, the rotation axis is
different for each projection. (Note that with conventional ISAR over a 1-2°

rotation angle change, this problem is absent because the actual motion is
well approximated by rotation about a single axis.) To desensitize to this
variation in rotation axis, the final projection used in the convolution-
backprojection algorithm is chosen to be the average of the squared magnitudes
of the profiles. Thus, there are two motives in selecting noncoherent
processing: desensitization to the phase shift phenomenon, and desensitization

to variations in the rotation axis.

The Zero Reference Problem

After forming the hybrid projections of the target’s reflectivity density
function, convolution-backprojection is applied to the projections to form an
estimate of the reflectivity density function. However, the convolution-
‘backprojection algorithm requires that the origin of each projection
correspond to the same point on the target. With the processing used to form
the hybrid profiles, this requirement is not met. The additional processing
needed to insure that this requirement is met 1s described below.

Equation (14) gives a convolution between p,(s), the projection of g, and
the window'’s transform delayed by —dcos(Go—a). Since the window’s transform is
periodic, p,(t) will actually be shifted by -dcos(8,-a) mod c/2Af. Before the
shift, Py (zero) corresponded to the center of rotation. What is needed is a
way to shift p,(s) back by dcos(ﬁo-a) mod c/2Af. Achieving this shift is
complicated by the fact that d, the radar-target separation, is unknown.
Instead of computing -dcos(8,-a) and modding by c/2Af, the approach used here
estimates —dcos(ﬁo—a) mod c/2Af directly. This estimate begins with the

formation of a plot of down-range profiles vs. rotation angle for the annular
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Figure 6. A typical plot of down-range profiles versus angle,
showing the oscillation of four scatterers around the center
of rotation.



region mentioned earlier. Such a plot shows the sinuscidal variation in down
range position of each scatterer with rotation angle, as shown in fig.6. All
the sinusoids have the same mean, which is the center of rotation. The
estimate of -dcos(8,-o) mod c/2Af is the distance between the sinusoidal mean
and the zero bin. Lastly, each profile is shifted back by this amount, so that
the zero bin corresponds to the center of rotation.

The origin point on the target is chosen to be the center of rotation,
because it is an easy point to locate on the target. However, when dealing
with a live target, other points may be easier to use as a reference. For
example, some techniques used for motion compensation of ISAR reflectivity
data are designed to reference profiles to a strong scatterer on the target

[1,9,107.

Tomographic Reconstruction
At this point, the formation of center-of-rotation aligned hybrid
projections has been described. Typically 100-200 hybrid projections are

formed using a wide range of o and 60. Next, g’, the estimate of gz, is formed

by applying convolution-backprojection to these projections.
Convolution-backprojection can be described as a two step process. First,
each projection is discrete-time filtered with a high frequency enhancement

filter (convolution step):

With
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+:k=0
f(k) = JO ; kevenand £ 0

- —— Kk odd
(k)

The function p,; 1is the speckle-reduced projection given in (15), made at
projection angle aj. The function p’ is the filtered projection, and f is the
impulse response of the filter [7]. In the second step, the reconstructed
image (g’') is formed by summing the filtered projections as follows
(backprojection step):

M
g(xVy) = E P, (xcos o +ysin a) 6
=1 :

Interpolation is needed in (16), because xcosai+ysinai may not correspond
to an available value of pai(k)'

The geometric interpretation of (16) 1is to consider each filtered
projection convolved across the image plane at an angle of a-90°. A single

projection contributes equally to g’ on a locus of points (x,y) which lie

along a line perpendicular to the direction of transform in data space. For
example, consider a down-range projection (a=90°): each bin of the projection

will contribute equally to a line (or strip) of constant down-range, and
varying cross-range.

The convolution-backprojection method is further described in [7].

Summary of Imaging Algorithm

The imaging algorithm is composed of six basic steps:
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1) Collect I-Q reflectivity data in an annular region of 0-f space for

the target in question, as described in Chapter I.

2) Select and produce a pattern of hybrid projections using significant
diversity in the projection angle. This selection consists of
determining values of L,fo,Af,N,Afo (which are common to all the
projections), and «, 60 (which are specific to each projection). Various
strategies of selecting these parameters are discussed under
Experimental Results, Chapter III. The formation of projections using

these parameters consists of five steps:

A) Using the values of a,Bo,fo,Af,Afo, and N, obtain H(n) from

the values of H(fx,fy) from the annulus as follows:

Hn) = H[(f0 + gAf )cos 6, + nAf cos a, (f, + gaf )sin 6, +naf sin O‘x]

The index g denotes the qth profile which will be incoherently

th

averaged, to form the i speckle-reduced hybrid projection which

is used in the convolution backprojection step.

B) Window the sequence H(n) by forming the product:

w(n) - H(n)

where w(n) is the length N window function. Then transform with an

FFT:
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FFTiw(n) -H (n)]

C) Repeat 2A,2B L times for g=1,...,L. Then form the average

o) = 1 S FFTw) - HRIF 0=k =N-1

=

D) shift p,;(k) so that the origin is coincident with the center

of rotation, as described in Chapter II.

E) Repeat steps 2a-2D until all projections have been formed. We

now have the projections:

pal(k) i=1,...,M

3) Apply convolution-backprojection to the projections to form the

image.

A) Convolve each projection with the sequence:

1, k=0
f(k) =0 kevenand £ 0
- — : k odd

(k)

B) Reconstruct g’ using
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M
gxy)= E p,(x cos a, +ysin a,)

I=1

Interpolation is needed when xcosaj;+ysinaj; is noninteger.

A useful way of gauging the performance of a radar imaging algorithm is
through its point spread function. The point spread function is defined as the
image produced by the algorithm when the target is a single ideal point

scatterer located at the origin. If g’ is the estimate of gz(x,y) produced by

the algorithm, then the algorithm may be described by a mapping from g to g’:

gixy) =A{g(xv)}

The point spread function, r(x,y), is the image produced when g(x,y)=0(x,y):

r(x, y) = A{8(x y) }

The broadness and sidelobes of r(x,y) is a measure of how much distortion the
algorithm produces when imaging a single point scatterer. The point spread
function should ideally be a delta function, and the “closeness” of the point
spread function to a delta function is a gauge of the algorithm’s performance.

Using g(x,y)=0(x,y) in (14), we have for h(k):

. 4xd

h(k) _ e] c f°. W<___C_

2NAfk + dcos(8, - a))

Next, we form hybrid profiles using different values of f_, then average

them noncoherently to produce the samples of a projection of g2. This is
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expressed as:

o
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~—~
=
<
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| =
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=
o
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=

=t C
e 'W<2NAfk+dCOS(60—0L)>

L 2

-t3 IW(grk +dcos (8, - )

=W2<2I\(I:Afk +dcos (6, - OL)>

Next, the projection p,(k) is aligned to the origin. The origin-aligned

projection is given by

W (onar®)

Next, the projection is filtered with the high-frequency enhancement

filter, so that the filtered projection is given by

P (k) = Wi{5zk) *H(K

is o-independent. This is not surprising,

From the above expression, p'

because g 1s rotationally symmetric. Using (16), we have for r(x,y):
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rx,y) = Z p'[x COS(a) +Y Sin ()]

(17)

It is known that the wider the spacing between the oy values, the more
distorted the point spread function [7]. Let us assume the best possible case,

where an infinitude of projections are spaced 1infinitesimally closely over

180°. Assuming p’ is perfectly interpolated, the sum of (17) becomes an

integral:

(% y) =fpl [x cos a -y sin a] da
0

Let us write r in polar coordinates

r(R, @):fp’[Rcos ¢ cos a + Rsin ¢ sin a] da
0

=fp' [Rcos(a-¢)] da

With
X =Rcos ¢
y = Rsin ¢
The function r is circularly symmetric. Thus r(R,0) = r(R,$), and
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r(R ¢)=r(R - [p [Rcos alda

wWith

p' (s) = interpolated {W?ﬁf—k) *f(k)]

This integral is typically intractable, and numerical methods must be used to

calculate r(R).

The window weighting function used in this paper to form hybrid profiles is
the Kaiser-Bessel window. Fig.7 shows a plot of r(R) for the Kaiser-Bessel
window (f=2). The point spread function plot has a narrow main lobe and
sidelobes which - indicate that this algorithm is theoretically capable of

producing accurate estimates of the target’s RCS distribution.
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Figure 7. The point spread function in decibels versus
normalized length.



CHAPTER III

EXPERIMENTAL RESULTS

In this section, images of a simulated target and of a turntable model are

presented.

Simulated Target

The purpose of this simulated target example is to verify the proper
functioning of the algorithm implementation; therefore, a simple configuration
of projections is used. Fig.8 shows the positions of the scatterers making up

the simulated target. This configuration consisted of eighty projections with

60=0°,...,l77.75o in increments of 2.25°, with corresponding

a=0+90°,...,177.75%+90°. since a=6_+90°, the projections are cross-range

projections. For each projection, L=20 profiles were averaged using different
initial radial frequencies corresponding to f,,f +Af,,...,f +19Af . These
profiles were then averaged to produce the hybrid projection. This method of
imaging scatterers with cross-range profiles is the method used in [5]. The
result is shown in Fig.9. The scatterers are well-resolved and correspond to
their actual locations and amplitudes, indicating that the algorithm is
functional and can form useful images of simulated data using a wide rotation
angle.

Fig.1l0 is an image of the same three scatterers made using a configuration

of 80 projections. The values of 0, used were
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Figure 8.The actual locations and strengths of the
scatterers of the simulated target.



Figure 9. Image of the simulated target shown in fig.8, using
method in [5]. In this case, M=80, N=128, |.=20, Af=38
MHz, Afy=38 MHz, f;=24 GHz.



Figure 10. Image of simulated target shown in figure 8.
Values of M,N,L,Af,Af,, and f, are the same as in figure 9.

Values of a. are the same as in fig.9, but values of 6, are
different.



Figure 11. Image of simulated target shown in fig.8 using
method in [5]. Values of M,N,L,Af,Af,, and f, are the same

as in fig.9. Only 10° of rotation angle is used in this case.



60=0°,2.25°,4.5°,6.75°,9.OO.

At each value of 6_, 16 projections were made with

a=0,-90%+1(11.25°%) ; i=0,...,15

were made. The values of M,N,L,Af,Af_ ,and f, are the same as the previous
image in fig.9. As before, 20 hybrid profiles made at different radial
frequencies were averaged to form each projection.

The values of o used in fig.9 and 10 are identical, but the corresponding
values of 0, are different. Because the values of a are the same, the images
are very similar. This image demonstrates that with a suitable configuration
of hybrid profiles, this algorithm can be used to successfully image simulated
targets.

Fig.ll is an image of the simulated target made with

6,=0°,2.25%,4.5°,6.75%,9.0°.

At each value of 0 one projection was made with a=60+90°.This

OI
configuration is the same as that used in fig.9, but the rotation angle is
only 10°. There is a very small diversity in a, the projection angle. As

expected, the three scatterers are very poorly resclved and the image quality
is very poor. By comparing fig.10 and fig.ll, which both use the same rotation
angle swath, we see a vast improvement in the hybrid profile method (fig.10)

as compared to the method cf [5] (fig.1l1l).
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Turntable Model Experiment

NexXt we present the results of the algorithm applied to compact range
measurements of a scale model aircraft. The turntable model is a one-seventh
scale model of an A4 tactical aircraft. The target was rotated on a turntable,
and the annulus of data was collected as described in Chapter I. The inner
radius of the annulus is 24 GHz, and its frequency bandwidth is 2.37 GHz. The
polarization used is HH.

There is one important difference between model targets and simulated

targets. On model targets, scattering centers exist over small angular

intervals (5-30°). As the rotation angle is changed, a given scatterer may

become reflective for a 5-30° interval, then disappear. The reason for this is

due to the geometry of the target: often a strong reflection can only result
from a radar signal incident from a particular angle. Because an actual
target’s scattering centers exist for a limited rotation angle, a wide
diversity of projection angles must be obtained over that interval to properly

image the scatterers present in the interval. By contrast, the scatterers of

simulated targets stay constant through the full 360° circle.
Fig.l2a is an image of the A4 aircraft made using M=3600 projections. Sixty
different initial rotation angles were used
8,=10+i(3°%) ; i=0,...,59

For each value of BO, sixty values of a were used:

a=6_-90°+1(3°) ; i=0,...,59

This hybrid profile configuration uses wide rotation angle (8,=10° to 190°),
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Figure 12a. Image of the A4 model. Values of N,L,Aff5, Af,

are the same as in fig.9. A large (180°) rotation angle was
used. Figure 12b shows orientation and scale of fig.12a.



and a wide projection angle (180°) for every 3° of rotation angle. Therefore,

this image should locate the scatterers on the target regardless of the
angular interval over which the scatterer may occur.

Fig.1l2b shows the orientation of the A4 craft in fig.l2a, as well as the
interval over which the image was made. This image shows two main scattering
centers. The scatterer near the nose corresponds to the engine inlet. The
scatterer near the tail is due to the exhaust orifice at the tail. Although
the A4 has other scatterers, they are not apparent in fig.l2a. The reason is
that the convolution-backprojection algorithm causes a scatterer’s strength in
the image to be proportional to both its amplitude and the duration of the
angular interval over which it exists. Both the air inlet and exhaust orifice
give rise to scatterers which appear for very long angular intervals. These
two scatterers tend to drown out the other scatterers by comparison. This
welghting of the scatterers in proportion to their duration of existence is
useful when attempting to identify strong scatterers over a large interval.
However, centers existing over smaller intervals are not visible.

In fig.1l2a, only one hybrid profile was “averaged” noncoherently (L=1) to
form a given projection. While holding all other parameters fixed, L was
varied to 5,10, and 15. The image produced for these different values of L
showed insignificant differences, indicating that for this target, the number
of hybrid profiles averaged to form the projection has little influence on the
image. The reason for this is the A4 model has one or at most two scatterers
present at a given angular interval. Because the scatterers are so sparse,
there is little opportunity for destructive and constructive interference. In
other words, there is little speckle, so there is little need to average. In
light of this, the simulated data which alsc has very sparse scatterers, would
also produce the same image quality, regardless of the value of L. However,
when imaging a full scale live target, which have many scatterers (20+), a

large value of L should be used.
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Figure 13a. Image of the A4 model. Values of N,L,Af,f,, Afq

are the same as in fig.9. Only 10° of rotation angle was
used. Figure 13b shows orientation and scale of fig.13a.



Fig.13a shows an image of the A4 aircraft made using M=300 projections.

Five initial rotation angles were used

eo=2o°,22°,24°,25°,28°.

For each value of 60, 60 values of o were used:

a=0,-90%+i(3°%) ; i=0,...,59

The number of projections is the product of the number of rotation angles with

the number of projections at each rotation angle. (M=5x60=300). This image

uses a small rotation angle change (~10°, neglecting the additional rotation
angle due to the projections at 60=20,28O near the edges), but a very wide
projection angle interval (180°). Therefore, this algorithm is designed to

locate the scatterers existing in the angular interval from 20° to 30°.
From fig.l1l3a, we see that there is only one scatterer on the target in the
20-30° rotation angle interval. This scatterer corresponds to the engine

inlet, and is the same scatterer as the left-hand scatterer in fig.1l2a. This
image demonstrates the ability of the algorithm to locate scatterers on the
plane, and ascribe an interval over which the scatterer exists.

If it is desired to identify the scatterers’ locations regardless of the

length of their intervals, it is best to make several images similar to
fig.13a, using different angular intervals. Each image would cover only 10° or

gso, but it would indicate the strong scatterers on the target, regardless of
how long a given scatterer was active. Using many such images over different
angular intervals would allow all the scatterers on the target to be

identified. As an example of this approach, fig.l4a shows another image of the

46



Figure 14a. Image of the A4 model. Values of N,L,Af,f,, Af,

are the same as in fig.9. Only 10° of rotation angle was
used. Figure 14b shows orientation and scale of fig.14a.



A4 model similar to fig.l3a, covering a small angular interval. Values of 0,

are

8,=60,62,64,66,68°.

For each value of 0,, 60 projections were made using

a=0,-90°+i(3°) ; i=0,...,59

These parameters are identical to fig.l13a, except the interval 6, from 60° to

70° was used instead of 20° to 30°. This image shows two scatterers. The

scatterer on the left towards the nose is the same scatterer shown in fig.l3a,
and 1s due to the engine inlet. The other scatterer in fig.l4a, but not in
fig.1l3a, 1s due to a glint from the models tail section. This image
demonstrates the capability of the algorithm to identify a scatterer’s

location regardless of how long it is active.
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CHAPTER IV

CONCLUSION

In this paper, we have demonstrated a method of forming radar images which
locates and quantifies a target’s scattering centers. This algorithm can
process a wide-rotation-angle data swath, and is able to identify the
scatterers, regardless of the angular interval over which the scatterers
appear. Using the concept of a hybrid profile, this method forms tomographic
projections of the target’'s reflectivity density function. The image 1is then
formed by applying the convolution-backprojection reconstruction algorithm.

This method has been applied to both simulated targets and a scale

turntable model. The images thus generated established the algorithm’'s
capability to locate scattering centers over a wide rotation angle (180°). In
forming images of simulated targets, the algorithm’s capability of imaging
scatterers while using only a 15° interval was also successfully demonstrated.

The A4 aircraft turntable model was imaged with this algorithm in two

different ways. In the first method, the model was imaged using a wide of
rotation angle (180°), with a wide diversity in the projection angle. The

strength of the scatterers on the resulting image was proportional to both the
actual amplitude of the scatterers and the width of the angular interval over

which the scatterers were active. The image generated with this method

identified two scatterers which were present over 60°+ interval, but missed
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the remaining scatterers which existed over smaller intervals. This method is
most useful for locating and gauging the centers according to their amplitude
and duration of existence in rotation angle.

In the second method, the model was imaged using a more narrow rotation
angle (~10°) and a wide diversity in projection angle. The images generated
with this method are useful for locating the scatterers on the target and

estimating their amplitudes. Because only 10° of rotation angle is used, the

scatterers appearing in the image are known to lie within the 10° interval.

Therefore, this method can also identify a scatterer’s location in rotation
angle. This method is most useful for locating and quantifying the centers
according to their amplitudes, and identifying the rotation angle interval
over which the scatterers are most active. Moreover, this method can bhe
extended by using several such images over separate rotation angles, so that
all the scatterers may be identified, regardless of the angular interval over

which the are present.
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