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Abstract

This paper is concerned with the classification and identifi-
cation of radar targets from frequency domain data. The ap-
proach taken is to form an autoregressive (AR) model of the
downrange and Doppler profiles of the target from a set of co-
herent, stepped-frequency radar measurements. Simple, effective
methods for motion compensation of the data and for averaging
of the profile estimates are derived. This composite algorithm is
applied to X-band radar measurements of aircraft in flight to il-
lustrate the effectiveness of the modeling procedure. The results
indicate that the AR method can be used for scattering center
identification, and for discrimination between two targets.

I. Introduction

Traditional radar systems have been designed to detect and
track targets. More recently, radar systems which not only detect
targets, but also classify or identify them are of interest [1,2].
Such radar systems attempt to exploit information obtained from
radar measurements. This information is often in the form of
amplitude and phase of the radar return at different frequencies
and different times [2,3].

There are various ways in which the information in these
One pop-
ular method involves transforming the frequency-domain mea-
surements into downrange and Doppler profiles via a Fourier
Transform operation. Radar measurements at a fixed frequency
but at different times can be transformed to obtain a Doppler
profile of the target; similarly, measurements at a set of stepped
frequencies can be transformed to obtain a downrange profile of
the target.

Traditionally, the Discrete Fourier Transform (DFT) is used
to implement the transform operation [2]. However, there are
some drawbacks in using the DF'T for target identification. The
most important of these is that the DFT produces a nonpara-
metric estimate of the downrange or Doppler profile of a target;
in fact, the number of “output” data points is the same as the

radar measurements can be used for classification.

original number of measurements. Any classification algorithm
must then operate on these output points (or “features”). This
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presents difficulties for two reasons. First, classification algo-
rithms become computationally burdensome as the number of
features increases. For many algorithms, tractable implementa-
tions can be obtained only if the number of features is kept small.
On the other hand, the resolution of DFT methods is propor-
tional to the number of measurements; thus, if DFT processing
is used, there is a tradeoff between resolution in the downrange
or Doppler profile and computational burden of the subsequent
classification algorithm.

In this paper, we apply autoregressive (AR) modeling tech-
niques to obtain downrange and Doppler profiles of the target.
Autoregressive modeling techniques have been applied to a wide
range of problems [4,5,6,7). These techniques are appealing for
target identification for two reasons. First, the AR methods
produce a small number of parameters which describe the down-
range or Doppler profile of the target; these parameters can be
used directly in a classification scheme. Since this number of
parameters is small, the resulting classification algorithm will
require fewer computations. Second, AR methods are not lim-
ited in resolution as DFT methods are. In fact, theoretically
infinite resolution of scattering centers if possible.

The outline of the paper is as follows. In the next section, we
outline the AR modeling procedure. In Section III we address
the problem of motion compensation and data averaging for the
present application. We obtain computationally simple, effective
methods for performing both tasks. In Section IV we apply this
modeling procedure to actual X-band radar data measurements
of two aircraft in flight. We also present guidelines for selecting
the order of the AR model. Section V summarizes the results.

THE AUTOREGRESSIVE MODELING
PROCEDURE

1I.

A. Description of the Data Measurements

The radar data available for our application was taken at
the Naval Ocean Systems Center. This data consists of sets of
64x 64 arrays of measurements. For each array, the measurement
frequency is stepped from 9.01 GHz to 2.262 GHz in 4 MHz steps,
for a “burst” of 64 measurements. Each measurement in the
burst is taken in 0.1453 msec, for a total of 9.3 msec/burst. The
system repeats the above measurement process until 64 bursts
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are measured. Figure 1 shows the format of the resulting 64x64
measurement array.

Note that each row of the array is a set of stepped-frequency
measurements which can be processed to give downrange profiles.
Similarly, each column of the array gives a set of measurements
at a single frequency and at a set of equally-spaced time sam-
ples; these data can be processed to give Doppler profiles. Two-
dimensional transforms (using either DFT or AR techniques)
can be applied to this data to produce a two-dimensional ISAR
image of the target [2]; in this paper, we restrict attention to the
one-dimensional processing problem.

B. The Autoregressive Model

Let {z,}_, denote a single row or column of the radar data
array. The AR model assumes that {z,} satisfies the following
linear difference equation:
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where {e,} is a white noise sequence. The a; coefficients are
called the autoregressive coefficients.

There are several types of data which are well approximated
by an AR model [9]. For the radar application, the following
propoerty is of importance. Assume that the data sequence {z,}
consists of a sum of P complex exponential signals

P
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Then this sequence is exactly modeled by equation (1) with
e, = 0. In this case, the AR coefficients and the exponential
coefficients are related by
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That is, the zeros of A(z) give the exponential weights p;.

The use of an AR model for the radar data can be justified
for short wavelength radars. For such frequencies, radar targets
are often well approximated by a small number of specular scat-
tering centers [2]. Each specular scattering center produces an
undamped complex exponential response p in the frequency do-
main along any row of the data array. The range of this scatter-
ing center is linearly related to the argument of p [2,8]. Similarly,
if a scattering center is moving at a constant velocity, the radar
data will contain an undamped exponential component along
any column of the data array. If P such scattering centers exist,
there will be a sum of P undamped exponentials in the data. In
either case, the AR model of order P exactly fits this type of
data.

In practice, scattering centers are not exactly specular, and
motion is not exactly linear; thus, we would expect the exponen-
tial responses to deviate slightly from being undamped; that is,
we expect |p;| to deviate from its nominal value of one.

C. The AR Estimation Algorithm

There are several methods for obtaining estimates of the AR
coefficients from a set of data; see, e.g. [9]. We use a modi-
fied forward-backward prediction error algorithm [7} because it

is computationally efficient, and because it is insensitive to ini-
tial phases of complex exponential signals in the data. Given a
set of data {z,}1_,, the AR estimation algorithm entails solving
the following system of equations:
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The quantity ep represents the error energy for a P* order AR
model [7]; thus, the ratio ep/eq indicates the percent error be-
tween the model and the original data. We note that a compu-
tationally efficient, order recursive implementation of the above
algorithm is derived in [7].

Once the autoregressive coefficients have been estimated, the
squared magnitude of the downrange or Doppler profile is given
by

€p
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where z = e/*"/¢T for the Doppler profile (§T is the time between

measurements), and where z = e/*7/"¥f for the downrange profile
(6f is the frequency step). For target classification, however, the

(6)

actual profile need not be computed; this profile is completely
specified by the coefficients {ay, as,...,ap, ep}, and classification
algorithms can operate directly on these coefficients.

ITII. Motion Compensation and Averaging

Techniques

In the previous section we discussed the estimation of a single
downrange or Doppler profile from a row or column of the data
array. In this section we consider ways of combining the esti-
mates from several rows or columns. Specifically, the problems
of motion compensation and estimate averaging are discussed.

A.  Motion Compensation

As described in Section II, the radar measurements are made
at equal increments of time; since the target is in motion, some
compensation is needed to align these measurements. Assume
that the first measurement (1, 1) is taken at the zero time refer-
ence. In order to compensate for the motion of the target, z(¢, 7)
must be multiplied by a phase factor to shift the target to the
zero time reference. Thus, we can form a motion compensated
data array {z.(¢,7)} as

. (i,) = (i, j)ed) (7)

where a(i,7) is proportional to the difference in target range
between the times of the measurement of z(1,1) and z(z, ).
There are several possible assumptions which can be made
about target motion. If we assume negligible motion for elements
aleng the rows of the data array, then (7, 7) has the form
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a(i,j) = 3 Aan, (8)
m=2

where Adq,, is proportional to the the radial distance that the

target moves between the z(m — 1,1) and the z(m, 1) measure-

ment times. If the target is moving at a constant velocity during

the data array measurement time, then these Aa,, terms are

equal, so

a(i,j) = (i — 1)Aa (9)

If the motion along the rows of the data array are not neg-
ligible, then equations (8) and (9) can be modified accordingly.
However, for the radar system considered in this paper, it was
found that motion compensation along the rows of the data array
is negligible [8].

If equation (8) or (9) is used to compensate for motion, then
the parameters Aa,, or Aa must be estimated from the data.
Below we discuss a simple, effective estimation scheme. The pro-
cedure is to model each row of the data array by a first order
AR model (i.e. P =1 in equation (4)). This estimate is equiv-
alent to assuming that the target consists of only one scattering
center. Each first order AR model produces a single pole esti-
mate p; (which is equal to —a; in this case). The change in the
argument of this pole from row to row in the data array gives
the range Aay,:

Ao = arg(pm+1) — arg(pm) (10)

If these phase changes are assumed to be equal as in equation
(9), then an estimate of a can be found by averaging the a,,
estimates; from equation (10), this estimate is given by:

_ arg(pw) — arg(p)
S (1)

In either case, the estimate involves performing first order AR es-
timates and using equation (10) or (11). Since an order-recursive
implementation of the AR estimation algorithm is available [7],
the first order AR estimate is computed as an intermediate step
in the downrange impulse response AR estimates; thus, the above
motion compensation method requires almost no additional com-
putations to implement.

As a side note, if the AR estimate for a row of uncompensated
data has been found, then the corresponding AR estimate for the
motion compensated data can be easily determined. Let {p;}Z,
denote the poles from uncompensated AR estimates. Then the
poles {p¢}E., for data compensated by equation (7) are related
to the uncompensated poles by a phase shift:

Aa

2rja(i,g) 1 S : < P

(12)

The above equation is valid only if motion compensation along
the elements of a row is neglected, that is, if a(s,j) is not a
function of j.

pi = pie

B. AR Estimate Averaging

From each 64 x 64 data array, we obtain 64 downrange pro-
files and 64 Doppler profiles. Since each estimate is noisy, it
is desirable to apply some type of averaging technique to these
estimates.

In [?], a number of averaging methods were considered for
a slightly different AR coefficient estimation algorithm. It was

found that averaging of the autoregressive coeflicients and the
reflection coefficients gave the best results. Autoregressive coef-
ficient averaging is computed by:
1 X
G,=% Y amp 1Sp<P (13)
N m=1
where N is the number of individual AR model estimates.
Both AR coefficient and reflection coefficient averaging were
implemented and tested on X-band radar data. It was found

that AR coefficient averaging gave decidedly better results. See
(8] for details.

IV. Examples

In this section we present some examples which illustrate the
performance of the AR estimation algorithm. For these esti-
mates, two data sets were used, corresponding to two different
aircraft. Both aircraft are flying directly toward the radar.

The estimamtes shown below are the poles p; corresponding
to the AR coefficient estimates. These poles are plotted in the
complex plane; the unit circle is also shown in the plots. The
plots show 64 overlapped estimates using motion compensated
data as found from equations (7), (9), and (11).

First, we address the issue of model order selection. Figures
2-4 show the pole estimates corresponding to the downrange
profile estimates for Aircraft 1 for AR model orders of 3, 5, and
9, respectively. It can be seen that in these cases, the poles form
distinct clusters. As the order is increased, some of these clusters
split into two clusters. For excessively high model orders, there
are many pole estimates which are not clustered; this occurs
because for high orders the AR method attempts to model noise.

Figure 5 shows the 64 pole estimates obtained by using a
different order for each estimate; in this case, the model order
was chosen automatically such that the relative modeling error
ep/eo was less than 25%. Note that while the average model
orderis &~ 5 in this case, the poles are much less tightly clustered
than in fixed order estimates (Figure 3).
order estimates are less amenable to averaging, especially if AR
coefficient averaging is used. Thus, fixed order estimates seem
to be the preferred order selection method for this application.

Next, the result of AR coefficient averaging is shown. Figure
6 shows the pole location of the 5t order AR model obtained
by averaging the AR coefficients corresponding to the estimate
in Figure 3. It can be seen that the poles of the averaged model
lie near the centroids of the pole clusters in Figure 3. For com-
parison, Figures 7 and 8 show the downrange profile estimates
corresponding to the pole estimates in Figures 3 and 6, respec-
tively.

Finally, Figure 9 shows the 5% order pole estimates corre-
sponding to the downrange profile estimates of Aircraft 2. It
is clear that these pole clusters are substantially different from
those of Aircraft 1. While formal classification experiments have
not been carried out, it is apparent that the averaged pole lo-
cations for the two targets would be effective features to use for
target identification.

Moreover, variable
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V. Conclusions

We have studied the use of autoregressive modeling of radar
data. An algorithm for obtaining AR estimates of the downrange
and Doppler profiles of a target was developed. A simple, effec-
tive method of motion compensation was also presented; this
method uses first order AR models to estimate the target mo-
tion. Issues of model order selection and estimate averaging were
also considered.

The AR algorithm was applied to actual radar data obtained
at the NOSC stepped-frequency radar facility. It was shown that
using a fixed AR model order provides pole estimates which form
tighter clusters than if an error energy order selection method
is used. Also, when the AR coefficients of fixed order estimates
are averaged, the resulting model has poles which lie near the
centroids of the pole clusters from the individual AR estimates.

Finally, AR estimates from two different aircraft were shown.
While no formal classification procedure was applied to the data,
it is clear from the pole clusters that the centroids of these clus-
ters can be used as features for target classification. Future work
in this area will focus on development and analysis of classifica-
tion algorithms which use AR coeficients (or their corresponding
pole locations) as classification features.
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Figure 1: Data Array Timing and Frequency Information

Figure 2: Downrange pole estimates for Aircraft 1; 3°¢ order AR
model.

Figure 3: Downrange pole estimates for Aircraft 1; 5t order AR
model.



Figure 4: Downrange pole estimates for Aircraft 1; 9t* order AR,
model.

Figure 5: Downrange pole estimates for Aircraft 1 using a 25%
model error criterion for order selection.

Figure 6: Pole locations for AR coefficient averaging of estimates
in Figure 3.

Randolph L. Moses For a photograph and biography, see
the paper “Autoregressive Moving Average Modeling of Compact
Radar Range Datae” which appears elsewhere in this proceedings.
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Figure 7: Downrange profile corresponding to Figure 3.
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Figure 8: Downrange profile corresponding to Figure 6.
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Figure 9: Downrange pole estimates for Aircraft 2; 5** order AR
model.



