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ABSTRACT. This paper considers the problem of estimating the frequencies of multiple sinusaid-
using the High Order Yule-Walker equations. Asymptotic expressions for the variances of frequeney
estimates obtained from two HOYW-.based algorithms are presented. Two-step estimatons whick
minimize these variances are also developed. The theoretical variances and Monte-Carlo siimnlistion,

results are compared.
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1. Introduction

The problem considered in this paper is that of estimat-
ing the frequencies of sinusoids from a finite set of noisy
meassurements. A popular method involves estimating au-
tocorrelation coefficients from the data, and solving a set
of Yule-Walker equations [1,2]. If the data consists of m
sinusoids in additive white noise, the order of the Yule-
Walker equations must be greater than or equal to 2m. It
has been empirically found [1,2,3,4) and theoretically con-
firmed [5.6,7] that if the order is chosen to be larger than
2m, (leading to the so-called High Order Yule-Walker es-
timates) the estimation accuracy improves.

In this paper we present asymptotic variance expres-
sions for the frequencies of sinusoids estimated from High
Order Yule-Walker equations [6,7). We consider two forms
of the HOYW estimator, 8 minimum norm solution (us-
ing singular value decomposition techniques) and a com-
putationally more efficient sparse solution {5]. We present
8 two-step algorithm that gives asymptotically minimum
variance frequency estimates. We compare the theoretical
variances for several specific algorithms, and with results
obtained from Monte-Carlo simulstions. We also discuss
the tradeoffs among these methods in terms of both accu-
racy and computations.

II. The High Order Yule Walker Equation
Estimates

Assume we are given N measurements of a noisy sinu-
soidal signal:
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y(t) = i'n sin(w,t + ¢,) +¢e(t) = 2(t) + e(t). (B8]
=)

where ¢(t) is white noise with zero mean and variance A%
The goal is to estimate the frequencies {w )., of the si-
pusaids. One popular procedure for estimating these fre-
quencies is to use the so-called High Order Yule-Walker
equations. To develop this approach, let
A(z)mao+---+a,:" ne2m

be » polynomial with roots at e, k =1,2,...,m. Then
since A(g~')z(t) = 0 (where ¢~ is the unit delay operator:
¢ 'z(t) = z(t - 1)), it follows that

A(7 (1) = A7 )e(t)
o Alg")ra=0, k>n

where ry = Ely(t)y(t — k)] is the autocorrelstion sequence
of y(t). Moreover, if we define

C(z) = A(2)B(z) = co+ 632 + -+ + 12t (2)
for any polynomial B(z) = bp+ b+ -+ -+ by 25" we have
Clg =0, k>L (3)

Equation (3) can be used to solve for the coefficients of
C(:) from sutocorrelations vis the High Order Yule Walker
(HOYW) equations:
r‘- «sn ') rl
Q : H P l=-Q

TLant-1 =" ™M™ cy

L4
: (4)
VL4 A

or

T

Ay £



10 ¢

AMSIND D vy

MY 1y

4

a2sin(L 4 1)y 92 wn(l + 1w
- 91 lin(L‘+ Mo

(12)

'rfsin(L:-o» My
E {v(tT(1)}
Clg )l et=1) -
Then, for finite L and M,
VN(E -w) = AN{(0,P)asN = o0

S =

vt) = e(t-M))"

where
P, = NMFHTWH) ' HTWSWHHTWH)'FT(13)
W = Q'Q

Theorem 2: Let 8; be the salution to (10) and 6, be
the solutian to (11). Let C(2) denote the polynomial corre-
sponding to ;. and let {24 )72, denote the positive angular
positions of the m complex-canjugate pairs of roots of C(z)
which are closest to the unit circle. Assume that o geroes
of B{:) lic on the unit eircle. Then, for fnite L and M,

VN{&—w) = A(0,P3)as N = o0
where
Pi= MFHTWHY ' HTWSWHHTWH)'FT

and where F, H, S, and W are defined as in Theorem 1,
but with 6; replacing 6, there.

(14)

These theorems give the asymptotic variance of the
HOYW frequency estimates for any weighting matrix Q.
The proofs of these theorems can be found in [6,7,8,10).
Note that the only difference in the variance expressions
for the estimators is the particular C(z) polynomial coef-
ficients used.

Oyptimal Choice of Q

We next discuss the choice of the weighting matnx Q
in the estimation. A common choice is Q = J. Bowever,
other choices of Q can lower the variance of the frequency
estimates. It is readily shown that the P matrices in (13)
and (14) satisfy:

P2 )\ F(HTSH)FT (15)
where equality holds for

W=Q7Q =s"! (16)

i' Thus, if Q = AS-'/ is used, the resulting frequency es-

timates have (asymptotically) minimum wvariance. Note,

however, that S is a function of the (unknown) ¢, coefi-
cients; S is given by S = 32¢7 ¢ where (¢ f. (12)):

l ¢ - ¢ 0

¢ = . M x(L+M) (17)

0 1 ¢ - ¢

Tbus, the optimal choice of @ can be obtained with the
following two-step procedure [8):

Step 1: Set Q =/, and calculate initial estimates of the
¢, parameters using the HOYW equations.
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Step 2: Use the ¢, estimates from Step 1 to form é, and
repeat the estimation procedure with Q = (¢76)- /7.
(Note that 7 ¢ is a symmetric Toeplitz matrix, so
Q can be computed efficiently using a modifica-
tion of the Levinson-Durbin algorithm.) Finally,
obtain the frequencies estimates @, from the new
¢(z) polynomial.

It can be shown [8] that the use of estimated ¢, coeflicients
instead of exact ones to form Q in the second step does
not affect the asymptotic variance expressions.

IV. Numerical Examples

In this section we present some pumerical examples
which illustrate the performance of the above algorithms,
We compare the theoretical asymptotic frequency van-
ances with each other and with estimated variances ob-
tained via Monte-Carlo simulation.

The example consists of two closely-spaced sinusoids in |
white noise. The frequencies and amplitudes of the minu-
soids are given by: w; = 1.00, wy = 1.05, 9, = 93 = 1. The :
noise variance (A?) is chosen to give a signal-to-noise ratio '
of 10dB (where SNR = 10log(+7/2)?)). In all examples -
N = 150 data points were used; we have also performed .
simulations with N = 1500, and there the estimated van- |
ances match the theoretical variances much more closcly
than for NV = 150.

The tables and figures below give normalized variances
N.var(@)) (i.e. the (1,1) element of P, or P;). Simulation
results were obtained by averaging 50 Monte-Carlo exper-
iments. Only results for &, are shown. but the variances
for U, are similar. All variance values are given in dB. For
this example, N.-CRLB= ~42dB, where CRLB denotes the
asymptotic Cramér-Rao Lower Bound for the variance of
.

Table 1 shows the theoretical variances of &, for sev-
eral values of L and M, and using the direct minimum
norm estimate (6§, with Q = J). Note that the variance
decreases by nearly 50dB as L and Af increase. Table 2
shows the variances for the two-step optimum minimum
norm estimate; here, similar decrease in variance is secn
for increasing L and Af. Note that the optimal variances
are significantly smaller than the direct variances for large
M and small L; in other ranges the direct and optimum
variances are almost equal.

Figure 1 shows theoretical and simulation variances of
&, for the minimum norm (8,) estimator with Af = 20.
It can be seen that the optimal variance is significantly
smaller than the direct variance only for amall L. The
simulated variances follow theoretical resuits only approx-
imately; however, for N = 1500 data points, the agreement
between simulstion and theoretical variances is nearly ex-
act,

Figure 2 shows similar variance curves for the sparse
matrix (#;) estimate with M = 20. Note that while the
theoretical optimal variances for #, and 6; arc similar, the
theoretical direct variance is much larger for §,. Moreover,
the direct variance is sensitive to the particular choice of L.
Both the direct and optimal estimated variances in Figure
2 exhibit a lasge sensitivity to L. Comparing Figures 1
and 2, we sec that the minimum norm (SVD) spproach
gencerally produces lower variances for this example.

The higher variances from é; and the Jarge swings in
the perfonnance as a function of L are primarily caused
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Table 1. Theoretical Variances of &, for the Direct,

Minimum Norm Estimator.

707 A

< P Y

4o

Table 2. Theoretical Variances of &, for the Two-Step
Optimal, Minimum Norm Estimator.

JAVEIA N o] 13} 17| 2
5 233 | 599 1.371-1.03].7.78
9 7.20 341-6.02]-12.1}-16.0
13 2.0} |-508}-116{-16.7}-19.6
17 163 {-9.141-13.9]-17.3-21.9
21 448 ]-13.71-175]1-21.2}-25.2
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Figure 1. Variances of &, using the Minimum-Norm Ee-
timator. Solid lines are theoretical variances (direct and
optimal). The dotted line is the estimated direct variance,
and the dashed line is the estimated two-step optimal vari-
ance.

15 -
i
st 1
- ° Y L
) 3 A ]
[ 4 ': ]
014 Y H 4 s
L ! “. / :/ : 'P\\\ ~,
30| \/_\ ) P ! 9
3 N
18t R N ]
! . ~ R
> ® !
5] <
0+
®g m i » 7 % %
Powmen L

Figure 3. Variances of &, for two Sparse Matrix Eatima-
tors, Direct Solution. Dotted line is the 6; estimated vani-
ance. Dashed line is the 8; estimated vanance.
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Figure 2. Variances of &, using Sparse Matrix Estimator
with J = I. Lines are as in Figure 1.
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Figure 4. Variances of &, for two Sparse Matrix Estima-
tors, Two-Step Procedure.
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