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Abstract

This paper considers the following problem: Given a
normalized (finite-duration) covariance sequence which is
not nonnegative definite (NND), find the closest NND se-
quence to it. Here, closeness is measured by the Euclidean
distance in coefficient space. We provide a solution to this
problem by considering a set of constrained minimization
problems. The solution to the constrained minimization
problem does not in general give NND solutions. Proper-
ties of NND solutions are established, and used to find the
minimizing NND sequence.

I. Introduction

There are many problems in which one is interested in
obtaining a parametric model of the spectrum of a time se-
ries. The autoregressive (AR), moving average (MA), and
autoregressive moving average (ARMA) models are widely
used in many engineering problems. In obtaining MA and
ARMA spectral estimates, a problem which often arises is
that of ensuring that the resulting spectral estimate is non-
negative definite (NND), that is, that the spectral estimate
is nonnegative and real on the unit circle [1]. For example,
a commonly used method of MA spectral estimation is to
estimate the first n 4+ 1 autocovariances v, of a time series
from some measurements of that time series. The corre-
sponding spectral estimate is the Fourier transform of the
estimated +; sequence. Depending on the estimator used
for -k, the spectral estimate may not be nonnegative and
real for all frequencies. A similar problem occurs in ARMA
spectral estimation algorithms in which the AR parame-
ters are estimated in a first step, and the MA part of the
spectrum is estimated using the AR coefficient estimates
(2,3,4,5].

If the MA part of the spectral estimate is not NND,
there are various ways in which one can alter the estimate
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to make it NND. The most common procedure entails mul-
tiplying the estimated autocovariances by some window se-
quence (such as the Bartlett window or an exponential win-
dow) [5,1]. For some estimates, the window can be chosen in
such a way as to guarantee NND estimates; however, such a
window imposes a severe bias on the resulting estimate [1].
An alternate approach is to use a data adaptive window, in
which a parameter in the window is chosen to ensure NND
estimates, with a minimum of bias for that particular win-
dow. An exponential window w; = alfl with adjustable o
is an example; « is chosen as small as possible so that the
sequence {a;vx} is NND. While the second method is less
biased than the first method, it is also suboptimal in the
sense that the a particular (suboptimal) window structure
is used.

In this paper we consider an alternate approach to ob-
taining a NND covariance sequence. Given an estimated
covariance sequence of a MA time series, we wish to find
the optimal NND sequence to that estimate, where optimal-
ity is measured in terms of the £; error norm in coefficient
space.

I1. Problem Statement

Let {yx}7=0 denote a sequence of real-valued estimates
of the autocovariances of an MA(n) process. Consider the
function

S = Y )

k=-n

In order to ensure that S,(z) is a valid spectral density
function, we must have

S,(z)>0on |zl =1 (2)
1t is clear that equation (2) is satisfied if v > 0 and if

gw)=1+4s1cosw+--+s,cosnw >0 (3)
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for w € [0, 7], and where s = vx/70. (We will not consider
the trivial case 4, = 0). Nearly all covariance estimators
guarantee that v > 0, but often do not guarantee that
equation (3) is satisfied.

Assume condition (3) is not satisfied. In this case, we
are interested in finding a covariance sequence which is
NND and which is close to the given sequence. To this
end, let p = [p;...pn]T and define

flw,p) =14 pycosw+ -+ ppcosnw. (4)
Define the nonnegative definite set D by
D = {plf(w,p) 2 0 for w & [0,]).

Then the problem (P) of finding the closest NND sequence
can be stated as follows:

Problem P: Given a vector s = [s;...8,)7
with s € D, find the vector p € D such that
Q = (p—s)T(p — s) is minimized.

III. Description of the NND Region

The above minimization problem is nontrivial because
the set D is a complicated function of the p vector. In
order to approach the minimization problem, we first es-
tablish some properties of D. Some of these properties are
summarized below.

Theorem 1:

a) D is a closed, compact, convex subset of R".

b) Let Bp denote the boundary of D. Then if p € Bp,
there is at least one wy € {0, 7] such that f(wo,p) = 0.

c) Ifp € Bp, then for each wqy such that f(wg,p) = 0,
A
Fl(wo,p) = 35 f(wo, p) = 0.

d) There is a unique solution p* to the minimization prob-
lem P.

Figure 1 shows the region D for n = 2. Also shown
are the frequency values for which f(w,p) = 0 at certain
boundary points p. Note that at the corner point p = [0, 1],
f(w, p) =0 for both w = 0 and w = =; for all other bound-
ary points, f(w,p) = 0 for only one value of w. These char-
acteristics generalize to higher orders. If a point p € Bp has
k zero frequencies (i.e. f(w,p) = 0 for w € {wy,...,wi})
then p lies on at least k supporting hyperplanes, each de-
fined by H; = {p|f(wi, p) = 0}. Moreover, all points p € Bp
which have zeroes at these k frequencies are in the set
H,N Hy---N H;. The intersection of these hyperplanes
is itself a hyperplane, which is of dimension (n — k). Thus,
we have the following theorem:

Theorem 2: Consider the set
H = {p|f(w,p) =0=w € {w,...
Then

’wk} }

H=H,NH,---NH,ND
where H; is the hyperplane defined by
H; = {plf(wi,p) = 0}.

IV. Solution to the Minimization Problem

If p* is a solution to the constrained minimization prob-
lem, there is at least one w* such that f(w*,p*) = 0. As-
sume f(w, p*) = 0 for k distinct frequencies wy, ..., w, and
consider the following functionals:

Qulw) = §<pi s )

k
+23" A1+ prcosw; + - -+ + pn cos nw;)
i=1
,wi). Each A; is a Lagrange multiplier.
Let @3(w) denote the minimum of Q4(w) for that frequency.
For each w, minimization of Q(w) gives the point p which
is closest to s under the constraint that p lies on the hyper-
plane Hy NN Hy. Moreover, Qi(w) = (p — )% (p — s) for
this point p. The point p; in Figure 1 shows this minimum
for n = 2 and w = 7 /4. It is important to note that p does
not necessarily lie in D; if it does lie in D, it lies on the
boundary Bp. We are only interested in those values of w
for which the corresponding points p are in Bp.

Once w is fixed, the minimization of Qi(w) reduces to
the solution of a set of linear equations. These equations
can be expressed as:

ENIMEN ®

where w = (wr,...

where
cosw; C€OS 2w €OS Nwy
ct =
CosSwy COS 2wy €O8 NWy,
A = [A1~~-A1c]T
L= [1---1)F

The solution to equation (6) is given by:

o= s—C(CTC) ™
A" = (C"O)'g (8)
Qiw) = ¢"(CTC) g 9)

where

g = lg(wi) - glwi))-

If the frequencies wy,---,wy are known, the point p*
which minimizes Qi(w) can readily be found from equa-
tion (7). Thus, the solution to the minimization problem
P reduces to finding these frequencies. To this end, the
following theorems are of interest.
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Theorem 3: Let p* be the solution to the minimization
problem P, and let w* be any frequency for which f(w*, p*) =
0. If w* € (0,7), then g(w*) < 0.

Theorem 3 provides restrictions to the range of w val-
ues for which NND solutions exists. This theorem can be
proven using an argument along the following lines. Con-
sider any separating hyperplane f(w*,p*) = 0 at p*. As-
sume also that g(w*) > 0. Then s lies on the same side of
the separating hyperplane as D (see Figure 2). Since D is
convex, it follows that there is a point p € D which is closer
to s than p* is; this is a contradiction, so g(w*) < 0. Note
that for w* = 0 or w* = 7, the boundary is not smooth, and
the above argument no longer holds. It turns out, though,
that for n = 2, the result of the theorem is also true when
w*=0and w*=7.

Theorem 4: Let p* be the optimum solution to the mini-
mization problem P, and let w* be any frequency for which
flw*,p*) = 0. Then TF | A(w*) <0.

By manipulation of equations (7)-(9), it can be shown
that Y&, Ay(w*) = —p*T(s — p*). Now, since 0 € D, it
can be shown that p*7(s — p*) > 0, and the result follows
immediately.

Theorem 5: Let p* be a solution to the minimization prob-
lem, and let {w},...,w}} be the set of all frequencies for
which f(w, p*) = 0. Then the functional Q}(w) in equation
(9) has a local maximum at the point w = (w5,...,w}).

The proof of Theorem 5 makes use of Theorem 2 along
with some properties of convex sets [6].

An algorithm for finding the solution p* to the mini-
mization problem proceeds as follows. First, by considering
g(w), and using Theorems 3 and 4, we can determine the
ranges of possible frequencies where f(w, p*) = 0. From this
information, we can obtain a finite set of possible zero dis-
tributions corresponding to p*. The number of possibilities
depends on order n and on the particular sequence s. For
each case, the appropriate functional Q7 is formed, and its
local maxima are found. A simple, closed-form expression
for @} is available, so this maximization is not difficult.
Each local maximum gives a corresponding point p. Of
these points, the one which lies on the boundary Bp and
whose corresponding Q% value is minimum is the solution
to the minimization problem P.

V. Examples

Below we consider three examples which illustrate the
theorems in the paper and the resulting algorithm for find-
ing the solution to the minimization problem. Note that in
all examples, f(w) and g{w) are normalized spectral densi-
ties; in practice, f(w) would be multiplied by a constant to
make it agree more closely with g(w).

Example 1: n=2,s=2,3]7
Figure 3 shows a plot of the functions g(w), Q%(w), and

f(w, p*) for this example. Since g(w) < 0 for a range of
frequencies which does not include 0 or = it follows from
Theorem 1b and Theorem 3 that f(w, p*) = 0 somewhere in
this range. Thus, we need only consider Q;(w) for w in this
range. This functional has a local maximum at w = 109.2°,
and the corresponding solution to (7), (9) gives:

p" =1[1.083,0.822]T  Qj(w") = 5.587.

Example 2: n=3,s=[~2,0,0]T

Figure 4 shows g(w) and f(w, p*) for this example. From
g(w) it is clear that the zeros of f(w, p™) will be at 0, 7, or
w € (0,60°]. There are thus several cases to consider; most
cases require computation of a solution for only one point,
and two cases require maximization of ¢} with respect to one
variable w € [0,60°]. The global minimum is found for one
zero at w = 0 and one zero at w = 2.467°, and the resulting
Q*(w) function is shown in Figure 4. The corresponding
solution is:

p" =[-1.369,0.387,-0.018]7  Q*(w") = 0.549.

Note that another NND solution is p = [~1,0,0], giving
@ = 1. This is an admissible solution, but it is not optimal.

Example 3: n=4,s=[2,3,4,5]7
Figure 5 shows g(w) and f(w,p*) for this example. Note
that g(w) < 0 for two distinct ranges of w, neither of which

include 0 or m. Thus, by Theorem 3, f(w,p*) = 0 only
on these regions. This gives only two possibilities; either
f(w, p*) has one complex pair of roots, or two complex
pairs. By performing both minimizations, it was found that
the global minimum occurs for

p* = [1.327,1.011,0.830,0.608)7  Q*(w") = 33.75

VI. Conclusions

We have considered the problem of finding the closest
nonnegative definite MA covariance sequence to a given es-
timate which is not nonnegative definite. The solution is
based on solving a constrained minimization problem, and
finding points in the solution which lie on the boundary of
the set of all NND sequences. Based on an analysis of this
boundary, we are able to considerably restrict the frequency
ranges of consideration. Moreover, we obtained closed-form
expressions for functionals, and showed that solution points
to the minimization problem could only occur at local max-
ima of these functionals over a restricted set of frequencies.

Future work will focus on obtaining tighter restrictions
on the set of candidate solution points, and by generalizing
the results to incorporate a broader class of minimization
criteria.
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Figure 1: Nonnegativity Region for n = 2. The point p,
shown is found by minimizing @,(7/2).

Figure 2: On the Proof of Theorem 3 forn = 2. If
g(w*) > 0, there is a point on D closer to s than is p*.
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Figure 3: Example 1 Original and NND functions.

60 90 120 150 180

FREQUENCY (IN DEGREES)

Figure 4: Example 2 Original and NND functions.
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Figure 5: Example 3 Original and NND functions.



