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Abstract ~ In this two part paper, a novel procedure
for generating an ARMA spectral model of a wide sense
stationary time series is developed. The parameters
of thig model are selected so that they most closely
fit a set of Yule-Walker equations which are estimated
from a finite set of time series' observations. This
ARMA modeling method has been found to exhibit a spec-
tral estimation performance which 1s typically superior
to such alternatives as the maximum entropy (AR) method,
classical Fourier procedures (MA), and, the Box-Jenkins
method (ARMA).

One of the principal features of this spectral
estimation method is the elegant algebraic structure of
the linear system of equations which need be solved
when finding the ARMA model's parameters. This shift-
invariant type structure gives rise to an adaptive
algorithmic solution procedure whose computational
efficiency is comparable to that achieved by recently
developed fast AR algorithmic methods. The details of
the adaptive ARMA modeling procedure will be covered in
Part 2 of this paper. These dual characteristics of
excellent estimation performance and real time adaptive
implementation mark this method as being a primary
spectral estimation tool.

I. INTRODUCTION

In many interdisciplinary applications, it is desired
to estimate the essential attributes of a generally
complex valued wide-sense stationary time series
{x(n)}. Depending on the specific nature of the time
saeries, thils characterization is often adequately
revealed through knowledge of the time series’ associa-
ted autocorrelation sequence

r (n) = E{x(otm)x*(m) } n=0, t1, +2,... ¢3)
in which E and * denote the operations of expectation
and complex conjugation, respectively. On the other
hand, the requisite characterization may often be
better made in the frequency domain through the spect-
ral density function

Sx(eJm) = Z

n= =

rx(n)e-jmn 2

which is recognized as being the Fourier transform of
the autocorrelation sequence. Either member of this
transform pair conveys the total second-order statis-
tical information relative to the underlying time
series. Frequently, this second order statistical
characterization provides all the information required
for a given application (e.g., optimal Wiener filtering,
one~step prediction, etc.).

The classical spectral estimation problem 1is con-
cerned with estimating the gpectral density function
(2) from a finite set of time series observations.
Without losgs of generality, these observations will be
taken to be the following N contiguous elements
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x(1), x(2), . » x(N) (3)

A variety of procedures have been proposed for using
these observations to effect a spectral density esti-~

mate. Invariably, the resultant estimate will take on
a rational model form as expressed by
. 2
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in which the ay and by are referred to as the model's
autoregressive and moving average coefficilents, res—
pectively. We shall refer to this particular rationmal
form as an autoregressive-moving average (ARMA) model
of order (p,9. It is well known that any continuous
spectral density can be approximated arbitrarily
closely by this rational form if the order pair (p,q)
is selected adequately large. Thus, by imposing a
rational form on the spectral model, we incur no real
loss in spectral representation.

The preponderance of research and application inter-
est has baen focused on two special cases of the above
ARMA model. They are the moving average (MA) model in
which all of the ay coefficients are set to zero, and,
the autoregressive (AR) model for which all of the by
coefficients except bg are set to zero. The spectral
density estimate arising from a MA model is seen to
possess no poles, and as such it is frequently referred
to as an all-zero model. Using gimilar reasoning, the
AR model is referred to as an all-pole model, and, the
general ARMA model is referred to as a pole~zero model.

Classical Fourler approaches {l] and the periodogram
method [2] are procedures which ultimately provide a
MA spectral density model. Similarly, the maximum
entropy method and linear predictive coding are tech-
niques that result in AR spectral density models.
Undoubtedly, the primary reasons for interest in speci-
al case MA and AR models lie in the fact that they:

(i) are amenable to a tractable analysis, (ii) typical-
ly provide adequate spectral estimation performance,
and (i1i) give rise to coefficient selection procedures
which are implementable by computationally efficient
algorithms.

Despite this predisposition towards MA and AR models,
a growing interest in ARMA models is evident [3}-[9].
This is in recognition of the fact that the more
general ARMA model usually provides superior spectral
estimation performance while at the same time requires
fewer model parameters to achleve that behavior. It is
because of theae very factors that a number of ARMA
modeling procedures have been proposed. These include
the Box-Jenkins maximum likelihood method (3], whiten~-
ing filter approaches (4], [5], and, more recently,
Cadzow's high performance method [6]-[9]. This latter
method has been found to provide a spectral estimatilon
performance which typically excels that obtained from
its MA, AR, and ARMA counterparts.



In this paper, we first characterize the modeling of
a pure ARMA time series. An analytical procedure is
presented for determining the underlying ay and by co-
efficients in which the time series' actual auto-
correlation element values are used. This idealistic
situation then provides the justification for intro-
ducing the high performance method in which the ARMA
model's coefficients are estimated from time series
observations and not from autocorrelation values. It
is shown that the p autoregressive ay coefficients are
obtained by solving a consistent system of p linear
equations. When using this direct approach, the com-
plete set of time series observations (3) are incorpor-
ated to effect a single spectral estimate in one
computational effort. This approach is typically
referred to as "block processing'. Moreover, by using
the generalized Levinson algorithm [10}-{11], it is
possible to solve the above mentioned system of linear
equations in a computationally efficient manner.

In Part 2 of this paper, a recursive procedure is
developed in which the ARMA model’s coefficients are
updated as each new time series observation becomes
available. In this "time-update processing'' mode, an
adaptive form of spectral estimation is thereby
achieved. One of-the particularly attractive features
of this time-updating mode is 1its computational
efficiency. Specifically, the p autoregressive co-
efficients (in actuality prediction errors) are
optimally updated with each new time series observation.
The number of multiplication and addition computations
required in this updating is of the order p. Thus,
the computational complexity of the high performance
ARMA method is competitive with recently developed
"fast" AR methods, but, its spectral estimation per-
formance is typlcally far superior. The time-update
mode is particularly attractive in those situations in
which the time serles being characterized is a long
ongoing process and one wishes to generate a time
evolving sequence of spectral estimates in a real time
setting.

II. ARMA TIME SERIES: PERFECT MODELING

In this section, the second-order statistical char-
acterization of an ARMA time series will be presented.
This characterization will play a central role in the
high performance spectral estimation procedure that i1s
to be developed in subsequent sections. The time
series {x(n)} is said to be an ARMA time series of
order (p,q) if it is generated according to the causal
linear recursive relationship

- q P
x(@ = [ bown-k) -
k=0

L akx(n~k) (5)

in which {w(n)} is a zero mean white nolse excitation
whose individual elements have variance one. It is
readily shown that the spectral density corresponding
to the response time series {x(n)} 1s given by ex~
pression (4). Thus, there is seen to be an equivalen-
ce between a rational spectral density model and the
response of a causal linear system to a white noise
excitation.

We will now direct our attention to developing a
systematic procedure for identifying the recursive
system’s autoregressive coefficients (i.e., the ag)
and moving average coefficlents (i.e., the by) from
the response time series' autocorrelation elements.

It will be beneficial to consider separately the tasks
of identifying these two different sets of coefficients.

Autoregressive Coefficient Identification

The autoregressive coefficients can be determined
directly upon examining the autocorrelation character-
ization of recursive system (5). This is achieved by

first multiplying both sides of this recursive ex-
pression by x*(n-m) and then taking the expected value.
This 1s found to result in the well known Yule-Walker
equations

1%
kzl aer(m-k) = —rx(m)

for m > q+l (6)

where it is important to note that the lag parameter m
is here restricted to exceed the numerator order para-
meter q. As a side note, the Yule~Walker equations
will involve the moving average coefficients by in a
nonlinear manner for lags 0 < m < q. The characteristic
equations of expreadsion (6) provide a straightforward
procedure for obtaining the ARMA model's aj auto-
regressive coefficients. This formally entails expres-
sing the first "t" Yule-Walker equations (i.e., q+l < m
< q+t) in the following matrix format
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r (q+e-1) r (q+t=2) ... ¥ (q-p*t) ) r (qt+t)

in which the integer t is taken to be equal to or
larger than the model's denominator order (i.e., t 2 p).
This linear system of equations may be compactly
expressed as

q = -rd

Rep &, T, ®
where Rgp is a txp autocorrelation matrix, 52 18 a txl
autocorrelation vector, and, a, is the ARMA model's px1l
autoregressive coefficient vector. In this representation
the subscripts t and p are appended to designate the num-
ber of Yule-Walker equations being used, and, the ARMA
model's denominator order, respectively. Similarly, the
superscript q depicts the ARMA model's numerator order.

To obtaln the ARMA model's autoregressive co-
efficients, one then simply solves the consistent. sys-
tem of linear equations (8). Valuable insight relative
to ratiomal spectral density modeling is provided upon
closer examination of the autocorrelation matrix's
(1.e., Rgp) algebraic structure. It is convenient to

express this characterization in the following theorem.

Theorem 1: Let {rx(k)} designate the auto-
correlation sequence which is associated with
an ARMA time series of order (p,q). The
corresponding system of t linear equations
in m unknowns as specified by

n n
Rim 2n ™ It ®
has a unique solution provided that m=p and
n>q for any value of t2p. Moreover, the ramk
of the txm matrix R?m is given by min (m,p,t)

provided that n>q and, by min (m,t) Eor Ogn<q.

A proof of this theorem will not be given here, since
these - results are implicitly documented in various
textbooks and papers dealing with time series. It is
important to note that even if one has perfect auto-
correlation knowledge of an ARMA time series, the
evaluation of the associated autoregressive co-
efficients entails a determination of the order pair
(p,q). This ordering information is implicitly con-
tained in the algebraic structure of the autocorrela-
tion matrix Rgh’ and, can be obtained by examining this



structure for various combinations of the nonnegative
integers m and n.

Moving Average Coefficient Determination

To determine the by coefficlents associated with the
ARMA time series, it will be beneficial to introduce
the causal image of the time series’ autocorrelation
sequence as defined by

+ 1

r, (n) rx(n)u(n) --Erx(0)6(n) (10)
in which u(n) and §(n) denote the standard unit-step
and unit-Kronecker delta sequences, respectively. The
autocorrelation sequence may be recovered from its
causal image by using the complex conjugate symmetry
property of autocorrelation sequences (i.e., rx(—n) =
ry*(n)-). This reconstruction rule takes the form

-t + x

rx(n) T, (n) + T, (~n) (1)
Upon taking the Fourier transform of relatiomship (11),
we have the required spectral density expression

Jwy o ogtQdwy 4ot edw*
s () =8 "(e77) + 5 (e

+
= 2Re[5] (e3)] (12)
where S¥+(ejw) denotes the Fourier trangsform of the
causal image sequemnce {rx+(n)}-

In what is to follow, a parametric procedure for
representing Sx+(ejw) (and therefore Sx(ejm))will be

given. This will first necessitate the introduction
of the auxiliary sequence

P
cm) =r. ) + Jar Tn-k) , Osnsmax(a,p) as
X k=1 k™ x

in which the causal autocorrelation elements as gene-
rated by relationship (10) and the autoregressive co-
efficients as obtained upon solving the system of
equations (8) are used. According to the Yule-Walker
equations (6) and the causal image definition (10),
it is seen that this auxiliary sequence is identically
zero outside the indexing range O<ns<max(q,p). With
this in mind, the Fourier transform of relationship
(13) is next taken and results in

. s .
c_(ey = ] c(m)e 4B (14a)
-8 n=0 . ,
P ~jun,. +, Jw
= [1 + ngl ae ]Sx (e’™)
- Ap(ejm)Sx+(ejw) (14b)

in which s = max(q,p). Upon solving this relationship
for S,*(eJ®) and substituting this solution into ex-
pression (12), the desired ARMA spectral density is
obtained

c (3 c *(el)
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X Joy- %, Jw
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(15)
Jw *x, Jw
Ap(e ) Ap (e’™)

In order to determine the ARMA model's by moving
average coefficients, we next use this relationship in

conjunction with expression (4) to obtain

Bq(ejw)Bq*(ejw) = Ap(ejw)cs*(ejw) + AP* (ejw)cs(ejw)
(16)

A spectral factorization of this expression will then
yield the prerequisite by coefficients (assuming a
minimum phase B (edwyy.

In summary, tﬁe gpectral density and the associated
ay and by coefficients which characterize the ARMA
time series of order (P,d) may be determined by follow-
ing the four step procedure as outlined in Table 1.

To carry out this model identification scheme, it is
seen that knowledge of the. order pair (P»4) and the
g+p+l autocorrelation elements ry(0), rx(1),...,rx(g+p)
need be available.

1. Solve relationship (8) for the p autoregressive
ag coefficients. This will require setting t2p.

2. Generate the auxiliary sequence c(n) and its
Fourier transform using expressions (13) and
(l4a), respectively.

3. The desired spectral density is then given by
expression (15).

4, Perform a spectral factorization of the poly-
nomiaqu(ejw)Bg(er) as given by equation (16)
to obtain the minimum phase choice of the by
coefficients.

Table 1: Generation of the gpectral density and the
ARMA model parameters assoclated with a given
set of autocorrelation values.

III. HIGH PERFORMANCE METHOD OF ARMA SPECTRAL

MODELING

It is possible to adapt many of the ideas of
Section II to achieve an ARMA spectral estimate when
only the time series observations (3)are available
(and not autocorrelation values). We shall again treat
separately the cases of autoregressive and moving
average coefficient determination.

Autoregressive Coefficient Estimation

To implement the autoregressive coefficient selection
process as represented by relationship (8) it will be
necessary to compute appropriate autocorrelation esti-
mates from the given set of time series' observatioms.
The high performance ARMA method effects these esti~
mates in the guise of a convenient matrix format which
lends itself to a particularly efficient computational
realization [6]=[9]. In particular, the autocorrela-
tion matrix and vector required in expression (8) are
estimated according to

f{t‘; = vty (7

=1l (18)
where the dagger symbol + denotes the operation of com-
plex conjugate transposition. The (N-p)xp Toeplitz
type matrix X is specified by

x(p) x(p~-1) . x(1)
x(p+tl) =x(p) x(2)

X= ’ . (19)
x(B-1)  x(N-2) % (N=p)

while the (N-p)xt Toeplitz type matrix Y hag the form



x(p-q) x(p~q~1) . . . x(p~q-t+l)
x(p-q+l) =x(p-q) . x(p-q-t+2)
T=1 . I ) (20)
x(N-q-1) =x(N-q-2) . . . x(N-q-t)
and x 1is an(N-p)xl vector given byl
x = [x(p+D),x(p+2), . . . x(©]' (21)

In formulating matrix Y, we have used the convention
of setting to zero any elements x(k) for which k lies
outside the observation index range 1 < k < N.

If the autocorrelation matrix and vector estimates
(17) and (18), respectively, are substituted into the
Yule-Walker relatiomship (8), however, it 1s generally
found that the resultant system of t equations in the
p autoregressive coefficients is inconsistent for t>p.
This is due to inevitable inaccuracies in the auto-
correlation estimates, and, to a possible improper ARMA
model order choice. In any case, the system of
equations with these estimate substitutions will give
rise to the txl Yule-Walker approximation error vector
as specified by

e=v'xa+vyx (22)
Upon taking the expected value of e, it is found that
for the ARMA modeling order choice in which q>p, that
this expectation results in

23)

while for the modeling order case q<p this expectation
produces

P
E{e(k)} = (W-q-k) [r (q@H) + J ar (q+k—m):| , lckst
x o=l m X

P
(N-p) |7 (q+k) + ) a r (qtk-m)| , lsksp—q
Ele(k)} = we=l

P
(¥-q-k) Erx<q+k) + mglamrx<q+k-m>J » praskst
(24)

In either ordering case, it is seen that when the time
series is an ARMA process of order (p,q), the expected
value of the error vector ¢ can be made equal to zero
by a proper choice of the autoregressive coefficient
vector a. WNamely, this selection would be such that
the underlying Yule-Walker equations (&) are satisfied.
This implies that the system of equations (22) with
e = 8§ provides an unbiased and a consistent estimate of
the Yule-Walker equations (8), where 8 is the zero vector.
With the above thoughts in mind, an appealing
approach to selecting the autoregressive coefficient
vector is immediately suggested. Namely, a is chosen
so aB to make the error vector "as close" to its
expected value of § as possible. This is of course
predicated on the assumption that the time series is an
ARMA process of order {p,q) or less. In order to
attain a tractable procedure for selecting an

lA more generalized version of this estimation scheme
can be obtained by substituting the integer k for p
wherever p appears in relationship (19)~(21). For ease
of presentation, k is here restricted to be p.
25 little thought will convince oneself that this same
conclusion will be reached 1f both q and p are at

least equal to the numerator and denominator orders,
respectively, of the underlying ARMA time series.

appropriate autoregressive coefficient vector, we shall
introduce the following quadratic functional

f(a) = efre (25)

in which A is a txt positive-semidefinite diagonal matrix
with diagonal elements iyxyk that. is introduced in
order to provide ome with the option of weighting

differently the various error vector components. It is
a simple matter to show that an autoregressive co-
efficient vector which will render this quadratic
functional a minimum must satisfy

xTyaytx e = -xtvayfx (26)

One then simply solves this consistent system of p
linear equations in the p unknown autoregressive co-
efficients to obtain an estimate for the denominator
of the ARMA model.

Moving-Average Coefficient Estimation

There exist several procedures for estimating the
ARMA model's moving average coefficients. We shall
now briefly describe two procedures which have pro-
vided satisfactory performance and in a sense comple-
ment one another.

¢9) ¢, Method

The procedure which has provided the best fre-
quency resolution behavior is a direct adaption of
the cg method as described in Section II (see ref.
{(8}). 1In particular, using the set of auto-
regressive coefficient estimates as obtained from
expression (26) and a suitable set of auto-
correlation estimates ryx(n) for n=0,1,...,nax{q,p),
one computes the Ek coefficients using expression
(13). These coefficients are then used to achieve
the desired ARMA spectral estimate when incorporated
into relationship (1l4a) and ultimately relatiomship
(15). Although providing an excellent frequency
resolution behavior, this procedure suffers the
drawback of not having a guaranteed nonnegative
definite spectral density estimate3. It is with this
in mind that the following procedure was evolved.

(i1)

In the smoothed periodogram approach, one first
computes the so-called "residual time-series
elements according to the relatiomnship (see ref.[9])

Smoothed Periodogram Method

for p<ngWN (27)

P
e(n) = x(n) + ] a°x(n-k)
k=lak

in which the ég’ autoregressive coefficients as ob-
tained by solving expression (26) are incorporated.
From this relationship, it 1s apparent that the
following spectral density expression holds
s _(e?™)
Sx(ajm) - _A—::——J_(:-_Z (28)
EMCHRY

If Sx(ejm) is to correspond to an ARMA spectral model
of order (p,q), it is clear that a qth order MA
spectral estimate for the residual spectral density
SE(eJ“) must be obtained and them substituted into
relationship (28). The smoothed periodogram has
been found to be a useful tool for this purpose.

In the smoothed periodogram method, one first
partitions the computed residual elements (27) into

3This shortcoming may be superficially avoided by
taking the absolute value of the spectral estimate.



I. segments each of length g+l as specified by

e (nt+p+l+kd) 0<nzq

0<k<L~1

g (@) = (29)

where "d" is a positive integer which specifies the
time shift betwesen adjacent segments. These indivi-
dual segmentz will overlap if d<gq and will perfectly
partition the residual sequence when d=q+l. In order
to include only computed elements, the relevant para-
meters must be salected so that q+p+l+(L-1)dsN.

Next the periodogram for each of thse L segments is
taken and these are averaged to obtain the desired qth
order smoothed periodogram, that is

q 2
) w(n)sk(n)e—jwn
n=0

|
J

(30)

where w(n) is a window sequence that is normally
selected to be rectangular (i.e., w(n)=1 for 0<n<q).
The required ARMA spectral model is then obtained by
substituting this approximation into relationship
(28) thereby giving

5,1

)2

§ (oY) =
x IA’Q(er
P

(3D)

It is readlily shown that the smoothed periodogram
procedure results in a desired nonnegative qth order
MA spectral density estimate. Unfortunately, its fre-
quency resolution capability is generally not of the
same quality as that of the ck method.# On the other
hand, the smoorhed periodogram method provides more
smoothly behaved. spectral. estimatés which contain fewer
gpurious effects.

To summarize, the required ARMA spectral model is
obtained by following the systematic procedure out-
lined 1n Table 2. The numerator dynamic estimation
procedure to be used will of course depend on the par-
ticular characteristic being sought (e.g., frequency
resgolution, smoothness, atc.).

1. Specify values for the ARMA model's order
parameter pair (P,q), the Yule-Walker equation
parameter t, and, the weighting matrix's
diagonal elements Agk.

&
o

Using the time series observations
x(1),x(2),...,x(N), construct the matrices

X, Y, and vector x according to relationships
(19), (20), and (21), respectively.

3. Determine the model's autoregressive co-
efficients by solving relationship (26)

4, The numerator’'s dynamics are obtained by using
either the (i) ¢y method, or, (ii) the smooth~
ed periodogram method.

Table 2. Basic steps of the standard high per-
formance ARMA spectral estimatiom method:
The Block Processing Mode.

The improved spectral estimation performance ob-
tained in using this high performance method over con-
temporary ARMA techniques such as the Box-Jenkins
methed is, to a large extent, a consequence of select-
ing the integer t to be larger than the minimal
value p. With the corresponding larger set of Yule-~
Walker equations that are thereby being approximated,
it intuitively follows that the model's autoregressive

4A similar approach shares the same attributes as
does the smoothed periodogram. [12].

coefficients will be less sensitive to autocorrelation
estimate errors which are embodied in Y'X and Yfi than
would be the case if t were set to p (as in the Box-
Jenkins method). This anticipated improvement in
spectral estimation behavior when using the high per-
formance method has in fact been realized on a rather
large number of numerical examples ({6]-{9]. As we will
see in part 2 this high performance method also lends
itself to a particular fast adaptive implementation
mode when t=p. With the two attributes of improved
spectral estimation performance and computational
efficiency, this new procedure promises to be an import-~
ant spectral estimation tool.

It is of interest to note that when gq=0 and t=p, the
high performance ARMA spectral estimation method re-
duces to the well kmown AR covariance method. Moreover,
upon letting t exceed p, the resultant set of
expanded AR Yule-Walker equation approximations will
typically result In better spectral estimates than the
standard AR covariance method. To the authors know-
ledge, this approach has not been used in the various AR
spectral estimation.procedures developed to date.

IV. ORDER SELECTION

One of the important considerations when using the
high performance method is that of selecting the ARMA
model order pair (p,q). This selection process can be
made by utilizing properties of the ARMA autocorrelat-
ion matrix as outlined in Theorem 1. In particular,
one examines the column rank behavior of the auto-
correlation matrix estimate

83 = yfx (32)
tp
that is being used in the high performance method.
Upon setting q=t =p, it follows that the pxp auto-
correlation matrix estimate Rgp will start becoming

ill-conditioned when the order parameter p exceeds the
time series'inherent order value (assuming that qsp).
Thus, the model order determination can be acgieved by
investigating the conditioning of the matrix Rgp as a

function of p. As p is increased, an appropriate
choice will be a value p for which there is a precipi-
tate decrease in matrix conditioning for p=p+1. This
approach, as applied to the high performance method of
spectral estimation, has been used successfully by Pao
and Lee [13].

There exist many matrix conditioning measures which
may be used for this order determination. One of the
more ~ffective measures 1s the normalized determimant
ag specified by ————e e

1% P 2

c(a) = dec(A)//Z Ila,|

=1 jm1 13

where det(A) designates the determinant of the pxp
matrix A. It is to be noted that this normalized
determinant will be zero when the rank of A 1s less
than p.

(33)

V. THE DOWN SHIFT OPERATOR

In the analysis to follow, extensive use of the down
shift operator S is made. This operator down-
shifts by one unit the elements of the vector upon
which it operates and inserts a zero into the vacated
first component position. In other worda, this opera-
tion takes the form

sx = [0, x(1), %x(2),. . ., x(N-1)]" (36a)

where the ¥x1 vector being operated upon is given by

= (1), %(D),eee, 2D (34b)



The prime symbol here used denotes the operation of
vector transposition. It is a simple matter to show
that the downshift operator has the following NxN
matrix representation

5 = le, L. e, . 8]

i iey 59)

in which 8 1s the Nxl zero vector and ey designates the
kth standard Nx1 basls vector whose components are all
zero except for its k™0 which is one. If this down-
shift operator were applied sequentially m times to
the vector x, it is clear that a downshift of m units
results, that is

s = [0, 0, ..., 0, x(1),x(2),. . .,x(N-m) (36)
N e’
m zZeros
VI. PREWINDOW MODIFICATION

In many spectral estimation applications, it is
necegsary to update the ARMA model's coefficients as
new time series observations become available. If this
is to be achieved in real time, however, it 1is general-
ly not feasible to apply the block processing imple-
mentation of the high performance method as outlined in
Table 2. TIn Part 2 of this paper, a computationally
efficient algorithm for achieving this coefficient up-
dating is developed. In order to facilitate this real
time recursive algorithm, it is necessary to slightly
modify the constituent matrices X and Y, and the
vector x which characterize the high performance method.
These modifications provide the required algebraic
structure to render the resultant modified high per-
formance ARMA modeling method amenable to a compu-
tationally efficient recursive solution.

Although a number of modifications are possible, we
shall only treat the prewindowing method in this
Section.d 1In the premodification method, the x vector
is modified to -

z= [x@), x(2), . . ., xM]' (37
while the X matrix is modified to the Nxp Toeplitz
type matrix

0 0 7
x(1) 0 0
x(2) x(1) *

X = y x(2) .

: x(1)
x(N~1) x(N-2) x(N—p{J
(s & 52 D oP J
= [Sz .8z . ... S%z (38)

where S is the downshift operator. TFinally, the Y
matrix is modified to the Nxt Toeplitz type matrix

D) 0 .. 0 T
0 0 0

y = |0 0 .
x(1) 0
x(2) x(1) 0
' ‘ x(1)
x(N-q-1) x(N-q-2) X (N-q—t)

5The postwindowing, and, pre & postwindowing modifica-
tion methods are described in the Appendix.

'-Sq+l£ : sq+2£ : : Sq+t£] (39)

Upon examination of these expressions for the modified
matrices X and Y, it is seen that they possess a very
simple shift type structure. It is this very structure
which renders the prewindowed modification amenable
to a computationally efficient adaptive solution algor-
ithm. Furthermore, it is to be noted that lower
triangular pxp and pxt matrices have been added to the
top of the original X and Y matrices to form the modi-
fied X and Y matrices, respectively. These augmenting
lower triangular matrices are uniquely specified so as
to make the modified matrices Toeplitz in structure
(1.e., the elements along any diagonal are all equal)
with zeros appearing in the upper right portion of each
matrix. It is this specific structure which makes an
efficient recursive solution possible. This method is
referred to as prewindowing since the implicit assump~
tion that x{(n) =0 for n<0 is being made.

1f these modifications are incorporated into expres-
sion (26), a modified set of p linear equations in the
p autoregressive coefficient unknowms is obtained, that
is

xtrayfxa®= -xTanrte (40)

This system of equations represents the least-squares

solution to the following statistical approximation of
the first t Yule-Walker equations

e=7"xa + vz (41)

The effectiveness of this approximation can be evaluated
by taking the expected value of this relationship. When
the ARMA model order parameters are such that q<p, this
expectation is found to give

q+k p
(N~-q-k) | amrx(Q+k-m)-+ ] (N—m)amrx(q+k-mL
m=0 m=q+k+1 ’ 1<k<p—
E{e(k)} = <k<p-q
P
(N~g=-k) Z amrx(q+k—m) , p~q<kst
=0 (42a)

where ag = 1. This implies that the Yule-Walker equat-
ion estimate (42) 1is biased in nature. As the data
length N increases, however, this estimate becomes
asymptotically unblased. For the ordering case q>p, the
expectation is found to yield

P

E{e(k)} = (N-q-k)mzoamrx(q+k-m) ,

1<kst (42b)

which is unbiased in nature. Thus, the set of linear
equation estimates(4l) generally provides a satisfactory
estimate for the assoclated Yule-Walker equations.

In order to achieve the recursive update capability
as mentioned previously, it will be necessary to
"restrict" the parameter t to be p. This in turn
results in Y*X being a pxp matrix. When this matrix
1s invertible, there always exists a unique auto-
regressive vector which will render the error vector to
be zero, that is

¥ty 3° = -T2
The update algorithm to be presented in Part 2, in
effect, allows us to recursively obtain the solution for
the N+1 data length case from the solution to the N
data length case [14]. Unfortunately, the restriction
of t=p also generally results in an associated
decrease in spectral estimation performance (relative
to t>p). Thus, in obtaining a computationally efficient
update recursive algorithm, an accompanying decrease in
spectral estimation performance 1s the price being paid.
One must therefore carefully consider the ramifications
of this tradeoff in any given application. It is note-
worthy, however, that this performance degradation

(43)



diminishes as the number of time series observations N
grows.

VII. GENERALIZED LEVINSON ALGORITHM

In the high performance ARMA modeling procedures
presented in Sections III and VI, the model's p auto-
regressive coefficients were obtained by solving a sys-
tem of p linear equations. In the special case in
which t =p and the pxp matrix Y'X is nonsingular, this
relevant system of equations (26) simplifies to

vtz g° = -v'x (44)

where the entries of the matrices X and Y and the
vector x are dependent on the particular form being
used (i.e., unmodified, prewindowed, postwindowed, etc.)
If standard matrix inversion techniques such as the
Cholesky decomposition method are used, on the order of
p3 multiplications and additions are required to com-
pute the solution to relationship (44). These standard
techniques are therefore said to possess a computation-
al complexity of Q(p3). For relatively large values
of p, this can result in an undesirable computational
burden. On the other hand, if the pxp matrix Y'X has
a near Toeplitz structure, it is possible to utilize
the generalized Levinson algorithm to obtain the
required solution using far fewer computations [10],
[11]. Since the matrix Y'X is being used to approxi-
mate the Toeplitz matrix RQP, there is good reason to

anticipate that vix might possess this structural
feature.

To measure the degree to which X is Toeplitz in
structure, it is necessary to introduce the concept of
displacement rank. The displacement rank o(A) of the
pxp matrix A 1is formally given by

a(A) = minfa_(a), a+(A)] (45a)
where

«_(A) = rank[A - SAS'] (45b)

@ (&) = rank[A - s'as] (45¢)

in which S is the aforementioned down. shift operator
(35). When the matrix A is Toeplitz, it is readily
shown that its displacement rank is two (or less).
Thus, a matrix whose displacement rank 1is near two is
said to be close to Toeplitz in structure and therefore
amenable to efficient inversion using the generalized
Levinson algorithm.

If the displacement rank of the pxp matrix Y% is o,
it has been shown that one can use the generalized
Levinson algorithm to solve expression (44) with a
corresponding computational complexity of O(apz) . If
a 18 sufficiently smaller than p, a significant com-
putational savings can be thereby realized relative to
standard matrix inversion routines. Fortunately, the
displacement rank of Y'X is adequately small for the
unmodified high performance ARMA modeling method and
its prewindowed version (as well as the postwindowed
and pre & postwindowed versions). This 1s a direct
consequence of the fact that the columns of matrices
X and Y are simply shifted versions on one another.
One may readily show that the displacement rank of
matrix Y'X for each of the high performance methods is
as shown in Table 3. Since these displacement ranks
are so small, it is clear that the generalized Levinson
algorithm may be advantageously used for solving the
linear system of equations (44).

6As a byproduct of this solution procedure, the optimal
autoregressive coefficient vectors for all ARMA models
of autoregressive order k are obtained for 1<k<p.

Method Displacement
Rank
2 (YTx)
Standard 4
Prewindow 3
Postwindow 3
Pre & Postwindow 2

Table 3: Displacement rank of the matrix vtz
for the various high performance ARMA methods

When the parameter t 1s allowed to increase beyond p
so as to obtain an improved spectral estimation per-
formance, the displacement rank of each of the methods
spelled out in Table 3 increases. It is readily shown
that for t>p the displacement rank increases to
a2(YtX) in all cases. For example, the displacement
rank of the txp matrix v1X for the standard procedure
increases to (4)2 =16 and so forth. For excessively
large values of p, it would then be advantageous to use
the generalized Levinson algorithm to solve relationship
(44) when case t>p. The computational complexity there-
by obtained would be on the order of azpz.

VIII. NUMERICAL EXAMPLE

The unmodified ARMA modeling method of gpectral esti-
mation, as presented in Section III, has been found to
possess a significantly superior performance when com-
pared to such contemporary alternatives as the
periodogram, maximum entropy, and, the Box-Jenkins
methods when applied to "narrow” band time series (i.e.,
sumsof sinusoids in white noise [6]-(9] and [13]).

With this in mind, the effectiveness of both the un-
modified and modified ARMA modeling procedures will now
be examined for a "moderately wide band" time series.

In particular, we shall treat the time series as recent-
ly considered by Bruzzone and Kaveh [15]. Specifically,
their ARMA time series of order (4,4) is characterized
by 1.2
X=X + % + O.SEk (46a)
where the individual time series xi and xi are generated
according to

= 0.6k = 0.93%_, + & (46b)
2.5 <2 2 2
e —O.Sxk_l - O.93xk_ + e

2
in which the €y ei, and ei are uncorrelated Gaussian
random variables with zero mean and unit variance. It
then fnllows that the spectral density characterizing
time series (46) is given by
-2

s () = |1-0.4e739 40,9373 2]
_ijl-z

+1140.5¢73¢ +0.93e +0.25 (47)

Using the time geries descriptilon (46), twenty
different sampled sequences each of length 64 were
generated. These twenty obsgervation sets were then used
to test various spectral estimation methods. 1In Figure
1, the twenty superimposed plots of the ARMA model
spectral estimates of order (4,4) obtained using the
first iterate of the Box=-Jenkins method, and, this
paper's unmodified method with Agy = (0.95)k~1 and
selections of t =4, 8, and, 20 are shown. For compari-
son purposes, the ideal spectrum (47) is also showm.
From these plots, two observations may be made:

(i) the unmodified method with t =4 yields a marginally
better spectral estimate than the Box~Jenkins method,
and, (ii) the unmodified spectral estimates improve



significantly as t is increased from the minimal
value 4. This latter observation is most noteworthy
and indicates that the incorporation of more than the
minimal number of Yule-~Walker equations for determin-
ing the ARMA model's autoregressive coefficients has
the anticipated effect of significantly improving
spectral estimation performance.

Next, the modification methods developed in Section
V and the appendix were applied to these twenty differ-
ent sampled sequences of length 64 to obtain ARMA model
spectral estimates of order (4,4). The resultant
spectra are shown in Figure 2 where it is apparent that
only "a modest" degradation in spectral estimation per-
formance has accrued due to the transient effects in-
troduced by the modified methods. This is indeed
welcomed news given the ability to implement these
modified methods with exceptionally fast algorithms.

It is to be noted that the "postmodified”, and the
"pre & postmodified' methods are idemtical in this
example.

As a final example, twenty different sampled sequen-
ces each of length 200 were generated according to
expression (46). With this longer data length, it was
anticipated that an improvement in spectral estimation
performance would result. A marked improvement is in
fact realized as is made evident from Figure 3 where
the ARMA model spectral estimates of order (4,4) are
shown for the Box-Jenkins method and the unmodified
method for selections of t =4, 8, and 20.

IX. CONCLUSION

A computationally efficlent closed form method of
ARMA spectral estimation has been presented. It is
predicated on the approximation of a set of Yule-Walker
equation estimates which are generated from a given set
of time series observations. The ARMA model's auto-
regressive coefficlents are determined by solving a
consistent system of linear equations. The displace-~
ment rank of the matrix corresponding to these
equations 1s four thereby indicating that an efficient
algorithmic solution procedure is possible.

The spectral estimation performance of this ARMA
modeling procedure has been empirically found to exceed
that of such counterparts as the maximum entropy and
Box-Jenkins methods (e.g., see refs. [6]-[9] & [13]).
This behavior is to a large extent, a consequence of
the fact that more than the minimal number of Yule-
Walker equatlon estimates are belng approximated to
obtain the resultant ARMA model parameters.

In order to achieve an improved computational
efficiency, a prewindowed modification of the proposed
ARMA model spectral method was next introduced. The
spectral estimation performance of this prewindowed
version has been found to be of high quality for
moderate data lengths. As we will see in Part 2, this
prewindowed method may be implemented by an adaptive
update algorithm whose computational efficiency is
comparable to that achleved by recently developed LMS
fast algorithms.
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APPENDIX
I. Postwindow Modification

Following a similar procedure as employed in Section
VI, the addition of an upper triangular matrix to the
lower portion of the matrices specified by equations
(19) and (20) yields the prewindowed matrices

Mx() .. x(1)
X = x(N) . x (N-p+1) (A1)
_ O x(N)
(x(p-q) . x(p-q-t+1)]
x(p-q+1) . . . x(p-q-t+2)
Y = : (A2)
x(N) .. . X(N-t+1)
@) x(N) . x(N+p~q-t)
where ¥ and Y are recognized as being (Nxp) and
(Nxt) Toeplitz type matrices, respectively. 1In a
similar manner, the column vector x is modified to
'
z = [x(p+1), ....., x(N), O0,...,0] (a3)
N
p zeros



The displacement rapnk of the matrix Y'X is readily
found to be 3. A generalized Levinson procedure re-
quiring a computational complexity of 0(3p2) can then be
applied for solving the system of equatilons

vty a = -¥fz (A4)

A more computationally efficient algorithm associated
wlth the postwindow modification has been developed [14].
It is shown that the number of computatlons 1s reduced
to (p log p) 1f p = q where p and q are the denominator
and numerator orders of the ARMA model, respectively.

II. Pre & Postwindow Modification Method

The combination of the previously discussed pre-
windowed and postwindowed modification methods yields
the pre & postwindow modification method. The matrices
and vectors are modified in the following manner.

0 [ ¢
'
X = xgp) A xgl) (A5)
xiN) e ng—p)
O oo x&N) J
oL .. 0 ]
q rows
o . .9
x(1) . .
v = -0 (46)
§(t) e .'.xgl)
10 RPN x{N-t+1)
O ) “x(N) ...x&N+p—q—t)
x = [{x(1), ... x(¥, 0, ..., 0] (A7)
[N —

p zeros

where ¥ and Y denote (N+p)xp and (N+p)xt Toeplitz type
matrices, respectively, and z denotes a (N+p)xl column
vector.

It can be shown that YT¥ is a Toeplitz matrix. The
conventional Levinson algorithm may therefore be used
for solving the Toeplitz system of equatioms

Y+X_§_ -yt (A8)

in which the inherent computational complexity is
O(sz).7 More recently, a fast algorithmic solution
has been developed which significantly reduces this
computational complexity.

7
The parameter t is here taken to equal p.
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L. INTRODUCTION
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THE PREDTICTION ERRGR VECTORS

The recursive updare equaticns herein presented do
not explicitly updata the ARMA model's autoregressive
coefficients in obtaining optimal updated spectral
estimates. Instead, a set of '"equivalent' parameters
known as prediction crrors are updated. In this
section, we discuss the relationship between the pre-
diction errors and autoregressive coefficients.

As outlined in Part 1 of this paper, the optimal pth
order set of autoregressive coefficlents for the pra-
windowed version of the high performance method are

obtained by solving the following system of p linesar
equactions in p unknowns
fvhox Ja +Yl oz =3 (1
U,P  U,p TP o,p™m -
whera
e x(m)] {4a)
~ (4b)
. (4c)
v o= s%y 1. (4d)
L, p <yl

down shift

hich 8 is the zero vector and 5 is
ator.l Here the dagger symbol (%) denctes compla
njugate trangposition and the prime SVWLDL ( ) denotes
transpoesition, The subscripts p and n ex citl
indivate vhat the dencminator ordevr of the Spth al
model of equation (1) is p and that n data points are
available. Whenever this explicitc informaticn is notc
nueeded, we will use x, v, X, and ¥ in place of xp, vy,
Xp,ps and Yp p, respectively.

It is LtLaLLLd from Part L, that the high performznce
ARMA modeling approach is predicated on approximating ¢t

et

In this paper, matrices are denoted by capital letter
(2.3. X), vectors are denoted by underlined lower cas
English letters (e.g. x) and scalars are denoted by
lower case Greek letters (e.g. a). Moreover, the down
shift operator S is defined by

Lx(n=1)]]

Sxy = [0,2(1),x(2),. .




Yule~Walker equations where t2p. Upon examination of
expression (3), it is apparent that we have here re-
stricted t=p. This restriction is reguired in order
to facilitate the develcpment of the [ast recursive
algorithm. Unfortunately, by requiring t =p, the
spectral estimation performance suffers im comparison
to that achieved with larger valuss of t. As the data
length n increases, however, this performance degrad-
ation diminishes and typically 1s of an Insignificant
nature. This 1s indeed fortunate since it is precisely
for long data length cases that the recursive algorithm
would most likely he utilizad.

Under the assumpticn that YtX is nonsimgular, the
optimal autoregressive coefficlent vector which satis-
fies expression (3) 1s given by

4

=4 +
] Yn’pﬁﬁ (5)

a® = -(YT X
-p n,g n,p
In what i3 to feollow, it {s beneficial to interpret
this autccorrelation coefficisnt selsction procedure
trom 3 prediction error viewpoint. Namely, we may re-
formulate expression (3) as

1)

~

in which 1%, is the so-called forward prediction error
15 Spec ified by
x

£ = oy a (7N

~p,n -n n,p —p
Tt ig referred to as the forward prediction error since
ite kbth component cza be interpretaed azs being the error
resulting from a prediction ¢f the element x(k) by a
iinear cembination of the p most recent time saries
elemer k=2),. . ., x(k=p).

ements x{k~1), x(k
it )
T

'mal qutor@*‘rns ive coeffi‘*ent “ut“of (3) can

problen L‘"olviz the p[:u ion errov vectur.
g veadily suuwﬂ chac this oprimal ve
he following quadratic functional

JE T
.

nor

positive semidefinite matrix

W=Y_ vy oo T (9)
n,p ‘n,p oo
To reinforce this prediction error interpretation, let
us define the following estimate of vector xy

x, = —X“,P 3, (10)

which in turp generatas the forward predicring errex

L N o a
£ = X~ R 11
-p,n -1 11 ab

Upon substitution of expression (5) imto (10) the opti-
mum forward prediction error vector is given by

IeL oy +
EN Xn,p(Yn,pxn,p] Yn p S

= P - 19
xy Za (i2a)

while the mini
selection hecom

ard prediction error for this

o

We have COUpACt matrix

; croduct vepr
ations -4

FE, =T -7 (13b)

Since we are only interested in the operal Xpn and
£% | we will drop the "°" symbol and assume that x
=p,n 1
and f§ , are the optimal ones as given by equation (12)

We may also define the delayed backward prediction

error vector for x, by 2

¥ Pl 3
gp,n 5 oz, * Xn,p 2, (1)
pth

It can be seen that the k™" row of equation (14)
represents a prediction of x(k-p~l) by a linear combina-
tion of the p most immediate future values x(k-p),
x(k=p+1),. . . x(k-1). The resulting error in this
backward prediction is dg oK)+ In this case the

b

optlmum a. vector 1s the ome that minimizes the

quadratic function

N g X (T g% 53
glay) = 0 JTwdy (15)

f

where W is defined in equation (9)

In this case the primdl a is given by
o= ofy T3 -lv p+l ‘16
a. Lin,pxn,p] (S 19 (16)

In a gimilar manner to the forward prediction error case
the optimal estimate of sptly is specified by

. .1 o
KRy T Py (5T x (272)
+ 14 <
and the optimal delay 7eCLor
is ot ” o
--vpxnna SH lzq - g% (17b)

where Pwy and P%Y are given by equation
more, it caa be shown that the optimal ap
equation (16) aiso arises by approximating p Yule~
Walker equations in a manner similar to the approxima-
tien gilven by equatior (3) for ap.

It is clear that the forward prediction error vector
E% a and the autoregressive coefficient vector a, are

i, I
interchanpeable in the sense that one can always be
found from the other using equation (7). Similarly
AX and dp are interchangeable since cne can always
58’ Pound Trom the other using zquation (14). 1t is
also trus that the 2p elements of ap and éﬁ are iate

changeable with the 2p elements f¥ _(a), f% n(_n),..,,

l,n
X 3 . X x < a
p,n(n) and dl,n(n>’ dz,n(n), vy n(n) (i.e., ths

nth elements of the 2p prediction error vectors éf
. X X x K X
iz,n""’ip, and dl W gz,n,...,dp’n).
We will show this last fact in Section VII1, where
we will zlso see that the prediction errors lead to a
lattice fillter structure which 1s related to the auto-
regressive coefficient vectors.

In the fast recursive algorithm, the autoregressive
coefficlent vectors ap and ép are not directly updated.
Instead, the prediction error elements ff’u(n),...,

)
, 0

P
fg,n(n), and di,n(n>,..., 4 a
these elezments are interchangeable with the auto-
regressive coefficients, there is no information lost

in updating only the prediction error elements. How-
ever, the prediction error elements may be updated in

a computationally efficient manner, requiring 0(p)
multiplications and additions for the update. More-
over, as we shall see later, the 2p prcdictiov error
elem2nts enable us to find all of the ay and 3,

vectors for ARMA denominaror orders from 1 op. It

for these reasons that we choose tc update the

the term ''delayed" because althongh the subscript
pears, =(n) Is never used in {(14).
drediction arror vec

(n) are updated. Since

' wilil be discussed in a later

The undelaved back-~



prediction error elements.

We may also obtain additional autoregresslve co-
efficient estimaves similar to a and é by considering
rediction error vectors associated with the vector

the p
¥n given in equation (4b). Specifically, the optinum
forward predicticn error corresponding te y, 1s defined
as
O o
£ w ¢ i8a
=D, In n,p =p ( )
where
o s -
T Ty 1 Ty 18b
R R L (18b)

and Xn,p Yu,p and yp are defined in equation (4). As
in earlier cases, ¢j can b@ found by approximating p

Yule~Walker equations or, equivalently, by wminimizing

the quadratic functional

. N + + AN
co) = IR. ' (19
hk_p) f L [Kn,p Xn,‘] (L9
Corrasponding to this optimal
efficient vector ES we may a 5
{2m

cihe oprimun error vector

£ -
—p.n

IS
- and P
Y X

Finally, the optimal delaved baclward pvediction
errvor vector for y, is defined by

where P are defined as in equation (13)

&7 e Py Ly g (212)
—E,n - L.p —p
where
. e . -1, + ,.p+i
e’ = - ixt X T (5P 21b
=p n, n,p] n,p( ~ﬂ) ¢ )
Again, we can define the predicted vaiuve of Spklz>by

cé* = Y I o 1"lx T .;;p = Sp +1 3y
:‘.’_,1 1“1,{)“X‘[l,pln,l:)J nyr;(‘ ,Y) - ¥
(22)
and it follows that
Yoo u€ p+l .
e S Y (23)

2, entities

as for t>“ Xn vector, the
) (n)..., 4¥Y (n) can be
>R

g ey (A_J, ang d7
ﬂ:,- -1,

‘LEﬂClY Ludaltd and enable us to determine the
optimal ¢y and cp coefficient vectors tor all ARMA
model dEDDmlﬂdCG? orders from 1 to p.

IIL. THE HILBERT SPACE SETTING

The probilem ¢f rocursively updating the prediction
error vectors in the fast algorithm can be more sasily
casting the problem in a Hilbert space
setting. Consi er tha n dLmens;o“al cowpiex
Fuclidian spac

understood by «

oy h e Fale il AR
EEE SERE AR S S (267

with the standard vecter Znner product defined by

n )
- e R
) owd) v (23)
i=1
- .
’Throughout the remainder of the paper, the "°" symbol

w;,l b= dr)““bl and the prediction error vectors
and 4¥ are assumed to be the optimal ones

We note that the n=xl vectors xn,
all elements of 4. Moreover, the »
X,p are also elements of H. The s
combinations of these p elements is
which we denote by My. Similarly, M
spanned by the p columns of Yn,p-

Let us now consider the FOHV“YQ pradiction of x,. From
equation (12a) we sae that Xyis formed by a mﬂt”lx
multiplication involving Xn. The marrix Pyy is seen co
be a linear coperator on the Hilbert space H. It is a
parent thac P maps elements of F into elements in the
subspace Mg, that is

s In, and szn are
olumns of matrix
all linear
space of H.

the subspace

FKY: q - HX (26)
Also, it is evident from equation (13) that PXYZ = Pyy
5o thart the operator PHY is a projection operator onto
the suabspace My. In general,
projecticn operator onto subspace My
soclared

Pyy 1s not the orthogonal
Instead, the as-
direction of projection is determined by the
an be seen from equaticn (6) that the
of Pyy 1s orthogonal to My.

the vro,;w:;on operator onto the subspace
the orthogonal complement of MY).
thoughts in mind., we cun provide a
interpratacion the four errnr vectors
In narr‘ﬂukar the

_5_"“, and fp o tE

tric rela

slchned in Figurs

Geometric Relatlonship Between xp, Xp, and
the optimel prediction error is f%

Figure 1:

= p,n
The vector X, 1s seen to be that projection of x,onto
My that is orthogonal to My. We aote from Figure 1 that
X N g
foon L, {27a)
or, egiivalently, that
b4 m RN
<£p,n’ S Xﬁ> = 0, o= 1,2,0.0.,p (271
The zeometric relationships for J“ £7 ., and d¥ _are
p,n? =P, —‘byl

gimitar to Figure 1.

Since PKV and Pyy are proijection cpsrators, SO are

chelr connlnmenrq Piy and P& Tt follows thac
U a)
(7 ‘.(Y) Px‘x’ ga)
)
4 G e < s
(PV{) - PO (28b)

<
[
°
kY
i
=
Q

1 eguation (13)
namely

that Py and PYK

= ip {29a)
Y ‘YX a)
and PS = (P57 (29b)

XY

In addition to the four prediction srror vectors

there are four inner products that are useful 1ndeering
the fast algorithm.
defined as:

¢ Q = J+ 7 a ‘fp s
o U ) 7 L Pl

Thzse complex-~valued scalars are

d E {30)
Pl n -’ XY Za .




N 4 (3L As mentioned earlier, to ilmplemant the re
5o B . .
P, gorithm we only need the arror element at
ig X (Y. ¥From equation (37) we see
Yoo A 32) I R ? ’ i
P X . WB 4% R PO
S 2B g® (o) (1)
y . 31 frix KA L dsn
\ a 33 [
pﬁi" =

order update equatiou

Iv. TRE PROJECTICN CFrE

siwilar mamner, the order update esquation for
£ 4s found to be

r

1 appAarmilt
and scalars

e last
ction erroeyr ve

From the rusuits vf t
that the

¢

are all e e ocperatars Fyy a e (39)
; 1) becomes avadlsbl . to

update the nye oarToryg vectors and ac in a T arve defined In equation (36).
computationslly crficient manner. DLecause Che opera- 4 tection oper theorem yiel
rovs Pyy and Pyy : v and %hmir struct- oy - ey av (40)
ures change as new dara poiu“¢ become available, we “w+l,n  “m,n “m, 0 A
prefer to update them znd then obtaln updated arror
vectors by applying these updated projection operators. The ath component of equation {(40) is the desired
Recursive update equations for the projecticvn operarors order updatse equation for the forward y prediction
Pyy and Pyy, Are readily obtained by appealing to the error, that is
tollowing the : LI

jection Operator Theorem) Let A and Ly;1 (n) = tﬁ,1(“) - C;f; i,n(ﬁ) (41)

Theorem 1. (Tro
B be mxm matrices. Furthermore, congider the aug-
N = o ; v The order update equations for the delayed backward

mented macri = vaj and B = {B.b] in whic? 1

3 - E - —_ g oy - " A 1,
a and re axl vectors. IE [A fp] 1 and {A fﬁ] i p;Pn1L110n error vectors may be simi ale uerlveé
exist, then the associated projection operator corres- 1hese equations are, however, not as useful as the

ponding to che augmented matrices is given by combined crder and time update equations. The combined

R ¢ 1"lhfn° - (36) update equations gilve g;+l,n+1 and g%+i,n+l in terms of
AR DAD AB = = 'ap ™ E? and gg o+ In deriving rhe comblned order and time
" ,n N:
where = B (35a) update equation for the delayed backward Xp @stimate,
) we first note that from equation (17b) -
s I - PAB (35b)
— = .
’ The theorem may be straightforwardly proven by writing §m+1,n+l = f42a)
(A8} in chur complements and performing o
some matrix Alternatively, the theorem may wherg .
be proven using K space concepts. L (42b)
Using this pro tion operaror thecrem we may now
obtain all che easary equarions for the fast recur-
sive algorithm. Twe types of recursive equations are - o
of interesi. First, =quations are needed that provide ¥ (42¢}
the m+13t srder predicuiion 2rrov vectors in terms of
the mth order errors. ‘These are called order updata
equations. 3Second, equations are ucsded that onable Wa now . A1 Cheorem Eo
us to update the prediction arrors as a new data point equation 4 ith A =% A1 in equation {34).
becomes available. These squations are referred to sas Afzer some simple algebraic mawipulation, we gat
the time update recursions.
These two sets of equations are derived below. e T o | ‘i
-1, bl = %ék"i - i"} (a3)
V. ORDER UPDATE RECURSLONS - | Sm,n m,n|
. - X [ o J
In chis the order update equations for I",
Y, d¥, 2 v are derived by making use of the Tha n+l3

£
projeccion

I cheovren. R update sguation
Consider Ii ST TOY vectnr £§m+‘ o @ssociated L®
with the optimum m+1St order ru*ure.resrlve 29— ‘m,0 X
o (on aurobcgressive som a*, (al) = 45 (n) ~ DB Xy (44}
Here, m can takg on any value in the wrl, n+l m,n o m,n
vevy p=1, where p {s the desired autc=~ LIm,n
regressive coetficient order. TFrom equations (4) and
(L2h) Dwe see that h ! The delayed hackward time and order update equation
’ x : o for y, is derived in a similar manner. The details are
> - {16z S = . ir is :h
“m+l,n Pﬁy X (36a) omitted, but it is readily shozn that
N e o . N!l]'é"l P 312 N m,n (’«S)
where X=X =[x 18Ty 36b) ; C(o#l) = dY (ny - s Y
G, okl t n,m. wn] ( dm+l,n+i‘ ) m,n< ! Moon fm,n(n)
. okl e
Y .S Ty ] (36¢) - B
L, . <oy Finally, the order update equations for the scalars
} a . . Py - 2
ving the projection operator theorem to {36a) with bm,n and v p are derived. From equation (32)
wtly, and b =8§wrtly, we have ) ey S o (46a)
"mel,n - Lo XY Fn \aoa
- ., L
where X = X L, = [ . (3 B 4
pekl Lo ookl L Rusat [ wier n,m+l [Xn,m . —ﬂ)] (46b)
¥) P (8 i 6 7 Pry X - +
% ¥=v = [Y NGRSO (46c)
m,a X (37) n,n n.m “n
N /




operacer thecrem gives the

©

(47)

where X and Y are
the projection of
ordar an time upda

Applying

fined in equation
i mbined

t
ator rhecrem
e equdtion

VL, g ® Y
o+1, o+l m,n

(49)

VI. TIME UPDATE EGUATIONS

equations update the forward
arrors as a new data point ig

ained. For ths reason these equations are called
time update equarions.

When a new data point becomwes available, the effect
on the nrediction error Vechors s to append a row to
the bocrom of thelr defining matrix equation [see, for
equi'lon (7)), Appending a row to the
o and Tg 5 does not seem to fit in the
2t the projection operator thecrem, in which
umns are anpended to Xp g and Yy p- It turns out,
that we can accomplish the task of annihilat-~
in che error vegtor matrix equation by
to and Y the nth basis vector defi

1ed

Sn,m n,m

(50)

-n

To see
the forws: i
append the anl vester
have

let us consider as an example
vector for xp. I we
in equation (7) we

“.\ r—, \‘_ b fi I '..E
o ix(l 0 0l
5 lk ) ) : }am\l)‘
[ "0 L 0lta (2
; \ i . pm
: =10 b+ x{1) . i; . (513
| o ' Dojlam
| o ' |
» ' L. ‘ . ol
j‘ ! \ . | . . 1! “
‘]A “,nl '\)J !xxn) ] x(n~u) *I
ix

. o .
is used instead of Eﬁ ro indicate tha prese
of the eg vector, The optimal £x n vector is given by

~Ths

where {

vhere

ow that

, i=1,2,...,m (53a)

quation (53b) Is satistied only if we force

X \ ) B , .
:j n;n; = 0. This can aiways be done because the

sealar only in the last row of ration {51).

=

AUpRATS

ular, fg, D(n, = 0 if we chcose

Since Lﬁ,n(u> =0, 2 ou (53a) is seen to depend
only on the first n-1 components of the vectors. It is
wasily seen, then, that ?; n(k) for k=1,2,...,n-1 are

,

-1 rows
P )
(1dyeq.. ]

91) in such a
(n=-1>] is

Components

£ each coiumn
of determin-
ni-1 data

m-  But th
rd predicrion o
.z that

is exzactly the problem
Tor based on

(53)

Similar arguments show that this time annihilation

property also holds for £/ , d%¥ | and &Y with re-
“m,n’ Tm, . ~m

suliing formulas similar to equartion

note that the scalars Ym,ns Tm,n> Hm,a>

formad as inper producrs of "*e PECdJLtluD eTLo

vectors. Since the last element of tx o Cor £
1

.

d7 ) is zero, follows that

~m,n

=X A A \
o = [f 17{d ] (56)
-1 “m,n -m,n”
P a2 g ‘. F 1
and similarly for Tm, 0z Jm s and Vm, n*

With rhese thoughts in mi nd we are in a position to

derive clme update equations for o, v, u, and v. First,
let us define the augmented matrices

T= {8 e ] (57a)

“m,m L -n

¥ = iy L e (571)

e ly el
Then it follows that

o = (58)

7 are defined
ion operator

prujqc
i

i

L= ~ £
m, ik m, 1 m,n

whare 1 --

riting equation (33) we
cime updabe equation

By rew

i3 g
m, 0 m,n-1

The time update equation for 7 is found in a similar
manner bv using X for A, Y for 3, Sm+¥§]for a, and y,
{or b in equation (34) to yield

(62)

T = T +
m, m,n-1

The update equations for u and v are found to be

x ¥
[Em,n(n) [f (n)]

u = U (63)
m,n m,n-1 1 Ym,n
CRENCOIN (n)]
) f,n ,n i~
N =y 4 - (64)
m,n m,n-1 L -



EN fx (n) - (T"l)
m,
.y,
= I ¥ —
ta,att
b "
= B (n-1 - (T~3)
o, ol T
= v (ul) - (T-4)
m, n~1
= - (T-~0)
m,n
= ! - 3 " (T-6)
n, n-L W, I iyl
J = g T R N R ST A C R (1~-7)
m, o m,n~1 Lfm,n\n)‘ [bm,n--l\A Y1/ ‘myn ’
x Lk LY ;
T =y + (n-1Y]7 [£” n)y!/(1 -~ (T-3)
m,n m,n-1 [bm,n--l\n DIl m,n( Y Ym,n)
X F I A ; (T=9)
L = } + T f n L=y
n,n “m,n-1 i n(l)] Hoant A n.n)
@ =y + (b= (n)]*[by )]/ (L =-v_.)
i, It m, n=~1 m,n’ o, 0 m,an
Yo =y S S-S BB R LA S O S VI (T-11)
okl m, N m,n~1 ’ m,n~-1 m,n=1
% KoV * PR
Yo = + £ n £7 (m))/u {T-12)
Tmtl, vl Ym,n [ m,n( )] "m,n< ) “m,n
Table l: Summary of Update Equations
vhere p is tiue desired {maximum) autoregressive co- 4y Tor each m = 0,1,...,minf[p~1,n~q-3] find
efflcienc order. X .
- . m vsing (T-7)-(T-10)
Finally, when m = 0, gm,n’ a,n" m,n’ m,n %
. . N ¥ Y \ .
- = (83 £x £ _{(n),b 1), b’ (n) using
0.n v (83) L1'n'1'-l,ﬁ(n)' wrl,n’ )s rm—l,n(r)' ml,n using
Alchough othur initizl conditions may be obtained, ‘ (T-1)-(1~4)

these initial couditicns are the only ones needed to
implement the algorithm.

The implementation of the update formulas can be
divided inte three parts. First, for n =q the vector

/ siag -11
ym+l,n usiag (T )

For m = min(p,n-q-2] find

L
e

v, is the zero vector, 86 no operations are performed. T Tma e Y n uging (T-7)-(T-10)

e - . i - s 1

Yor g+l -n<q+p+1, the maximum order m that can be ’ ! ’ ’

used is n-q-1. In this time interval, az a new data 6) If n<p+q+1l we nead to order

seint arrives not only are time updates performed, but
also the model order 1is increased. Fer n>g-+p+1, the
4 p and the time updates only are

The implementation of the algorithm for m>»g+1 is
summarized below.

As the new Jata point becomes available:

1) sSet a o~ n+l

avallable from the last

ition:

Sat m « n-q-1l.

LY ) fox
Dm.n—l(nml) =0, 1 Find:
e o . T using (7-~7), (T-8) with 3 =T =0
min{p, R, T, Tt = m,n-1 m,n~1
J n-q-2] At this point we are ready for the next data peoint
. _ o ) x . to arrive.
4)  New initial conditions: £y = x(n) It is clear from the above summary that 0(p) multi-
vg’ (n) = x(n) plications and additions are requlired to update the
e prediction errors. More specifically, in the time up-
fb’n(“) = x(n-q) date mode [i.e.,ywhen a>»p+q+2 30 no filter orders
b5 {n) = x(n~q) need to be added] l4p multiplications and 10p additions
11 are performed per update. In the time and order update
YO,n =0 wmode, [i.e., when n<p+q-+2}, 17p multiplications and
13p additions are performed. It should be noted thet
Ifn<p+aq+2, Snegel,2-1  ‘pegel,n-l 0 this computaricnal requirement may be significantily

reduced by using a normalized latt
vhat in [2].

3

ice form similar to




IX. CONCLUSTONS

4

In this papsr we have presented 2 recursive algorithm
for obtaininp the autcregressive coefficients of an
ARMA model. The racursive algorithm i3 based on the
prewindowpd version of the high perfcrmence methed of
ARMA swectral estimation as described in Part 1. The
recursive algorithm is computationally fast, requiring
CG{p) acditions and multiplications to update the pa

meflers. Moregover, the algorithm can be implemented
using a lattice filver structure offering pumerical
robustress and nice convergence proverties associated
with lactice type algorithms.

We hav

not yet discussed the problem of recursively
the moving average coefficients “n the ARMA
do wot at this time have such an alyporithm.
is worth noting that the moving
ing 5 present in the output predi
sequences, and the utilization of this info £l
moving average icient estimation 1s current
under study. Aunother area under study is tha nse of
various normalization precedures to ect a decrease
in computational requirements and in sitivivy.

note thoet the recursive algorithm pre-
L3 based on approximacing a set of p Yuls
pocions, [t has been shown in Parc 1 of this
for short data lengths, improved spectral
sult from using more than p Yule-Walker
For those cases in which the amount of data
ecursive algorithm based on the
>

>N

t > p Yule-Walker equations would often
prove useful. 3Such an algoritlm is currently beding
pursued.

T
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