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Abstract

This paper considers the estimation of a small number of
damped complex exponentials from data which contain a larger
set of damped exponentials and noise. The use of total least
squares methods results in biased estimates of the high energy
damped exponentials due to the presence of the extra modes.
We discuss the reasons for this bias and ways to reduce it.

I. Introduction

There are many applications in speech processing where one
wishes to estimate the formant frequencies, as well as the as-
sociated bandwidths and modal energies, from a short speech
record. Of the many methods available for this estimation prob-
lem, one of the most successful is the total least squares (TLS)
method, which consists of backward prediction coupled with the
singular value decomposition (SVD) [1,2,3,4]. Typical deriva-
tions of formant estimation algorithms assume that the speech
signal can be modeled as a sum of damped exponentials in ad-
ditive white noise [1]. It is of interest to estimate the strongest
three or four formants. On the other hand, the speech signal
may contain five or more formants; these additional modes are
not well modeled as white noise. The question arises as to what
effect these additional formants have on the estimation of the
dominant formants.

In this paper, we consider the problem of estimating the high-
est energy modes from noisy data using total least squares tech-
niques [2]. The problem to be considered can be formulated as
follows. Suppose that we have N data points of a noisy complex
signal, {yx}.,, which can be modeled as

M
Yk =Y Aipf + i, (1)
i=1
where {n:}{, is a white noise sequence with variance v2, and
A; is the complex amplitude associated with the complex pole
pi. Here, M is the number of modes in the model. Of the M
modes, we wish to accurately estimate the parameters for only
the H highest-energy modes, where H < M. We refer to this as
the reduced-order modeling problem.

In order to better understand the SVD used for reduced-order
modeling purposes, this paper examines the relationship between
the SVD and modal decompositions. The next section discusses
the equivalence of the SVD and modal decompositions, while the

This work was supported in part by the Office of Naval Research under
contract number N00014-86-K-0202.

third section shows the results of some simulations regarding the
choosing of the number of singular values to keep in the TLS
algorithm for reduced-order modeling purposes.

II. Modal Decomposition and SVD Equivalence

In order to characterize the behavior of the TLS algorithm
used for reduced-order modeling purposes, we shall first look at
the SVD. Before performing the linear prediction in the TLS
algorithm, the (N — L) x (L + 1) Hankel matrix Y is formed as

Y1 Y2 YL+1
y= % 7 iy @
YN-L YN-L41 ..+ YN

where L is the linear prediction model order chosen to be greater

than M. The SVD of Y is then formed as
Y = UZVH, 3)

where U and V are square unitary matrices, ¥ is the complex
conjugate transpose operator, and ¥ is an (N — L) x (L + 1)
matrix such that ¥ = diﬂg(ahahww”min{(N—L),(L-{»l)})l The
o; are the singular values of Y; the singular values are real,
nonnegative, and ordered in magnitude such that o; > o, 2

> Omin{(N-L),(L+1)}- To provide noise cleaning of the data,
the singular values are truncated so that

Y =usvH, (4)

where Y is the “noise-cleaned” dataAmatrix. The truncated ma-
trix containing the singular values, X, is given by

f)=diag(al,ag,...,aR,O,...,O), (5)

where R < min{(N — L),(L +1)}.

This truncation of singular values is intended to reduce the
rank of Y; however, it is desirable to know what effect this trun-
cation has on the underlying modes. Specifically, if one truncates
the singular values so that R is less than M (see equation (1)),
will the “weak” (low energy) modes of the data be completely
purged as well as the noise? In the context of reduced—or.der
modeling, R is often chosen to be H, the number of desired
(high energy) modes. However, it is not true in general 'that,
by choosing R = H, the H highest energy modes in (1) will be
estimated, as we show below.

In order to relate the SVD truncation operation with model
reduction, it is useful to consider the modal decomposition of Y.
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From equations (1) and (2), the noiseless data matrix Y can be
written in a modal decomposition form {5}

4] P2 Plzw
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A more general version of the modal decomposition follows di-
rectly from (6):

2% 23 M
F1 Fz FM
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Y = F] F2 FM X .
p’f"L oyt Y
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or
Y =PDQ", (8)

where the F; coeflicients are positive real numbers, ordered so
that Fy > F, > --- > Fy > 0. For example, F; could be defined
as the energy of a mode:

N
=[AP Y |pl*, fori=1,2,...,

k=1

M. 9)

The generalized modal decomposition is useful for the follow-
ing reason. Suppose that one is interested in a model for {yi}
which contains only the R highest energy modes. This model is
found directly from equations (7) and (8) by truncating the D
matrix, i.e. by replacing D with

%3]

0 0

where D, = diag(Fi,...,Fr). Moreover, F; can be defined as
some other function (not necessarily energy), and other rules for
model reduction could be used (for example, the R highest ampli-
tude modes could be kept by choosing F; = |4;| and truncating
as before). Thus, the generalized modal decomposition gives a
direct solution to the generalized model reduction problem.

The SVD of Y in (3) is, in general, not the modal decompo-
sition in (7). For the SVD to be equivalent to a modal decompo-
sition, it is necessary that the columns of P and Q in the modal
decomposition be orthogonal; that is

D= (10)

PHP = Ap, and Q7 Q = Agq, (11)

where Ap and Ag are M x M diagonal matrices with positive
diagonal elements Ap; and Ag; respectively. The conditions of
(11) combine to yield (6]
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N-L

1

*:)F = 0 for all 7 # j, (12)
FF, ‘:Z:(p.m) or all i # j
and
A% L1
L.‘Z(P.‘P})":Ofor all i # j. (13)
iP5 k=1

Conditions (12) and (13) are satisfied only if, for all ¢ #17,

il 1pil =1
{lpllm " " k#o}’ (a4)
6, — 6;) = oL or some integer
and
1ol =1
lp-l IPJI (15)
—8;)= ior some integer n # 0

where 6; denotes the phase angle of the pole p;. Note that these
conditions are very restrictive. For example, if M > 3, these
conditions are satisfied only if |p;| = 1 for all i and the angle
restrictions of (14) and (15) are met. These constraints will
almost never be satisfied in practice. Thus, the SVD will almost
never equal a modal decomposition in practice, so truncation
of singular values will not completely eliminate weaker modes.
However, these conditions are useful in determining how closely a
SVD truncation approximates a modal truncation. For example,
if the modes of the data are nearly orthogonal in the sense that
the left hand sides of (12) and (13) are nearly zero, then a SVD
will be close to a modal decomposition.
Assume that the conditions of (11) are met, and let

U, = PA;Y?, and V, = QA% (16)

Define U; and V), so that [U;|U;] and [V,|V,] are unitary ma-
trices. Then, from (3), (7), and (16), it follows that

=[U1 UZ][EI oHv{'

o of|vH
is a singular value decomposition of Y, where X1 2 A},“DAQ
Thus, if the conditions of (11) are met, then the modal decom-
position and SVD are equivalent to within a scaling factor. In
this case, the M diagonal elements of X, are given by

Y =U, 5, V! a7

s llﬁ.l(,;'-'”) (Lflm“)m
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It can be seen that o; is a weighted geometric mean of the en-
ergy of the i** mode for two different observation intervals. Thus,
truncating singular values removes the lowest energy modes in
(1). Of course, this result holds only when the conditions (12)
and (13) are satisfied exactly. When (12) and (13) are nearly sat-
isfied, singular-value truncation removes the low energy modes
only approximately; see [6] for more details.

As an illustration of conditions (14) and (15), consider the
following case. Suppose that

) (19)

and that we use a pred1ct10n order, L, of 10. If N = 26, the four
poles do not satisfy the conditions for the SVD to be equivalent
to a modal decomposition; however, if N = 21, the conditions
are satisfied. Thus, if we keep only two singular values, we should

Ye = COS(—) + 9cos(




get biased results using 26 data points; whereas, we should get
unbiased results using only 21 data points. This is verified by
Figures 1 and 2, which show the results of keeping two singular
values in the TLS algorithm using 21 and 26 data points, respec-
tively. These two plots assume a sampling rate of 10 KHz, so
that the two true spectral peaks (denoted by the dashed lines)
lie at 454.5 Hz and 1363.6 Hz. The solid lines indicate the esti-
mated spectra obtained by keeping only two singular values in
the TLS algorithm.

III. The TLS Algorithm and Reduced-Order

Modeling

In the previous section, we have seen that the SVD is rarely
a modal decomposition. This leads to biased estimates when
one keeps fewer singular values than the number of modes in the
data. This would appear to indicate that, to reduce the estimate
bias, one should keep as many singular values as possible; how-
ever, this must be balanced against the corresponding increase
in estimate variance which will accompany such a scheme. The
result is a bias/variance tradeoff [6]. We will investigate this
tradeoff in this section by the means of simulation results.

For the simulations of this section, a data set has been cre-
ated to have the general characteristics of speech data. This
data set is a sum of eight damped complex exponentials (equiv-
alently, four damped sinusoids). The eight complex poles and
their corresponding amplitudes are as shown in Table 1; the cor-
responding frequencies are also listed. Note that the poles are
listed in order of decreasing energy.

Suppose that we wish to estimate the two highest energy
sinusoids. To do this [6], we keep some number of singular values

Table 1: Data Set Parameter Values

A; | pi| | £pi in rad/m | Frequency (Hz)
1.0000 | 0.9709 +0.1300 650.3
0.8000 | 0.9717 +0.2152 1075.7
0.6000 | 0.9669 +0.4926 2463.1
0.4000 | 0.9395 +0.7117 3558.3

in the TLS algorithm and estimate the poles for the data. Using
these poles, we estimate the corresponding amplitudes of the
poles. Finally, we calculate the energies of all the modes, keep
the higher energy modes (keep four pole/amplitude pairs), and
calculate the spectrum using the chosen modes. We wish to
examine the results of keeping various numbers of singular values
in the algorithm. For all of the simulation results of this section,
N =20 and L =10.

Figures 3 and 4 show the results of keeping four and eight sin-
gular values, respectively, in the TLS algorithm and then choos-
ing the two highest energy damped sinusoids. For both figures,
the signal to noise ratio (SNR) is 26.2 db. Also, for both fig-
ures, there are ten overlayed simulations (denoted by the solid
lines); the dashed lines indicate the exact spectra using all four
damped sinusoids. We see that keeping four singular values in
this case results in choosing the first and third highest energy
modes, while keeping eight singular values results in choosing
the two highest energy modes. Thus, for low noise (relative to
the powers of the lower energy modes), one should keep a larger
number of singular values than the number of poles that we wish
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to examine; this decreases the bias resulting from the fact that
the SVD is not a modal decomposition [6].

Figures 5 and 6 show the results of keeping four and eight
singular values, respectively, in the TLS algorithm when the SNR
is 16.2 db. The solid and dashed lines have the same meaning as
before. Again, keeping four singular values in this case results
in choosing the first and third highest energy modes; however,
keeping eight singular values sometimes results in choosing the
two highest energy modes and sometimes results in choosing the
first and third modes. The best choice for the number of singular
values to keep in this case depends upon the application. In
formant tracking, for example, one does not want the estimated
formants to “jump around” from the second to the third and
back again; however, one generally wants to examine the highest
energy modes. In this case, one must compromise. Keeping a
small number of singular values results in more bias but less
variance, while the opposite is true for keeping a larger number
of singular values [6].

The simulation results of this section indicate that if one
wishes to examine only the highest energy modes of some data
set, one can use the TLS algorithm keeping the proper number
of singular values for the noise scenario; after calculating the
associated amplitudes using a least squares technique, one need
only calculate the modal energies and keep only those modes
with the highest energy. This assumes that the noise power is
relatively low; if it is not, then the resulting estimates may not
be of the highest energy modes.

IV. Conclusions

We have seen that the singular value decomposition is rarely
a modal decomposition when the data is modeled as in equa-
tion (1). The elimination of singular values, therefore, is not
equivalent to the elimination of modes from the data. The result
is that it is not always possible, by keeping H singular values,
to accurately estimate the parameters for H modes when there
are M modes in the data and H < M.

We have examined the bias and variance performance of the
total least squares (TLS) algorithm versus the number of singular
values, R, kept in the algorithm in the context of reduced-order
modeling. The simulations which have been considered indicate
that there is a bias/variance tradeoff in the TLS algorithm with
respect to the value of R. Choosing R to be small results in
estimates with more bias, but with less variance, than estimates
generated by the TLS algorithm using a larger value of R. Thus,
the proper number of singular values to keep in the TLS algo-
rithm for reduced-order modeling purposes is a function of the
noise power relative to the powers of the unmodeled (undesired
or low energy) modes. When the noise power is low compared to
the powers of the undesired modes, one should generally choose
R to be large. When the relative noise power is high, one should
choose R depending upon the particular application; for many
applications, R will be chosen to be small. After estimating the
poles and their associated amplitudes, one should then deter-
mine the modal energies and keep only those modes with a high
enough energy.
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Figure 4: Energy spectra of the multisinusoid data using R = 8,
L =10, N =20, and a SNR of 26.2 db.
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Figure 1: Energy spectrum of the two sinusoids using R = 2,
L =10,and N =21.
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Figure 5: Energy spectra of the multisinusoid data using R =4,
L =10, N =20, and a SNR of 16.2 db.
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Figure 2: Energy spectrum of the two sinusoids using R = 2, Figure 6: Energy spectra of the multisinusoid data using R = 8,
L =10,and N = 26.
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