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Abstract

A method for characterizing radar target signatures with Au-
toregressive Moving Average (ARMA) models is developed. A
parameterization of the model that corresponds directly to the
geometric properties of the target is chosen, and an efficient al-
gorithm for estimating these parameters is presented. Proce-
dures for minimizing the effects of unmodeled dynamics are also
developed. Experiments on radar measurements obtained from
a compact range are presented to test the effectiveness of the
ARMA modeling procedure.

I. Introduction

The response of a target to a radar signal (the radar return)
contains a considerable amount of information about the target.
It is possible to extract information about the shape and orien-
tation of the target from the radar return; this information can
then be compared with a catalog database to classify or iden-
tify an unknown target. This process is known as radar target
identification (RTI).

The radar target identification system typically consists of a
signal processing stage followed by a feature classification stage.
The signal processing step involves operating on the raw radar
data to extract salient features of that data which can be read-
ily used for target classification or identification. Traditionally,
target identification methods have used direct frequency domain
data from the radar. The features used for classification consist
of raw frequency domain data [1]. This method requires little or
no signal processing, but has the disadvantage that one obtains
no geometric characterization of the target. (Geometric features
of an unknown target are useful because they can provide infor-
mation about the target even when identification is not possi-
ble.) More recently, Discrete Fourier Transform (DFT) methods
have been applied [2]; these methods first convert the frequency
domain radar data into an estimate of the downrange impulse re-
sponse of the target. Classification then proceeds based on some
extracted features from this downrange impulse response (such
as the ranges of strong scattering centers). While this concept
is potentially very useful for RTI applications, the use of DFT
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methods presents some problems. First, DFT methods are res-
olution limited, so closely spaced scattering centers may not be
resolved. Second, DFT methods are nonparametric; thus, there
is no data reduction from the raw radar data to the downrange
impulse response. Data reduction is desirable because classifica-
tion algorithms are computationally burdensome if the number
of features is large.

In this paper we develop and test an alternate radar sig-
nal processing approach. This approach applies AutoRegressive
Moving Average (ARMA) modeling techniques to radar target
data. Like DFT methods, the ARMA modeling technique pro-
duces an estimate of the downrange impulse response of the tar-
get. However, unlike the DFT model the ARMA model is para-
metric; the output of the signal processing stage consists of a
small number of parameters which can be directly used for clas-
sification. ARMA methods are also not resolution limited by
the bandwidth of the radar data as are DFT methods. Thus,
these ARMA modeling methods possess some potentially useful
properties for radar target identification.

In this paper we first develop a signal processing method for
the ARMA modeling of radar target signatures from stepped
frequency measurements. We then apply this modeling proce-
dure to compact range measurements of scale models of several
commercial aircraft.

II. The ARMA Modeling Method

Assume that we are given a set of N coherent stepped fre-
quency response measurements of a target:

y(fr)
fr =

0<k<N-1 1)
fo+ ké; 2

Here, fi is the kth interrogation frequency and §; is the fre-
quency step. From these measurements, we wish to obtain an
accurate estimate of the impulse response of the target.

We can model the target impulse response using the partial
fraction form of an ARMA model:

na d'
Y(n =X Fo-ep
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0<r<R (3)

where
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is the maximum unambiguous range. Here r is the range relative
to a zero reference.

Each “pole” p; corresponds to a scattering center on the tar-
get. The argument of p; (argp;) relates to the range r; of this
scattering center by

arg p"

= n(1 - 22EE)

It can be seen from (3) that r; is the range at which the ith
component of the impulse response achieves maximum ampli-
tude. The magnitude of the pole p; relates to the distribution
in range of the energy received from this scattering center; as
|p:i] — 1, the scattered energy becomes more tightly concen-
trated at range r;; this corresponds to an ideal point scatterer.
For |p;] # 1, the energy is spread over some range centered at
r;. The d; parameter gives the amplitude of the ith
center return.

The inverse Fourier transform of (3) yields:

scattering

na
y(fi) = Zdipf (4)
=1
In other words, the ARMA representation assumes that the
radar data can be modeled in the frequency domain as the sum of
a number (na) of damped exponentials. Each exponential term
corresponds to a scattering center. The energy P; associated
with the ith scatterer can be found from (4)
. — Y
b= Z dd}(p;p})f = ‘*:‘TF (5)
Note that equatlon (4) represents the data model for all k (i.e.
for all frequencies), not only the measurement range. Thus, the
ARMA model implicitly extrapolates the given measurement
data {y(f)}Y' using the exponential rule (4). On the other
hand, DFT methods implicitly assume that y(fi) = 0 outside
the measurement range. As a result, DFT methods are inher-
ently resolution limited. ARMA methods can theoretically have
infinite resolution (3].
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III. Formulation of a Pole-Residue Estimator

The pole-residue model formulated in the previous section
can be computed directly from the discrete frequency measure-
ments, as detailed below. This procedure is adapted from the
time series analysis literature [4,5].

The first step involves estimating the coefficients a; of the
polynomial

JRINIpRpS TS S
32, (2 — ) (6)
and then finding the roots ps. First a standard estimate for

the autocorrelation sequence corresponding to the data is found;
here we use the standard unbiased autocorrelation estimates:

A(z)
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Next, the coefficients of A(z) are estimated from the autocor-
relations parameters by solving the well-known overdetermined
Yule Walker equation [6]:
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Where K > na + nc. From the ai coefficients, we can find

the poles {p, ¢, by solving A(z) = 0 using standard complex
polynomial root ﬁndmg techniques.

Once the poles are obtained, the amplitudes d; can be esti-
mated using a least squares technique. From equation (4), such
an estimator is given by minimizing || e || in

0

21 P?m d; y(fo) €o
: : : - : = : (10)
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This gives the formula

=(P'P)'P*r (11)
where P* is the complex conjugate transpose of the matrix P.
Equations (7), (9), and (11) comprise the ARMA estimation
procedure.

IV. Removal of Dispersive Scattering Centers

While the set of ARMA functions can model any continuous
function arbitrarily well [7], we may still experience difficulties
from the fact that some types of scatterers cannot be modeled
exactly by the ARMA model, and by the problem that the radar

data is not perfectly stationary.with respect to frequency. Our
experiments with the compact range data has shown that this
effect may be significant over the frequency ranges considered.
These effects typically show up in the estimates as spurious scat-
terers that are spatially very widely distributed; that is, one ob-
tains poles with magnitudes which are not close to one. One way
to counter this effect is to deliberately use a model order na that
is larger than the expected number of scattering centers, then
eliminate from the model any pole whose magnitude is not near
one.

The spatial distribution of a scattering center is related to the
magnitude of the pole estimated for that center; the contribution
of the center to the frequency response at frequency f; is (c.f.

(4)

dpf 0<k<N

If |pi| is too far from unity (i.e. if the scattering center’s energy
is widely spread in range), then its contribution to the frequency
model is greatly different at frequency f, than at frequency fy_;.
The ratio of these contributions is:

N—1
D = |Be| = ™", Ipl>1
(12)
o
D = P.‘p— = |pi|—N-H ) {pi|<l

In the modified algorithm, if |p;| is such that D is greater than
some threshold, that pole is discarded from the impulse response
model. Empirical tests have shown that D = 100 provides good
removal of highly dispersive scatterers without removing sharp

scatterers. Moreover, it was found that estimation results are



much less sensitive to model order selection if these poles are
discarded.

V. Application of the ARMA Techniques to the ESL
Compact Range Data

In this section we describe the results of applying the tech-
niques derived above to OSU ESL Compact Range data. This
is data taken from five aircraft models: the Boeing 707, 727 and
747, the DC10 and the Concorde. Measurements are taken at
scaled frequencies that correspond to 5-80 MHz for a full-size
aircraft.

All Figures below give response power (in dB meter?) as a
function of range (in meters). The range axis is scaled to corre-
spond to actual aircraft dimensions; also, the physical center is
located at the center of the range axis.

In every case, the estimation results are obtained from 20
radar measurements taken at evenly spaced frequencies in the
40-80 MHz band using horizontal polarization in both transmit-
ter and receiver.

The ARMA results are shown using two plots, namely the
estimated response and the estimated scattering centers (labelled
“response” and “scatterers”, respectively). The “response” plots
are target impulse responses and can be compared with the DFT
figures. The “scatterers” plot is a graphical presentation of the
pole and residue coefficients: each horizontal line represents a
scattering center; the vertical tick mark gives the estimated range
of the scattering center, and the width of the horizontal line
represents the 3dB spatial dispersion of the scattering center
(analogous to 3 dB bandwidth). The height of each horizontal
line gives the energy associated with the scattering center.

Figure 1 gives the downrange response profile from an ARMA
model of order na = 9 for the Concorde model at 10° azimuth.
Note that although 9 scattering centers were originally modeled,
the algorithm retained only five scattering centers. For compar-
ison, Figure 2 gives the downrange profile of this target using
DFT methods. Comparing Figures 1 and 2, the strong peaks of
the two responses coincide.

The “scatterers” graph in Figure 1 represents the actual co-
efficients in the ARMA model. Note that the scattering centers
depicted on the graph coincide with the peaks in the “response”
curve. Moreover, these peaks seem to correspond to locations of
geometrically important features on the aircraft (such as cockpit
windows, leading and trailing edges of wings and engines, ete.)

Figures 3,1 and 4 show the estimated ARMA responses for
the Concorde at azimuth angles of 0°, 10°, 20° respectively. Some
of the scattering centers move smoothly in range as the azimuth
angle changes, while other scattering centers seem to appear at
some azimuths but not at others. The mechanism behind this
effect is not well understood at this point, and is currently being
studied. However, it appears that some scattering centers reli-
ably appear for several aspect angles, and these could be used
for target classification.

Figure 5 shows the ARMA downrange profile estimate from a
Boeing 707 at 10° azimuth. Comparing with Figure 1, it can be
seen that the responses of the two aircraft are markedly different.

While no formal classification studies have yet been carried
out, it is apparent from Figures 1 — 5 that there are significant
differences in the estimated models, which can be exploited for
use in target identification.

VI. Conclusions

From our simulations and analysis, we can conclude the fol-
lowing:

o ARMA models can be used to estimate the impulse re-
sponse of a radar target, given radar cross-section mea-
surements at a number of stepped frequencies. Our sim-
ulations show that about 20 frequencies is enough to get
satisfactory results for the five models tested.

o The resulting ARMA estimates have advantages over es-
timates obtained using Discrete Fourier Transform tech-
niques:

— ARMA models describe the target as a set of scatter-
ing centers. The model is parameterized by a small
number of coefficients which directly relate to physical
attributes of scattering centers.

— ARMA models are not resolution limited by the band-
width of the measurements.

Spacing of the frequency samples should be chosen such that
the maximum unambiguous range is at least as large as the tar-
get. If the spacing of the frequency samples is chosen such that
the maximum unambiguous range is larger than the target, mod-
eling quality can be improved by applying data decimation tech-
niques before the actual estimation. In a noisy environment, such
a strategy could be used to improve the signal to noise ratio.

The total bandwidth of the measurements should be restricted
50 as to avoid violating the implicit stationarity assumption of

the ARMA model. For the cases we have studied, we found that
a bandwidth of 40-80 MHz works well.

While no formal quantative studies have been made, our sim-
ulations indicate that the ARMA modeling technique is capable
of distinguishing between different aircraft, and between differ-
ent aspect angles for the same aircraft. In other words, the
ARMA modeling technique seems to be a suitable signal pro-
cessing method for preparing the radar data for classification.
Future research will focus on a more formal, quantative evalua-
tion of classification performance using ARMA parameters.
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