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Abstract

This paper considers the following problem: given a
polynomial whose zeros do not all lie on or inside the unit
circle, find the “closest” polynomial whose zeros are all on
or inside the unit circle. The measure of closeness used
is the Euclidean distance in coefficient space. The direct
formulation of this problem leads to a minimization prob-
lem with nonlinear constraints, and direct solution is dif-
ficult. We approach the problem by considering a related
minimization problem with linear constraints. We then hy-
pothesize that only a finite number of solutions to the lin-
ear problem are candidate solutions to the given nonlinear
problem. While a general proof of the hypothesis has not
been found, numerical examples indicate that it may hold
for a large number of cases.

I. Introduction

In AR and ARMA modeling problems, one often ob-
tains an estimate of an autoregressive (denominator) poly-
nomial. Depending on the particular estimator used, this
polynomial may or may be “stable”; that is, it may or may
not have all its zeros inside the unit circle. Examples of
AR estimators which do not guarantee stability include the
covariance and prewindow methods [1], and most singular
value decomposition-based methods [2]. In addition, nearly
all noniterative methods of ARMA modeling first estimate
the AR coefficients by using some form of the extended
Yule-Walker equations; these methods almost never guar-
antee that the estimated AR polynomial is stable [3,2,1].

Many applications require that the estimated denomi-
nator polynomial (either from AR or ARMA modeling) be
stable. Such is the case in speech synthesis problems and
system identification applications, for example. If one must
use an algorithm which does not ensure stability, the follow-
ing problem is of interest: given a polynomial whose zeros
are not all inside the unit circle, find a “close” polynomial
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whose zeroes are all inside the unit circle. We call this the
stabilization problem.

There are several ways to stabilize an unstable poly-
nomial. One method is to find the zeros of the unstable
polynomial, and if any zero has magnitude greater than
one, change it to have magnitude equal to (or slightly less
than) one. In this case the stable polynomial is “close”
to the original one in the sense of minimizing a distance
measure based on the zero locations of the polynomials.
Another method based on the Schur parameters associated
with a polynomial could be used: find the Schur param-
eters of the given polynomial (using the Levinson-Durbin
recursions), and change any Schur parameter with magni-
tude greater than one to one which is (slightly less than)
one in magnitude [4].

This paper considers solutions to the stabilization prob-
lem that minimize an error in coefficient space. The rea-
son for working in coeflicient space is that most algorithms
which estimate these polynomials actually estimate the co-
efficients of the polynomials. Since the coefficients are be-
ing estimated, it is natural to stabilize the polynomial by
perturbing the coefficients as little as possible. Moreover,
asymptotic variance expressions for these coefficient esti-
mates have been obtained for several algorithms [5,1]; the
asymptotic covariance matrix can be used as a weighting
matrix in a weighted coefficient norm to form the distance
measure. A stable polynomial whose (weighted) distance
from the given polynomial is minimum has the interpre-
tation of a minimum variance solution to the stabilization
problem.

II. Problem Statement

Assume we are given the real vector b = [by,..., b7,
and that its associated polynomial

B(z)=2"4+b2" 4 b bz by, (1)
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has at least one zero zp satisfying |29] > 1. We are interested
in finding another vector @ = [ay,...,a,)7 such that its
associated polynomial

Az) =2"+ a2" ' 4+ F a1z + an, 2)

has all its zeros z satisfying |z| < 1, and which is close to
B(z) in some sense. The measure of error we will use is the
standard Euclidean distance

n

T =3 (a;i=b)? 3)
i=1
Consider the set of coefficients corresponding to stable poly-
nomials:

§={alA(z) = 0= || <1}. (4)
The stabilization problem can then be stated as follows:

Problem SP: Given a vector b € S, find the
vector a® € S such that J = (a® — b)T(a® — b) is
minimized over all a € S.

III. Characterization of the Stability Set

In order to solve the above stabilization problem, it is
useful to first first establish some basic properties of the
stability set S.

Theorem 1:

a) S is a closed, compact, subset of R™.

b) Let Bgs denote the boundary of S. Then if a € Bsg,
there is at least one zero zq of (2) satisfying |zo| = 1.

Note that S is not necessary a convex set, so in gen-
eral there may not be a unique solution to the stabilization
problem. Figure 1 shows the stability region for n = 2.

Theorem 1 provides a means of obtaining candidate so-
lutions to the stabilization problem. Since S is closed, any
solution to the stabilization problem will lie on the bound-
ary of S, so its corresponding polynomial A(z) will have at
least one zero on the unit circle. We can write this zero as
z = ¢/, From equation (2), we have

cla,w) = 0 (5)
c(a,w) 2 cosnw + aycos(n — Dw + -+ + ag,

s(a,w) = 0 (6)
s(a,w) £ sinnw+a sin(n — 1w+ -+ + anp_rsinw

If w=0orw=m, then s(a,w) = 0.

Note that for w € (0, ), equations (5) and (6) each rep-
resents a hyperplane of dimension (n — 1) in the coefficient
space. The intersection of these two hyperplanes is also a
hyperplane of dimension (n — 2). Let H; be the intersec-
tion of these two hyperplanes when w € (0,7), and be the
hyperplane (5) when w = 0 and w = #. Then we have the
following theorem:

Theorem 2: Ifa € Hy, then either a € S° (the complement
of §), or a € Bg.

Thus, even though the set S is not convex, for any fre-
quency w, the corresponding hyperplane H; intersects S
only on the boundary. The theorem is easily proven by
noting that at every point a in the interior of S, the cor-
responding polynomial A(z) can have no zeros on the unit
circle.

IV. A Related Minimization Problem

In general, if a° is a solution to the stabilization prob-
lem, then A°(z) = 0 for £ distinct frequencies w?,...,w} in
[0, 7]. It follows that a° lies on the intersection of k£ hyper-
planes defined by equations (5) and (6), forw € {w},...,wi}.
Consider the following minimization problem:

Problem MP: Find a* € R™ to minimize J
under the constraints ¢(a,w) = 0, and s(a,w) =
0, for w € {wy,...,wk}-

The above problem is readily solved using the Lagrange
method. To this end, define the functional

n k
Ji(w) = ;(af —b)* 42 ;A;c(a, w;) )

k
> Bis(a,w;)
i=1
where
w=[wy,...,wx)7

and where A; and B; are Lagrange multipliers.! For each
w, minimization of Jy(w) gives the point a* € R™ which is
closest to b under the constraint that a* € H; N --- N Hy,
where

H; = {a|e(a,w;) = 0 and s(a,w;) = 0}

By Theorem 2, this point lies either on the boundary of
S or in the compliment of S. We are interested in values
of w for which a € By, because these points are candidate
solutions to the stabilization problem SP.

The solution to the minimization problem, for a given w
vector, is readily found by solving a set of linear equations.
These equations can be written as

L ] [6] 1] ©

"fw = 0 or 7, the constraints corresponding to the B; multipliers are
always satisfied. These constraints are omitted from J; for w = 0 or
7, and corresponding changes are made in equations (8)~(10).
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where
cos(n — )wy cos(n —2)w; --- 1
sin(n — l)w; sin(n —2)w; -+ 0
MT = :

cos(n — Dwy, cos(n —2)wi +-+ 1
sin(n — 1wy sin(n — 2)wy

C = [A,By,..., A BT

d = [cosnwy,sinnwy,...,cosnw,sin nwk}T

The solution to equation (8) is given by

at = b— MM M)f 9)
Jiw) = (b-a)T(b~a") = fF(MTM)7'f (10)
f [e(b,w1), s(byw1); -, ey wi), s(b, wp)] "
The solution a* to the linear minimization problem will
not, in general, be the solution to the stabilization problem.

However, for certain values of k and w, the MP solution a*
will be the optimum solution a° to SP.

Finally, if a multiple zero constraint is needed for a fre-
quency w, two additional constraint hyperplenes (only one
if w =0 or m) can be obtained by using the derivative
hyperplanes 9/0we(a,w) = 0 and 8/0ws(a,w) = 0. These
constraints are incorporated into the minimization problem
in the same manner as described above.

V. Solution to the Problem

We are interested in solving the stabilization problem
SP by considering certain solutions to the linear minimiza-
tion problem MP. Because the solution to MP is parame-
terized on a continuous variable w, it is impractical to check
every solution to MP for optimality in SP. Thus, it is im-
portant to find restrictions on the set of MP solutions which
need to be checked. To this end, we have the following:

Conjecture: Assume a° is a solution to SP, and that the
corresponding polynomial A°(z) has zeroes at values z; =
et for (distinct) frequencies w3, ...,wf. If w? € (0,7),
then Jj, (as a function of w;) has a local minimum at w;.

This conjecture states that a necessary condition for a
solution of MP to be a solution to SP is that the functional
Ji be at a local minimum. Since there are only a finite
number of these local minima, there is a finite number of
solutions to MP which are candidate solutions to SP.

The above conjecture can be proven for n = 2, and also
at points a® where the set S is locally convex. The proof
for the general case has not yet been found. However, in
all examples considered to date, a brute-force method for
finding a° has verified that the conjecture holds. To date,
we have checked about 30 examples using n =2-5.

Assuming the conjecture is true, the following algorithm
can be used to find the solution a® to the stabilization prob-
lem SP. First, consider Jj(w), and find any minimal points.
Because a simple, closed-form expression for Jy is available,
this minimization is not difficult to perform. At each mini-

mum, determine the corresponding solution a* to equation
(9), and check if a* € S (using, for example, the Levinson-
Durbin algorithm; see [6]). If this point is in S, then Ji(w)
is the value of the error J in equation (3) for this point. If
no such points are in S, then repeat the procedure for Js.
Continue until a stable minimum is found.

VI. Examples

Below we present some examples which illustrate the
theory discussed above. The solution a° for these examples
are described by using the conjecture in the previous sec-
tion; however, in each case, this solution was verified to be
the solution to SP by using a brute force method to check
all points a € Bs for optimality. Thus, for these examples,
the conjecture has been verified.

Example 1: n=2

All of the examples for n = 2 are quite simple, because there
are few cases to consider. Moreover, the minimum point to
the stabilization problem SP can be found immediately by
inspection of Figure 1. The hyperplane constraint for w = 0
is the line defined by 1 + a; + a; = 0; similarly, for w = 7,
one obtains the line 1 —a;+a; = 0. For each w € (0,7), the
intersection of the two hyperplane constraints give a point
on the third side of the region in Figure 1. In the case that
one hyperplane does not give an admissible solution (as is
the case when the point is in regions D, E, or F in Figure
1, then two constraints must be used. The only three cases
to consider are: w = 0,0; w = 0,7; and w = 7, 7. These
cases give the three corner points of the region.

Example 2: n=3,b=1[0.8,1.2, 117

Figure 2 shows J;(w) for this case. This curve has a local
minimum at w* = 91.01°, and J;(w*) = 0.00112 at this
point. The corresponding solution to equation (9) gives:

a” = [.8181,1.0277,.7827]7

The local minima for the single constraint w =0 orw ==
give unstable solution points. Thus, the above solution
point is the optimum point a°. Note that the zeroes of B(z)
are at 0.035741.1229; and —0.8714. The solution obtained
by moving the two unstable roots to 0.0318 +0.9995;) gives
a cost of J = .1176, so this solution is suboptimal.

Example 3: n =4, b=[—2.0213,1.3179,1.7524, —1.6200]”

For this case, B(z) has zeros at 0.8, -0.9, 1.5¢7*7/4, No
minima of J;, J;, or J§ gave a stable solution. The curve
for Jz(0,m,w) is shown in Figure 3. The minimum occurs
for w* = 19.091°, and the corresponding solution is:

a* =[-1.89,0.0,1.89,—-1]7 J;(0,7,w") = 2.1574

Note that the solution has all four zeros on the unit circle,
even though two of the zeros of B(z) were inside the unit
circle.
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VII. Conclusions

We have considered the problem (SP) of finding the clos-
est stable polynomial to a given unstable one. The measure
of error between these two polynomials is the Euclidean dis-
tance in coeflicient space. We approached the problem by
considering a related minimization problem (MP) with lin-
ear constraints. The latter problem can be solved in closed
form given a set of constraint frequencies. We then con-
sidered only those solutions to MP which could also be
candidate solutions to the desired minimization problem.
We hypothesized that there is only a finite number of so-
lutions to MP which can also be solutions to SP; this, in
turn, provided an algorithm for finding the solution to SP.
While numerical examples suggest that the conjecture may
be true in a large number of cases, it remains an open prob-
lem to find under what conditions this conjecture is valid.
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Figure 1: Stability Region Sforn=2.
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Figure 2: J;(w) for Example 2

Figure 3: J;(0,7,w) for Example 3



