An efficient linear method for ARMA spectral estimation

RANDOLPH L. MOSESt, VIRGINIJA SIMONYTE},
PETRE STOICAS§ and TORSTEN SODERSTROM]||

A three-step method for obtaining asymptotically maximum likelihood ARMA
spectral estimates using only linear transformations of the data is presented.
The computational efficiency of the algorithm is comparable to that of
Yule-Walker algorithms, but the three-step method gives asymptotically stat-
istically efficient estimates. The implementation of the algorithm is discussed in
detail, and numerical examples are presented to illustrate its performance.

1. Introduction

Spectral estimation is a topic that continually receives a great deal of
attention (Kay 1988, Ljung 1987, Marple 1987, Soderstrom and Stoica 1989). Of
the many techniques available, parametric techniques and, in particular, the use
of an autoregressive moving average (ARMA) model have become very popular
(Kay 1988, Marple 1987).

Two main types of ARMA spectral estimation methods have been devel-
oped. One is the optimization-based type, including maximum likelihood (ML)
methods, prediction error methods, and various nonlinear least squares
methods. These procedures can sometimes be computationally intensive, and
suffer from problems associated with convergence to local minima (Ljung 1987,
Soderstrom and Stoica 1989). The other main type of estimator is the class of
Yule-Walker based methods. These techniques are generally much less compu-
tationally burdensome, but can produce estimates with poor accuracy unless
special steps are taken (Cadzow 1982, Chan and Langford 1982, Kay 1988,
Marple 1987).

An ARMA spectral estimation procedure that combines the simplicity of
Yule-Walker based methods with the accuracy of ML methods was proposed by
Stoica er al. (1987). In this algorithm, initial covariance estimates are obtained,
and an initial estimate of the ARMA spectral parameters is computed. These
initial estimates are then used to correct the covariance estimates to improve
their accuracy. This correction requires only linear operations, and the corrected
estimates give asymptotically efficient estimates of their corresponding spectral
parameters.
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A theoretical development of the large-sample maximum likelihood spectral
estimation algorithm appears in Stoica er al. (1987). Here we consider some
practical aspects of the algorithm in Stoica er al. (1987). We discuss difficulties
which are encountered when some theoretical (large sample) assumptions do not
hold, and suggest modifications to the method. We develop a more reliable
version of the algorithm in Stoica er al. (1987) and consider computationally
efficient implementations. Finally, we present numerical examples to illustrate
the performance of the algorithm.

2. The ARMA spectral model
Consider the following ARMA process

A(g Ny (1) = C(g™Me(r) (2.1)

! is the unit delay operator (i.e. ¢~'y(t) = y(t — 1)), and

where g~
e(t) = white noise with zero mean and variance A°
A(@) =1+ ag™ + + a,q ™"
Cl@™)=1+cg™ +  +cuqg™
The following standard assumptions are made:
(A1) A(z2)C(z)=0=|z|>1
(A2) apcnc 0
(A.3) {A(z), C(z)} are coprime polynomials

In other words, the ARMA representation (2.1) is minimal, stable and invert-
ible. While this is not a restrictive assumption, we note that there are cases of
interest for which Assumption Al does not hold; for example, the sinusoids-
in-white-noise process can be described by an ARMA model of the form (2.1)
where all the zeros of A(z) and C(z) lie on the unit circle. The estimation
method described in this paper does not readily extend to such ‘degenerate’
ARMA processes; methods, developed for the sinusoids-in-noise case, can be
found in, for example, Cadzow (1982), Chan and Langford (1982), Stoica et al.
(1989 a), Stoica ef al. (1989 b). For simplicity we also assume that the orders na
and nc are given. Methods for ARMA order estimation are described in for
example Kay (1988), Ljung (1987), Marple (1987), Soderstrébm and Stoica
(1989), Stoica er al. (1986).
Next, we introduce the following notation

r, = E{y(f)y(tr — k)} = the covariance of y(r) at lag k (2.2)

®(z) = 3 nz~* = the spectral density of y(r) (2.3)

k=—rc
In (2.2), E{-} denotes the expectation operator, and z in (2.3) is a complex
variable. It is well known (Kay 1988, Marple 1987) that
2C@CE™

(2.4)
A()A(z ™Y

(z) =
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The problem of ARMA spectral estimation consists of first parametrizing the
spectral density function, then estimating those parameters. Clearly from (2.4),
¢(z) can be parametrized by {A%, a1, ..., @ C1, .., Cnc}. However, the
statistically efficient estimation of these parameters is not an easy task, and
nonlinear optimization routines are generally employed. (Asymptotically effi-
cient estimates of the {a;} coefficients can be obtained by using only linear
operations, however, (Stoica er al. 1985.)
In this paper we parametrize the spectral density by

6=1rg ..., r,ernC]T (2.5)

This parametrization is well-defined. In order to see this, note first that {r.}
satisfies the Yule—Walker equations
na
e+ Yarn.; =0, k=nc+1 (2.6)
i=1
The a; coefficients are uniquely determined from 6 by solving the first na linear
equations of (2.6)

Tne Tre—1 o Tne—na+1 a Tne+1
Tne+1 Tne ., e Tne—na+2 a, — 1 Tae+2 (2 7)
Yne+na—1 Tne+na—2 SRR £ Qna Tne+na

or equivalently (using obvious notation)

Note that under Assumptions (A.1)-(A.3), R is non-singular (Stoica 1981,
Stoica et al. 1985). Moreover, defining

b £ E{A(g7)y(D)- Alg™Hy(t — k)
= iiafajrkﬂ-,-, k=0,..., nc (2.8)
where gy = 1, and o
B(z) £ k_ni bz F = 2C(z2)C(z ™Y 2.9)
it readily follows from (2.1), (2.4) and (2.9) that
olz) = — 2 __ (2.10)
A(D)A(Z™YH

Since the numerator in (2.10) is uniquely defined from 6, this concludes the
proof that ¢(z) can be uniquely parametrized by 6.

3. An asymptotically efficient algorithm

In this section, we consider the specific problem of estimating the spectral
density of the ARMA process (2.1). This problem reduces to estimating the
parameter vector 6. Presented by Stoica er al. (1987) is an algorithm for
computing an estimate of 6 which asymptotically has the same statistical
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properties as the ML estimate. For brevity, we present only the required results
and refer the reader to Stoica ez al. (1987) for details.

From a given set of samples {y(1), ..., y(N)}, 6 can be estimated by using
the standard unbiased sample covariances

N—-k
~ Hy(t + k k=0
D vy gly( )y( + k) G.1)
7ok k<0

However, the estimates in (3.1) are, in general, not statistically efficient, and
can have very bad accuracy (Porat 1987). A more accurate estimator can be
obtained as follows.

Consider a random variable § with unknown mean 6. Assume we are given a
zero mean random vector z which is correlated with 6

5—6)} Wiu Wi
ascov = 3.2
{( z (Wsz Wo 32

where ‘ascov’ stands for ‘asymptotic covariance’
ascov (a) £ 1\111_r»1},c N cov(a)
In (3.2), it is assumed that W;, #0, and W, is positive definite. Then an
improved estimate of 6 is given by
6=0-W,oWz (3.3)
where Wu and sz are any consistent estimates of Wy, and Wy, resEectively

(Stoica er al. 1987). Note that the normalized asymptotic covariance of 6 is Wi;.
The normalized asymptotic covariance of 6 is given by

ascov (8) = Wy — WpW' Wi, (3.4)

1f z is chosen appropriately, then the asymptotic covariance of 6 may be much

smaller than that of 6. N
In the present application, the vectors 8 and z are given by

é = [707 ?17 ey 7na+nc]T (35)

= [zl’ 225 + - o znz]T (36)
na na

2k = Ezaiaj?na+nc+k—i—j k= 19 PR (74 (37)
i=0j=0

In the above equations, the {&;} are consistent estimates of {a;} found, for
example, by solving a set of Yule-Walker equations. With these definitions, the
covariance matrices Wy, and W, are given by (see Stoica er al. 1987)

(Wolyj=aji +aj;, i=0,...,na+nc; j=1,...,nz (3.8
2
o, = the coefficient of z* in z‘("““)————B (z) (3.9)
Az
(Waly =B, i,j=1,..., nz (3.10)

B, = the coefficient of z* in B*(z) (3.11)
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It is not difficult to see that
[Wil; =0,j>nc—~na+i (3.12)

This implies that [W;]; =0 for j>2nc. Also, Wy is a banded, symmetric
Toeplitz matrix with the band width 2nc + 1. ~

Let {a,} and {b;} be consistent estimates of {a;} and {b}, and define Wy,
and W,, as in (3.8)—(3.12) but using the {@;} and {b;} estimates there. Then,
the estimate 6 given by (3.3) along with (3.5)-(3.11) has the following
properties (proved by Stoica et al. 1987)

(P.1) 6 is a minimum variance estimate in the class of all estimators based
on the sample covariances {Fg, . .., Fugsnc+nz}. It is a large-sample approxima-
tion of the ML estimate of 6 which uses these na + nc + nz +1 sample
covariances as a data statistic.

(P.2) Let P,, denote the asymptotic (for N — ) covariance matrix of 6 (we
explicitly show the dependence of this matrix on nz). Then, P,, = P,,;. In
other words, {P,,} for nz=1, 2, ... forms a sequence of monotonically
non-increasing positive definite matrices.

(P.3) Let Pcg denote the Cramér-Rao lower bound (CRLB) for the co-
variance matrix of any consistent estimator of 8 under the gaussian hypothesis.
Then

lim P,, = Pcr (3.13)
nz-—«w

(P.4) The rate of convergence in (3.13) critically depends on the location of
the zeros of C(z). The closer these zeros are to the unit circle, the slower the
convergence rate of P,, to Pcr. The location of the zeros of A(z) has only a
marginal influence on the convergence rate of P,,.

Explicit expressions for P,, and Pcg may be found in Stoica er al. (1987).
The algorithm for determining an asymptotically efficient estimate of ¢(z)
can be summarized as follows.

Step 1. Compute the sample covariances {7,} in (3.1) for k=0, ..., K, where
K = na + nc + nz. Compute the initial AR coefficient estimate & by solving the
Overdetermined Yule-Walker (OYW) equations

Tne P rne—na+1 ?nc+1
: : a=- (3.14)

P10 T PKena Pk
where @ = [@;, ..., d,]". Use {a} and {¥;} in (2.8) to obtain initial estimates
b, for k=0, ..., nc.
Step 2. Use 74, by and & in (3.7)-(3.11) to compute z, Wu, and sz. Compute
improved estimates 7, for k =0, ..., na + nc by using (3.3).
Step 3. Compute @ from {#;}§°*" using (2.7), and b, for k=0, ..., nc from

a and 7, using (2.8). Compute ¢(z) using & and b in (2.10).

In Step 1, we have used an overdetermined Yule-Walker estimate for a,
where the number of equations is chosen so that sample autocovariances
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{Fr)RZ0" "™ are used. This particular estimate is chosen for the following
reasons. First, we already need to compute {#;} 520" " to implement Step 2. If

we use fewer YW equations in (3.14), then we expect the initial AR coefficients
to be less accurate. This would result in poor initialization of the three-step
algorithm and a correspondingly woize final accuracy of these estimates. Of
course, it is not always true that an OYW produces more accurate estimates
than the YW (with K = na + nc). However, the three-step algorithm we
propose is especially useful in cases where the OYW method gives poor
accuracy of the AR coefficient estimates; these cases correspond to time series
whose models have zeros close to the unit circle. For time series with zeros close
to the unit circle, it has been found (Bruzzone and Kaveh 1980, Cadzow 1982,
Chan and Langford 1982, Porat and Friedlander 1986) that the OYW method
gives (greatly) improved performance with respect to the YW method; thus, the
use of the OYW method in Step 1 is justified.

Steps 2 and 3 of the above procedure may be repeated to obtain improved
spectral density estimates. Specifically, the reiteration process is as follows.

(1) Use {F,} and the latest available estimate of {a;} to compute z in (3.7).

(2) Compute W, and W, in (3.8)—(3.11) using the latest available estimates
of {a;} and {by}.

(3) Determine a new estimate of 6 using 0, z, le and sz computed as
above, in (3.3).

In the large-sample case, repeating Steps 2 and 3 does not improve the accuracy
of 6; however, it may improve the accuracy for small data lengths.

4. Implementation of the algorithm

This section discusses the numerical and computational aspects of the
estimation procedure. The integer nz is a user’s variable in the algorithm. Some
guidelines for choosing nz will be given in § 5.

4.1. Conditioning of Wa,

In this subsection we analyse a condition which was tacitly assumed to hold.
It was assumed that the inverse of Wy, (and of W) exists. To address this
issue, we state the following result (see also Grenander and Szegd 1958,
Sdderstrom and Stoica 1989).

Lemma 1: Consider the nz X nz matrix szz given by (3.10), (3.11). Let {A;,

j=1,..., nz} denote the eigenvalues of Wy and let
M = min {4}, Aga = max (1)) (4.1)
j j
Then
A e (4.2)

and
Omin & lim 25} = inf|B(e™)P (4.3)
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Omax & lim A58} = sup| B(e')] (4.4)

Note that the above lemma holds for Wy, if B(e'®) is replaced by B(e'”).

When B(z) has no zeros on the unit circle, we conclude from Lemma 1 that
Omin = 0. Thus, W3 exists for any value of nz (finite or infinite). However, if
B(z) has zeros close to the unit circle, some numerical problems may be
expected. Indeed, in such a case oy, will be small and W22 will be ill-condi-
tioned for large nz. These comments apply not only to the estimates B(z) and
Wy, but to B(z) and Wy, as well.

Note that if B(z) cannot be factored into C(z)C(z™') (i.e. it is not the
spectral density of an MA process, owing to estimation errors), then it has zeros
of odd multiplicity on the unit circle. In that case oy, =0 and sz may be very
ill-conditioned for ‘large’ values of nz. A procedure for circumventing the
difficulty induced by an ill-conditioned W22 is discussed in § 4.2 below.

4.2. Efficient computation of W z

This subsection details the steps needed to compute W{zlz. First, the sample
covariances are estimated using (3.1), and from these estimates the initial AR
coefficients {&;}{<, are found by solving the OYW equations (3.14). We note
that the algorithm of Moses (1984) and Zohar (1979) for solving an overdeter-
mined Toeplitz system of equations can be used, and results in fewer computa-
tions than a direct solution of (3.14) when na is large.

Once {d,;};<, are found, the vector z in (3.6) must be computed. Equation
(3.7) can be used for this computation, but a moere computationally efficient
method can be obtained by noting that z;, = Zz(q'l)FH,mMC. Thus, z; is given
by

2na
ik = Zogi;:kw'-na-%nc——is k = 1,...,nz (45)
where g, is the coefficient of the g~ term of G(¢~!) & A%(¢ 1)

1
> Az m 0<i<na
m=0
& = (4.6)
na
> dpdie, na+1<i<2na
m=i—na :

Computation of {gi};?ﬁg using (4.6) requires about 2na” flops (one flop being one
multiplication and one addition), and computation of each z; term in (4.5)
requires 2na flops. Thus, a total of about 2(na - nz + na®) flops are required to
compute the vector z. For nz > 2, this compares favourably with the na®- nz
flops needed to complete z directly from (3.7).

Next, the elements of W22 must be computed from the & and ¥ sequences.
This involves first computing the coefficients of B(z) as defined in (2.8), then
finding the coefficients of the polynomial B(z) (cf. (3. 11)). A more efficient
procedure than direct computation of b, by using (2.8) is found by noting that

na na

by = > D 8diFrsji = D dFpe 4.7)

i=0j=0 l=~na
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where

na—|!|

2 ?I,ﬁiﬂm, —na<l<na (48)

Since d; = d_,, equation (4.7) can be written as
bp = Frdy + (Frwr + Fio)dy + -+ + (Favno + Fiona)dna (4.9)

The computation of {h;}is, using equations (4.8)-(4.9) requires about
na*/2 + na-nc flops, compared with nc-na’ flops when (2.8) is directly
1mplemented

Finally, in Step 2 of the algorithm, it is necessary to compute W'z, We first
note from (3.10)-(3.11) that

i i — 2nc
[WZZ]’J {ﬁg ’ Iotherj\almse (4.10)
Bi= > bimbp-m, 0<k=<2nc (4.11)

m=k—nc

As mentioned earlier, sz is a banded symmetrlc Toeplitz matrix, a fact which
enables the efficient computation of u £ & W3,'z. One such method is described in
Gavel (1992). This algorithm is similar to the Levinson-Durbin algorithm, but
skips over multiplications by zero that are present as a result of the banded
structure.

It should be noted that since the algorithm in Gavel (1992) computes W3,'z
recursively in nz, it is possible from (3.3) to compute 8 recursively in nz. Thus,
given an upper bound on nz, this proposed algorithm computes the updated
estimate 8(nz) for all values of nz up to this upper bound. This is potentially
useful in determining nz adaptively if an appropriate value is not known a
priori.

As explained in §4.1, the matrix Wa, may be ill-conditioned if the poly-
nomial B(z) has zeros very close to the unit circle. Such a situation appears
when B(z) does not represent a valid MA spectral density (due to estimation
errors), in which case this polynomial has zeros exactly on the unit circle. In
order to avoid possible ill-conditioning of Ws,, we correct B(z) so that the zeros
of the corrected polynomial do not lie in the ring delimited by the circles of
radius, say, 0-9 and 1/0-9 (the choice of these values is arbitrary and other
values may work better in a given application). This operation presents no
complication when no zero of B(z) is situated on the unit circle. If B(z) has
zeros on the unit circle, first these zeros are paired and then each pair is moved
away from the unit circle at moduli 0-9 and 1/0-9, respectively, and the same
angular position equal to the average phase of paired zeros. Pairing the
(odd-multiplicity) unit-circle zeros of B(z) is straightforward when their number
is not too large, which should be the case in most applications. If, however, in
some situation this condition is not met, then pairing the unit-modulus zeros of
B(z) may be difficult. In such a case, other more elaborate methods should be
used for correcting B(z) so as to guarantee that it has no zero in a ring
including the unit circle. See, for example, Stoica and Moses (1992). We note
that the method in Stoica and Moses (1992) corrects B(z) without finding its
zeros; it may thus be more computationally efficient than the more direct
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zero-correcting method discussed above. None the less, for small nc, the direct
method is efficient and effective for most cases of interest.

4.3. Stabilizing A(z™Y) and computation of Wi,

In order to compute W12, it is necessary to find the first few impulse
response elements of a filter whose transfer function has A*(z7') in the
denominator (cf. Step 2). It may therefore be necessary to ensure that A(z ') is
a stable polynomial. Since the &, coefficients are consistent estimates of the a;
coefficients, A(z 1) will be stable for sufficiently large N. However, for ‘small’
data lengths, A(z~!) may be unstable. Computationally efficient procedures of
stabilizing A(z~!), which requires only O(na®) computations, can be found in
Stoica and Moses (1992). Alternatively, one can determine the zeros of A(z7!),
say {uee™'?}7L,, modify them to {min (p, uk)e—’¢k} 1 (for some p<1, for
example p = 0-95) and then construct a stabilized A(z~ 1) from the corrected
Zeros.

Once the stabilized A(z~!) has been obtained, it is useful to compute Wi,
given by (3.8) and (3.9). Equation (3.9) is implemented as follows. First

compute the stable polynomial G(z~!) = A2(z7') as in the preceding section (of
course, if A(z!) was already stable, G(z ™) need not be recomputed) Define
Izl = g72ne 22 B(2) A z i (4.12)
G(z™H) =0
The coefficients of I'(z™!) can be recursively computed by
min (k,2na)
Yk = Bone-k — 2 Yi-i8i k=0 (4.13)

i=1

By comparing (4.12) and (3.9), it can be seen that aj = Y. —x; thus, from
(3.8) we have

Yne—na-1 Yne—na-2 Yne—na—nz
Ync—na Yne—na-1 Ync—na—nz+1
W12 = . . .
Y2ne-1 Yanc-2 - Y2nc-nz
Yne—na—1 Yne—na—nz
Yne—na-2
+ |t (4.14)
S Yo
yg ot 0

It is clear from (4.14) that y, must be computed for k=0, 1, ..., 2nc — 1.
Note also that since y; = 0 for k <0, the first matrix on the right-hand side of
(4.14) may have zeros in the upper-right triangle, whereas the second matrix has
zeros in the lower-right triangle. Note that for na = nc, this second matrix is
Zero.

4.4. Efficient computation of d and b

Note that the matrix R (or R if covariance estimates are used) in (2.7) is
square and Toeplitz. This structure enables computationally efficient Levinson-
type methods to be used to compute the & vector. Such algorithms can be found
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in Kay (1988), Marple (1987), Soderstrom and Stoica (1989) and Zohar (1979).
The number of computations required is O(na®).

Once & is found, the b coefficients can be efficiently computed using
(4.8, -(4.9), with @ and 7 replacing & and 7 there.

4.5. Ensuring the non-negativity of the spectral estimate

It is clear from (2.10) that the estimated spectrum ¢(e"") is non-negative if
and only if B(e') is non-negative for all frequencies. However, B(e) provided
by the proposed algorithm is not guaranteed to be so. If a non-negative spectral
estimate is needed, then B(e’“’) must be modified.

One simple way to modify B(z) to make it non-negative was described in
§4.2. As already stated, that procedure works well if the set of unit-circle zeros
of B(z) is not too dense. Another procedure that can be used to ensure a
non-negative MA spectral density is the window method of Moses (1984), Moses
and Beex (1986). This procedure, however, may introduce an unduly large bias
in the corresponding modified spectral density estimate. Other more elaborate
procedures for enforcing the non-negativity condition on an estimated MA
spectral density can be found in Stoica and Moses (1992) and Moses and Liu
(1991). In the numerical applications considered in this paper (see §5), we
found it unneccessary to recourse to these more complicated procedures.

The results of the previous discussions are summarized in Table 1 as a
detailed description of the proposed algorithm.

Detailed implementation of the efficient linear spectral ARMA algorithm
Given: y(1), ..., y(N); na, nc, and nz.
Step 1(a). Generate {7} ;20" "™ using (3.1).

Step 1(b). Compute & from (3.14) using a non-symmetric Toeplitz equation
solution procedure.

Step 1(c). Compute {b} %, using (4.7)-(4.9).
Step 2(a). Compute the coefficients {ge)} 3% of G(z) = A%(z) using (4.6).

2na
Step 2(b). Compute 2 = > &Fksnainc—i» k=1, ..., nz.
i=0
nc

Step 2(c). Compute {8} = > b|5‘b,k s, k=0,1,...,2nc.

s=k-nc

i - 2
Step 2(d). Set [Wp]; = {51 " ‘olther]\l/ise. "

Solve for u = W'z using a fast Toeplitz algorithm. Optionally, if
W, is ill-conditioned, correct {b,} as described in § 4.2.
Step 2(e). Optionally stabilize G(z) as discussed in § 4.3, if necessary. Compute

min (k,2na)

Yi = Bone—k = 2, Yk-i& fork=0,...,2nc~-1

i=1

(yr =0 for k£ <0). Form
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Ync—na-1 Ync—na-2 Ync—na—nz

T Ync—na Ync—na-1 Ync—na~nz+1
Wi = : : :

Y2ne—-1 Y2ne-2 " Y2ne—nz

Ync—na—1 Ync—na—nz

Ync—na—2 A Yne—na—nz—1

+
Y~2na—1 " Y—2na—nz

Step 2(f). Compute 7 = ¥ — Wu.

o

Step 3(a). Compute & from (2.7) with {7,} replacing {r,}, by using a fast
Levinson solver; and {b;} from (4.10)-(4.12) with {@,} and {7;}
replacing {d,} and {F;} there.

Step 3(b). Compute $(z) using 4 and b in (2.10). Optionally, if @(z) is not
non-negative definite, correct {b;} as described in § 4.5.

5. Numerical examples

In this section, we present some numerical examples which illustrate the
performance of the three-step spectral ARMA algorithm. The ARMA processes
in these examples are similar to the ones considered in Friedlander and Porat
(1984). We also compare the performance of the proposed algorithm with the
Cramér-Rao bound (CRB). The CRB is computed using the expressions in
Friedlander and Porat (1984). In each example, we present the estimates of the
spectral density for short data realizations (N =200 or N = 300) and/or for long
data realizations (N = 1500 or N =2000). In each case considered we plot
mc = 10 realizations of the estimated spectral density in a superimposed fashion.
The plots of the estimates of the spectral density are shown in pairs. The first
plot of a pair corresponds to the initial estimates {&;} and {5} obtained from
the first step of the proposed algorithm. We call the estimates of the spectral
density shown in this plot the ‘tilde estimates’. The second plot of a pair
corresponds to the final estimates {4} and {b,}. These estimates of the
spectral density are referred to as the ‘hat estimates’. For each example, we
present several plots of the estimates of the spectral density, corresponding to
different values of nz. In our examples, nz is taken to vary in the range {2, 3,
..., 10}.

Concerning the choice of the user’s variable »nz in applications, we have the
following suggestion based on empirical experience with the ARMA spectral
method under consideration. In our experiments, increasing nz always leads to a
spectral density estimate which was non-negative for all values of the frequency.
Moreover, the first value of nz, say Az, which produced a non-negative spectral
density estimate also gave a satisfactory accuracy that could not be significantly
improved by further increasing nz. We recommend choosing nz = AZ in any
application in which one does not dispose of a priori information on the data
under study which might permit a more judicious choice of this parameter.
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Example 1: Consider the ARMA(4, 4) model with
A(gH =1+01g"1 + 1:66g7% + 0-093g > + 0-8649g~* (5.1)
C(g™") =1+ 0:0226g " + 0-8175¢72 + 0-0595¢ > + 0:0764g*  (5.2)

The poles of the process are at 0-9644exp(£j0-43357) and
0-9644 exp (£j0-58357), the =zeros are at 0-8471exp(%j0-48677) and
0-3263 exp (£j0-5457m). Figures 1 and 2 show the plots of the true spectral

sor A 1

Spectral density (dB)

Q Q.5 1 15 2 25 3
Frequency (radians)

Figure 1. Spectral density * 20 bounds for Example 1. The data length is N = 200. Solid
curve = spectral density; dashed curves = bounds.

Spectral density (dB)

0 Q05 1 1.5 2 2.5 3

Frequency (radians)

Figure 2. Spectral density + 20 bounds for Example 1. The data length is N = 1500. Solid
curve = spectral density; dashed curves = bounds.
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density and the spectral density =20, where o is the CRB, for the data lengths
of N =200 and N = 1500. In both cases, we have computed the tilde and hat
estimates for nz =2, ..., 10. Typical results so obtained are shown in Figs 3
and 4.

From Figs 3 and 4, one can see that negative spectral density ecstimates
always appear among the tilde estimates. Increasing nz does not necessarily
improve the performance of the tilde estimator.

The hat estimator attains higher accuracy of the estimates. For N = 200,
increasing nz not only improves the accuracy of the hat estimates, but also
eliminates the occurrence of negative spectral estimates there. In the case of
N =1500, increasing nz does not affect the accuracy of the hat estimates
significantly. As Fig. 4 shows, the hat estimates have a tendency to converge as
nz increases.

Note that the plots in Figs 3 and 4 were obtained without any correction. For
this example, we have also tried to correct the polynomials A(z) and B(z) as
described in § 4. The corrections removed the negative estimates of the spectral
density but at the expense of an inflated bias. Interestingly enough, the bias was
nearly constant for all frequencies, and the variance has not been affected in a
visible way. In the interest of brevity, we omit the plots showing corrected
spectral density estimates. O

Example 2: Consider the ARMA(4,3) process with
A(g™Y) =1 - 13136 7! + 1-4401g72 — 1-0919¢ 3 + 0-83527¢™* (5.3)
C(g™") = 0-13137 + 0-023543¢ ™! + 0-10775¢~2 + 0-035164 3 (5.4)

The poles of the ©process are at 0-9245exp(%j0-54337) and
0-9886 exp (£j0-20957); the zeros are at —0-3110 and 0-9283 exp (£j0-47737).
The plots of the true spectral density and the spectral density =20 for a data
length N = 2000 are presented in Fig. 5. Figure 7 shows how the tilde and hat
estimates of the spectral density change when increasing nz. From Fig. 7 one
can see the improvement of estimation accuracy offered by the hat estimator
over the tilde estimator. Increasing nz results in better estimates both in the
case of the tilde and the hat estimators. As Fig. 7 shows, the peak is estimated
rather accurately. The more complicated problem is to estimate accurately the
‘valley’ of the spectrum. O

Example 3: Consider the ARMA(4,4) process with
A(g™H =1—27607¢7! + 3-8106¢ 2 ~ 2:6535¢73 + 0-9238¢™* (5.5)
Clg™Y) =1-21398¢7" + 2:3672¢ 72 — 1:3729¢73 + 0-3930¢~*  (5.6)

The poles of the process are at 0-9805exp(=%j0-28017) and
0-9803 exp (£j0-21997); the zeros are at 0-8328exp(=%j0-32387) and
0-7528 exp (£j0-18287). Figure 6 shows the spectral density =20 of the ARMA
process above. The data length is N = 2000. The tilde and hat spectral density
estimates are presented in Fig. 8. Figure 8 shows quite poor initial tilde
estimates which are significantly improved by using the three-step algorithm.
The large number of data considered was necessary to obtain initial estimates
with reasonable accuracy. For smaller values of N, the initial estimates are very
erratic and their use to initialize the three-step algorithm is not appropriate. [
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Figure 3. [Estimates of the spectral density for Example 1. Left-hand side: the tilde estimates,
right-hand side: the hat estimates. The data length is N =200. Upper plots: nz =2,
middle plots: nz = 6; lower plots: nz = 10.
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Figure 4. Estimates of the spectral density for Example 1. Left-hand side: the tilde estimates,
right-hand side: the hat estimates. The data length is N = 1500. Upper plots: nz = 2;
middle plots: nz = 6; lower plots: nz = 8.
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Figure 5. Spectral density *+ 20 bounds for Example 2. The data length is N = 2000. Solid
curve = spectral density, dashed curves = bounds.
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Figure 6. The spectral density * 20 bounds for Example 3. The data length is N = 2000,
Solid curve = spectral density, dashed curves = bounds.

6. Conclusions

We have presented a three-step algorithm for obtaining asymptotically
statistically efficient estimates of ARMA spectral densities. The algorithm
includes an initial estimation step which is a Yule-Walker based estimation
method. Then, the parameter estimates are updated to obtain estimates with
asymptotically minimum variance. The algorithm is computationally efficient. In
addition, the algorithm readily incorporates steps which give stable denominator
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Figure 7. Estimates of the spectral density for Example 2. Left-hand side: the tilde estimates,
right-hand side: the hat estimates. The data length is N =2000. Upper plots: nz = 2;
middle plots: nz = 4; lower plots: nz = 8.
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Figure 8. Estimates of the spectral density for Example 3. Left-hand side: the tilde estimates,
right-hand side: the hat estimates. The data length is N = 2000. Upper plots: nz = 4;
middle plots: nz = 6; lower plots: nz = 8.
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polynomial estimates and non-negative spectral estimates. It is shown that the
algorithm provides improved accuracy of ARMA spectral parameter estimates.
In addition, the algorithm reduced the occurrence of negative spectral estimates
even when no explicit step is used to ensure non-negativity.
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