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ABSTRACT

Recently, a method for generating an ARMA

spectral estimator model which possessed super—
resolution performance was developed [2]. This
method entailed minimizing a weighted quadratic
functional of a set of 'basic error terms." An
issue which remained to be resolved at that time
was the selection of the weighting matrix that
characterized the functional being minimized. A
weighting matrix selection procedure has recently
been developed and is herein reported [ 8]. This

procedure has typically yielded am improvement in
spectral estimation performance.

I. INTRODUCTION

In this paper we shall be concerned with the
task of estimating the power spectral density of a
zero mean, wide sense stationary random time series
{x(n)} from a finite set of observations. To this
end, knowledge of the time Reries' underlying auto—
correlation sequence as formally defined by

r(n) = Efx(n+k) x*(k)}

conveys all the information required. Here, t(
denotes the expected value operator and * denotes
the operation of complex conjugation. The time
series is characterized in the frequency domain by

its power spectral density as given by

—janS() = r(n)e
which is recognized as being the Fourier transform
of the autocorrelation sequence.

Upon examination of (1) and (2) it is apparent
that determination of the tine series' power spectral
density entails complete knowledge of the
generally infinite length autocorrelation sequence.
Here, we will be concerned with extracting this
information from the finite set of time series
observations

x(l), x(2) x(N)

Unless some constraints are imposed on the
time series' basic nature, however, there exists
a fundamental incompatibility in estimating the
required statistical knowledge from the finite set
of data. This dilemma is usually resolved by
postulating a finite parameter linear model to
represent the time series. In terms of parameter

parsimony, the causal autoregressive moving average
(ARMA) model of order (p,q) as specified by

p q

x(o) + a.x(n—i) = be(n—j) (4)
1=1 j=O

is generally the most effective linear model [1].
In this model, the (unobserved) excitation process
{c(n)} is assumed to be zero—mean, unit variance
Gaussian white noise. It is important to note that
the more specialized autoregressive model

(i.e., b a 0 for j 0) generally requires a much
higher model order p to achieve comparable
spectral estimates. Conceptually, then, the more
general ARMA model is the logical model choice.

It is well known that the power spectral den-
sity of a process{x(o)}that satisfies (4) is given

(1)
by: —•w —.

b +be3 +...+be 2
— 0 1 q. B(w)

x
—

l+a e15+... + a 2

1 p

Thus the task of estimating the power spectral
density of the time series can be accomplished by

(2) estimating the ARMA model parameters aj and b3.

Several procedures for estimating the al and

b parameters have recently been developed [2—8].
Of these procedures, one developed by Cadzow [2]
has been shown to be effective in a variety of
cases. The crux of this procedure lies in obtain-

ing the autoregressive parameters by minimizing a
weighted quadratic function of a set of zero mean
error elements. It was pointed out in [2) that the
effectiveness of this procedure is dependent on a
judicious selection of the weighting elements in
the quadratic function. This paper develops an

f3\
alternative weighting element selection to that
used in [2] which results in improved spectral
estimates.
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II. THE MODEL EQUATION ERROR and
SPECTRAL ESTIMATOR. N—i N N * *

Cik= w(m)x(n—k)x(t—m)( (m—m)x (f—i)
The spectral estimation procedure of this m=q+ln=s f=s

paper is predicated on the procedure in [2]. For il,2,...,p
completenesa, this procedure is discussed below. k0,l,...,p

a =max(m+l,p+l) (lOd)
Of primary importance in spectral estimation

is the method for estimating the autoregressive co— An improvement in the above autoregressive co-
efficients a in equation (4). An effective method efficient estimation procedure can be realized by
for estimating these coefficients entails multiply— also considering the backward version of the time
ing both sides of (4) by the tern x*(n_m) to yield series {x(n)}. Also, an estimate of the numerator
the "basic error terms" spectrum B(s) in (5) must be obtained in order to

arrive at the complete power spectral density esti—
* r . * nate of {x(n)}. The details of these two tasks are

e(m,n) = x(n)x (n—n) + , ax(n—i)x (n—n) (6a)
presented in [2].i=l

q *

=0bnH (n—n) for q+l<n<N—l
III. WEIGHTING ELEMENT SELECTION

nax(p-4-l,n+i)<ncN

6b In order to obtain autoregressive parameters
using the above procedure, the elements w(n) in (8)

where the range on the n and n variables is dictat— must first be selected. In [2] the weights
ed by the time series observation range l<k<N.

4
If the tine series is in fact an ARMA process of w(n) = (N—n) , q+l S n < N—i (11)
order less than or equal to (p,q) then the basic
error terms are each zero mean random variables, were employed.
Furthermore, the basic error terms are seem to be
functions of the autoregressive coefficients A more prudent weight selection can be

a1, a2, ..., a. With these two properties in mind, developed by considering the random terms
a reasonable selection of the autoregressive co-
efficients is one that causes each of the e(n,n) N 2

terms to be as close to its mean value of zero as e(m,n) , q+l < m < N—i (12)
possible. This goal is achieved by minimizing a n=s
squared—error criterion of the form

associated with the weights w(m) in (8) [ 8 ]. A
f) = etWe (7) logical selection for the w(n) weights is the

inverse of the vsrismces of the terms in (12),
where e is a vector of appropriately arranged that is

e(m,m) terms, W is a positive semidefimite weight— —l
ing matrix, and t denotes the operation of complex r N 21

conjugate transpositiom. w(m) =

vsr[jYe(nn) j

, q+l < m < N—i (13)

A more specific fornst of the minimization
criterion (7), and the one considered in [2], is , - . .In this way, the terms in the minimization criter—

N—i N 2 ion (8) which have smaller vsrisnces from their
f(a) = w(n) e(m,m) , snax(p+l,m+i) mean value are weighted proportionately higher thsm

m=q+l m=s
(8)

those terms with larger vsrismces from their mean.

It is easily shown that
In this expression the w(m) are nommegative
weighting elements. p N 21 N N

Using standard calculus, it is readily shown
vsrj

e(n,n) = r(f—n) c(Z—n) (14s)

thst the set of autoregressive coefficients which
n—s — os f—s

smsx(n+l,p+i)
minimize (8) are given by:

A = C1c where
q—m

T bib+m 0 < m q
where a = [a1 2 a] (ba) i0

C = {ck)P (bOb)

c(m) = c*(mj) —i > m —q
(l4b)

T 0 , otherwise
a =

—[crn c20 c0J (bc)
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Unfortunately, the desired variances are seen
to be dependent on the unknown parameters

b0, b1 bq. However, an approximate express-
ion for the inverse variance weights of (13) can
be realized if a reasonable approximation of the
c(m) elements in (14b) can be found.

One can gain insight about the structure of

the c(m) elements by forming the polynomials B(z)
and C(z) defined as

÷
bq_1Z+bq (15a)

C(z) = +c(O) +c(l)z

+... +c(q)z

= 3i—l i = 2,4,6 q

where Im[6i] denotes the imaginary part of 8j.
If q is odd the unpaired zero is assumed to be
uniformly distributed on the real axis inside the
unit circle,

—l < 3 < 1 1m13 j 0 (20c)— q— q

0 , otherwise

Using these assumptions about the zeroes of
B(z), one can straightforwardly calculate the

desired approximation to C(z) by determining the
expected value of expression (18)

q

(15b) e(z) = E(z II (z_3i)(l_z3)) (21)
i=O

It is easily shown that

(20b)

By carrying Out this calculation, one finds that
C(z) = B(z)B(z) (16) for a complex time series {x(n)}

Furthermore, B(z) can be factored as C(z) 1 (22a)

q
B(z) = b0 II (z—3) (17) and for a real time series

i=l

[i

4 7 2

ijk

Ô (z) = z + z + (22b)where the $ are zeroes of the polynomial B(z). r 2 3 2

Applying (16) it is found that

where
C(z) = b (z - 3.) (1- z3.) (18) 1 q

i=l ., qeven
k=

Thus, C(z) can be found (to within the constant b) [2' q odd

using (18) from knowledge of the q zeroes
61. of B(z). Thus, the approximate inverse variance weights are

given by
A reasonable approximation of C(z) and there— N N —l

fore of the c(m) elements can be found by
approximating the location of the zeroes of B(z).

W(m) = r(f_n)(f_n)
One such approximation is realized by assuming that L ns ] q < m < N—l

(23)each zero is a random variable uniformly distribut-
ed within the complex unit circle,1 so that its where s = max(m+l,p+l) and the a(m) elements are
probability density function is the coefficients corresponding to the zm terms of

the polynomials (22a) or (22b).
1=

{
' I8l < 1 (19)

IV. NUMERICAL EXAMPLE
0 , otherwise

In order to compare the effectiveness of the

If the time series {x(n)} is a real process, new ARMA spectral estimator with the estimator

then the zeroes of B(z) must form complex conjugate in [2], the classical problem of resolving

pairs. For this case it is assumed that q,2 of the two closely spaced (in frequency) sinusoids in

zeroes are uniformly distributed within the upper white noise will be considered. Specifically, the

half of the complex unit circle, that is time series under study is specified by

= , < 1 and Im[61] > 0 (20a)
x(n) = y1O cos(Q.4an) +/icos(O.426iin) +w(n) (24)

f61($1)
{

--
0 otherwise where {w(n)} is a white Gaussian noise process of

i=l,3,...,q—1 zero mean and unitwariance. The sinusoids of
normalized frequencies 0.4 and 0.426 are readily
calculated to have signal—to—noise ratios (SNR) of

T1f a zero of B(z) is outside the unit circle, then 10dB and OdE, respectively. A sequence of length
the corresponding zero of B(zl) is inside the unit 512 defined over 0 < n < 511 was next generated
circle, and from equation (16) it is clear that using this relationship. Furthermore, in order to
C(z) will not be affected, provide a statistical basis for out comparison,
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this 512 length sequence was then decomposed into
eight disjoint sequences each of length 64 defined
on 0 < n < 63, 64 < n < 127 448 < n < 511.
An ensemble consisting of eight subsequences each
of length 64 has thereby been generated with each
subsequence having a different noise sample and a
different initial phase between the two sinusoids.
This latter condition is useful in revealing any
potential sensitivity to initial phase that the
new ARMA spectral estimation method may possess.

The spectral estimates which resulted when
the (N—rn)4 weights and the new inverse variance
weights were applied to the ARMA spectral estima—
tor are displayed in Figures la and lb, respective-
ly. The ordinates are scaled from —20dB to 60dB for
each individual plot. In both cases the spectral
estimator order was (15,15). It is clear that the
inverse variance weight estimator was able to
resolve the two sinusoids in more cases than the
(N—rn)4 weight estimator could. Moreover, the
incidence of false peaks in the inverse variance
weight estimates is smaller than that of the

(N--rn)4 weight estimates.

V. CONCLUSIONS

An improved weight selection for a recently
developed ARMA spectral estimation procedure was
developed. The autoregressive parameters are
found in this procedure by minimizing a weighted
sum of squares of zero mean basic error terms.
The new weight selection is chosen to provide more
heavy weighting to those terms in the sum which
possess lower variances. Empirical evidence
indicates that this new weight selection provides
superior spectral estirnation performance when com-
pared to the original [N—mi4 weight selection.
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Figure 1. Spectral Estimates of Two Sinusoids at
Normalized Frequencies of 0.400(10dB) and 0.426
(0dB) in Additive White Noise, a) (N—rn)4 weights
used. b) inverse variance weights used.


