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Informal Definition of Spectral Estimation

Given: A finite record of a signal.

Determine: The distribution of signal power over

frequency.

t

signal

t=1, 2, . . . ω ω+∆ω
ω

π

spectral density

! = (angular) frequency in radians/(sampling interval)

f = !=2� = frequency in cycles/(sampling interval)
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Applications

Temporal Spectral Analysis

� Vibration monitoring and fault detection

� Hidden periodicity finding

� Speech processing and audio devices

� Medical diagnosis

� Seismology and ground movement study

� Control systems design

� Radar, Sonar

Spatial Spectral Analysis

� Source location using sensor arrays
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Deterministic Signals

fy(t)g1t=�1 = discrete-time deterministic data

sequence

If:
1X

t=�1

jy(t)j2 <1

Then: Y (!) =
1X

t=�1

y(t)e�i!t

exists and is called the Discrete-Time Fourier Transform
(DTFT)
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Energy Spectral Density

Parseval's Equality:

1X
t=�1

jy(t)j2 =
1

2�

Z �
��

S(!)d!

where

S(!)
4
= jY (!)j2

= Energy Spectral Density

We can write

S(!) =
1X

k=�1

�(k)e�i!k

where

�(k) =
1X

t=�1

y(t)y�(t� k)
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Random Signals

Random Signal

t

random signal probabilistic statements about 
future variations

current observation time

Here:
1X

t=�1

jy(t)j2 =1

But: E
n
jy(t)j2

o
<1

E f�g = Expectation over the ensemble of realizations

E
n
jy(t)j2

o
= Average power in y(t)

PSD = (Average) power spectral density
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First Definition of PSD

�(!) =
1X

k=�1

r(k)e�i!k

where r(k) is the autocovariance sequence (ACS)

r(k) = E fy(t)y�(t� k)g

r(k) = r�(�k); r(0) � jr(k)j

Note that

r(k) =
1

2�

Z �
��

�(!)ei!kd! (Inverse DTFT)

Interpretation:

r(0) = E
n
jy(t)j2

o
=

1

2�

Z �
��

�(!)d!

so

�(!)d! = infinitesimal signal power in the band

! � d!
2
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Second Definition of PSD

�(!) = lim
N!1

E

8><
>:
1

N

������
NX
t=1

y(t)e�i!t

������
2
9>=
>;

Note that

�(!) = lim
N!1

E

�
1

N
jYN(!)j

2
�

where

YN(!) =
NX
t=1

y(t)e�i!t

is the finite DTFT of fy(t)g.
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Properties of the PSD

P1: �(!) = �(!+2�) for all !.

Thus, we can restrict attention to

! 2 [��; �] () f 2 [�1=2;1=2]

P2: �(!) � 0

P3: If y(t) is real,

Then: �(!) = �(�!)

Otherwise: �(!) 6= �(�!)
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Transfer of PSD Through Linear Systems

System Function: H(q) =
1X
k=0

hkq
�k

where q�1 = unit delay operator: q�1y(t) = y(t� 1)

e(t)

�e(!)

y(t)

�y(!) = jH(!)j2�e(!)
H(q) --

Then

y(t) =
1X
k=0

hk e(t� k)

H(!) =
1X
k=0

hk e
�i!k

�y(!) = jH(!)j2�e(!)
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The Spectral Estimation Problem

The Problem:

From a sample fy(1); : : : ; y(N)g

Find an estimate of �(!): f�̂(!); ! 2 [��; �]g

Two Main Approaches :

� Nonparametric:

– Derived from the PSD definitions.

� Parametric:

– Assumes a parameterized functional form of the

PSD
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Periodogram

and

Correlogram

Methods

Lecture 2
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Periodogram

Recall 2nd definition of �(!):

�(!) = lim
N!1

E

8><
>:
1

N

������
NX
t=1

y(t)e�i!t

������
2
9>=
>;

Given : fy(t)gNt=1

Drop “ lim
N!1

” and “E f�g” to get

�̂p(!) =
1

N

������
NX
t=1

y(t)e�i!t

������
2

� Natural estimator

� Used by Schuster (�1900) to determine “hidden

periodicities” (hence the name).
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Correlogram

Recall 1st definition of �(!):

�(!) =
1X

k=�1

r(k)e�i!k

Truncate the “
P

” and replace “r(k)” by “r̂(k)”:

�̂c(!) =
N�1X

k=�(N�1)

r̂(k)e�i!k
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Covariance Estimators
(or Sample Covariances)

Standard unbiased estimate:

r̂(k) =
1

N � k

NX
t=k+1

y(t)y�(t� k); k � 0

Standard biased estimate:

r̂(k) =
1

N

NX
t=k+1

y(t)y�(t� k); k � 0

For both estimators:

r̂(k) = r̂�(�k); k < 0
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Relationship Between �̂p(!) and �̂c(!)

If: the biased ACS estimator r̂(k) is used in �̂c(!),

Then:

�̂p(!) =
1

N

������
NX
t=1

y(t)e�i!t

������
2

=
N�1X

k=�(N�1)

r̂(k)e�i!k

= �̂c(!)

�̂p(!) = �̂c(!)

Consequence:
Both �̂p(!) and �̂c(!) can be analyzed simultaneously.
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Statistical Performance of �̂p(!) and �̂c(!)

Summary:

� Both are asymptotically (for large N ) unbiased:

E
n
�̂p(!)

o
! �(!) as N !1

� Both have “large” variance, even for large N .

Thus, �̂p(!) and �̂c(!) have poor performance.

Intuitive explanation:

� r̂(k)� r(k) may be large for large jkj

� Even if the errors fr̂(k)� r(k)gN�1
jkj=0

are small,

there are “so many” that when summed in

[�̂p(!)� �(!)], the PSD error is large.
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Bias Analysis of the Periodogram

E
n
�̂p(!)

o
= E

n
�̂c(!)

o
=

N�1X
k=�(N�1)

E fr̂(k)g e�i!k

=
N�1X

k=�(N�1)

 
1�
jkj

N

!
r(k)e�i!k

=
1X

k=�1

wB(k)r(k)e
�i!k

wB(k) =

8<
:
�
1�

jkj
N

�
; jkj � N � 1

0; jkj � N

= Bartlett, or triangular, window

Thus,

E
n
�̂p(!)

o
=

1

2�

Z �
��

�(�)WB(! � �) d�

Ideally: WB(!) = Dirac impulse �(!).
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Bartlett Window WB(!)

WB(!) =
1

N

"
sin(!N=2)

sin(!=2)

#2

WB(!)=WB(0), for N = 25

−3 −2 −1 0 1 2 3
−60

−50

−40

−30

−20

−10

0

dB

ANGULAR FREQUENCY

Main lobe 3dB width� 1=N .

For “small” N , WB(!) may differ quite a bit from �(!).
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Smearing and Leakage

Main Lobe Width: smearing or smoothing

Details in �(!) separated in f by less than 1=N are not

resolvable.
φ(ω)

ω<1/Ν ω

φ(ω)^
smearing

Thus: Periodogram resolution limit = 1=N .

Sidelobe Level: leakage

φ(ω)≅δ(ω)

ω ω

φ(ω)≅W (ω)^

leakage

B
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Periodogram Bias Properties

Summary of Periodogram Bias Properties:

� For “small” N , severe bias

� As N !1, WB(!)! �(!),

so �̂(!) is asymptotically unbiased.
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Periodogram Variance

As N !1

E
nh
�̂p(!1)� �(!1)

i h
�̂p(!2)� �(!2)

io
=

(
�2(!1); !1 = !2
0; !1 6= !2

� Inconsistent estimate

� Erratic behavior

ω

φ(ω)^

 1 st.  dev = φ(ω) too +-

asymptotic mean = φ(ω)

φ(ω)^

Resolvability properties depend on both bias and variance.
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Discrete Fourier Transform (DFT)

Finite DTFT: YN(!) =
NX
t=1

y(t)e�i!t

Let ! = 2�
N k and W = e�i

2�
N .

Then YN(
2�
N k) is the Discrete Fourier Transform (DFT):

Y (k) =
NX
t=1

y(t)W tk; k = 0; : : : ; N � 1

Direct computation of fY (k)gN�1k=0 from fy(t)gNt=1:

O(N2) flops
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Radix–2 Fast Fourier Transform (FFT)

Assume: N = 2m

Y (k) =

N=2X
t=1

y(t)W tk+
NX

t=N=2+1

y(t)W tk

=

N=2X
t=1

[y(t) + y(t+N=2)W
Nk
2 ]W tk

with W
Nk
2 =

�
+1; for even k

�1; for odd k

Let ~N = N=2 and ~W =W2 = e�i2�= ~N .

For k = 0;2;4; : : : ; N � 2
4
= 2p:

Y (2p) =

~NX
t=1

[y(t) + y(t+ ~N)] ~W tp

For k = 1;3;5; : : : ; N � 1 = 2p+1:

Y (2p+1) =

~NX
t=1

f[y(t)� y(t+ ~N)]W tg ~W tp

Each is a ~N = N=2-point DFT computation.
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FFT Computation Count

Let ck = number of flops for N = 2k point FFT.

Then

ck =
2k

2
+ 2ck�1

) ck =
k2k

2

Thus,

ck =
1
2N log2N
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Zero Padding

Append the given data by zeros prior to computing DFT

(or FFT):

fy(1); : : : ; y(N);0; : : : 0| {z }
N

g

Goals:

� Apply a radix-2 FFT (so N = power of 2)

� Finer sampling of �̂(!):

�
2�

N
k

�N�1
k=0

!

�
2�

N
k

�N�1
k=0

ω

φ(ω)^
continuous curve

sampled, N=8
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Improved Periodogram-Based

Methods

Lecture 3
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Blackman-Tukey Method

Basic Idea: Weighted correlogram, with small weight

applied to covariances r̂(k) with “large” jkj.

�̂BT (!) =
M�1X

k=�(M�1)

w(k)r̂(k)e�i!k

fw(k)g = Lag Window

1

-M M

w(k)

k
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Blackman-Tukey Method, con't

�̂BT (!) =
1

2�

Z �
��

�̂p(�)W(! � �)d�

W(!) = DTFTfw(k)g

= Spectral Window

Conclusion: �̂BT (!) = “locally” smoothed periodogram

Effect:

� Variance decreases substantially

� Bias increases slightly

By proper choice of M :

MSE = var + bias2 ! 0 as N !1

Lecture notes to accompany Introduction to Spectral Analysis Slide L3–3
by P. Stoica and R. Moses, Prentice Hall, 1997



Window Design Considerations

Nonnegativeness:

�̂BT (!) =
1

2�

Z �
��

�̂p(�)| {z }
�0

W(! � �)d�

If W(!) � 0 (, w(k) is a psd sequence)

Then: �̂BT (!) � 0 (which is desirable)

Time-Bandwidth Product

Ne =

M�1X
k=�(M�1)

w(k)

w(0)
= equiv time width

�e =

1
2�

Z �
��

W(!)d!

W(0)
= equiv bandwidth

Ne �e = 1
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Window Design, con't

� �e = 1=Ne = 0(1=M)

is the BT resolution threshold.

� As M increases, bias decreases and variance

increases.

) Choose M as a tradeoff between variance and

bias.

� Once M is given, Ne (and hence �e) is essentially

fixed.

) Choose window shape to compromise between

smearing (main lobe width) and leakage (sidelobe

level).

The energy in the main lobe and in the sidelobes

cannot be reduced simultaneously, once M is given.
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Window Examples

Triangular Window, M = 25

−3 −2 −1 0 1 2 3
−60

−50

−40

−30

−20

−10

0
dB

ANGULAR FREQUENCY

Rectangular Window, M = 25

−3 −2 −1 0 1 2 3
−60

−50

−40

−30

−20

−10

0

dB

ANGULAR FREQUENCY
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Bartlett Method

Basic Idea:
1 Μ 2Μ Ν. . .  

average
.  .  .  

φ (ω)
1̂

φ (ω)
2̂

φ (ω)
L̂

φ (ω)
B̂

Mathematically:

yj(t) = y((j � 1)M + t) t = 1; : : : ;M

= the jth subsequence

(j = 1; : : : ; L
4
= [N=M ])

�̂j(!) =
1

M

������
MX
t=1

yj(t)e
�i!t

������
2

�̂B(!) =
1

L

LX
j=1

�̂j(!)
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Comparison of Bartlett
and Blackman-Tukey Estimates

�̂B(!) =
1

L

LX
j=1

8><
>:

M�1X
k=�(M�1)

r̂j(k)e
�i!k

9>=
>;

=
M�1X

k=�(M�1)

8<
:1L

LX
j=1

r̂j(k)

9=
; e�i!k

'
M�1X

k=�(M�1)

r̂(k)e�i!k

Thus:

�̂B(!) ' �̂BT (!) with a rectangular
lag window wR(k)

Since �̂B(!) implicitly uses fwR(k)g, the Bartlett
method has

� High resolution (little smearing)

� Large leakage and relatively large variance
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Welch Method

Similar to Bartlett method, but

� allow overlap of subsequences (gives more
subsequences, and thus “better” averaging)

� use data window for each periodogram; gives
mainlobe-sidelobe tradeoff capability

1 2 N

subseq
#1

.  .  .

subseq
#2

subseq
#S

Let S =# of subsequences of length M .
(Overlapping means S > [N=M ] ) “better
averaging”.)

Additional flexibility:

The data in each subsequence are weighted by a temporal
window

Welch is approximately equal to �̂BT (!) with a
non-rectangular lag window.
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Daniell Method

By a previous result, for N � 1,

f�̂p(!j)g are (nearly) uncorrelated random variables for

�
!j =

2�

N
j

�N�1
j=0

Idea: “Local averaging” of (2J +1) samples in the

frequency domain should reduce the variance by about

(2J +1).

�̂D(!k) =
1

2J +1

k+JX
j=k�J

�̂p (!j)
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Daniell Method, con't

As J increases:

� Bias increases (more smoothing)

� Variance decreases (more averaging)

Let � = 2J=N . Then, for N � 1,

�̂D(!) '
1

2��

Z ��
���

�̂p(!)d!

Hence: �̂D(!) ' �̂BT (!) with a rectangular spectral
window.
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Summary of Periodogram Methods

� Unwindowed periodogram
– reasonable bias
– unacceptable variance

� Modified periodograms
– Attempt to reduce the variance at the expense of (slightly)

increasing the bias.

� BT periodogram
– Local smoothing/averaging of �̂p(!) by a suitably selected

spectral window.

– Implemented by truncating and weighting r̂(k) using a lag
window in �̂c(!)

� Bartlett, Welch periodograms
– Approximate interpretation: �̂BT (!) with a suitable lag

window (rectangular for Bartlett; more general for Welch).

– Implemented by averaging subsample periodograms.

� Daniell Periodogram
– Approximate interpretation: �̂BT (!) with a rectangular

spectral window.

– Implemented by local averaging of periodogram values.
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Parametric Methods

for

Rational Spectra

Lecture 4
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Basic Idea of Parametric Spectral Estimation

Observed 
Data

Assumed 
functional

form of φ(ω,θ)

Estimate 
parameters
in φ(ω,θ) 

Estimate 
PSD 

φ(ω) =φ(ω,θ)^ ^
θ̂

possibly revise assumption on φ(ω)

Rational Spectra

�(!) =

P
jkj�m 
ke

�i!kP
jkj�n �ke

�i!k

�(!) is a rational function in e�i!.

By Weierstrass theorem, �(!) can approximate arbitrarily
well any continuous PSD, provided m and n are chosen
sufficiently large.

Note, however:

� choice of m and n is not simple

� some PSDs are not continuous

Lecture notes to accompany Introduction to Spectral Analysis Slide L4–2
by P. Stoica and R. Moses, Prentice Hall, 1997



AR, MA, and ARMA Models

By Spectral Factorization theorem, a rational �(!) can be

factored as

�(!) =

�����B(!)A(!)

�����
2

�2

A(z) = 1+ a1z
�1+ � � �+ anz

�n

B(z) = 1+ b1z
�1+ � � �+ bmz

�m

and, e.g., A(!) = A(z)jz=ei!

Signal Modeling Interpretation:
e(t)

�e(!) = �2

white noise

y(t)

�y(!) =
�
�
�
�

B(!)
A(!)

�
�
�
�

2
�2

B(q)

A(q)

�ltered white noise

--

ARMA: A(q)y(t) = B(q)e(t)

AR: A(q)y(t) = e(t)

MA: y(t) = B(q)e(t)
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ARMA Covariance Structure

ARMA signal model:

y(t)+
nX
i=1

aiy(t� i) =
mX
j=0

bje(t�j); (b0 = 1)

Multiply by y�(t� k) and take E f�g to give:

r(k) +
nX
i=1

air(k � i) =
mX
j=0

bjE fe(t� j)y
�(t� k)g

= �2
mX
j=0

bjh
�
j�k

= 0 for k > m

where H(q) = B(q)
A(q)

=
1X
k=0

hkq
�k; (h0 = 1)
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AR Signals: Yule-Walker Equations

AR: m = 0.

Writing covariance equation in matrix form for

k = 1 : : : n:2
6664
r(0) r(�1) : : : r(�n)
r(1) r(0) ...

... . . . r(�1)
r(n) : : : r(0)

3
7775
2
6664

1
a1
...
an

3
7775=

2
6664
�2

0
...
0

3
7775

R

"
1
�

#
=

"
�2

0

#

These are the Yule–Walker (YW) Equations.
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AR Spectral Estimation: YW Method

Yule-Walker Method:

Replace r(k) by r̂(k) and solve for fâig and �̂2:2
6664
r̂(0) r̂(�1) : : : r̂(�n)
r̂(1) r̂(0) ...

... . . . r̂(�1)
r̂(n) : : : r̂(0)

3
7775
2
6664

1
â1
...
ân

3
7775=

2
6664
�̂2

0
...
0

3
7775

Then the PSD estimate is

�̂(!) =
�̂2

jÂ(!)j2
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AR Spectral Estimation: LS Method

Least Squares Method:

e(t) = y(t) +
nX
i=1

aiy(t� i) = y(t) + 'T (t)�

4
= y(t) + ŷ(t)

where '(t) = [y(t� 1); : : : ; y(t� n)]T .

Find � = [a1 : : : an]
T to minimize

f(�) =
NX

t=n+1

je(t)j2

This gives �̂ = �(Y �Y )�1(Y �y) where

y =

2
64

y(n+1)
y(n+2)

...
y(N)

3
75 ; Y =

2
64

y(n) y(n� 1) � � � y(1)
y(n+1) y(n) � � � y(2)

...
...

y(N � 1) y(N � 2) � � � y(N � n)

3
75

Lecture notes to accompany Introduction to Spectral Analysis Slide L4–7
by P. Stoica and R. Moses, Prentice Hall, 1997



Levinson–Durbin Algorithm

Fast, order-recursive solution to YW equations2
6664
�0 ��1 � � � ��n
�1 �0

. . . ...
... . . . . . . ��1
�n � � � �1 �0

3
7775

| {z }
Rn+1

2
6664
1

�n

3
7775=

2
6664
�2n
0
...
0

3
7775

�k = either r(k) or r̂(k).

Direct Solution:

� For one given value of n: O(n3) flops

� For k = 1; : : : ; n: O(n4) flops

Levinson–Durbin Algorithm:
Exploits the Toeplitz form of Rn+1 to obtain the solutions

for k = 1; : : : ; n in O(n2) flops!
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Levinson-Durbin Alg, con't

Relevant Properties ofR:

� Rx = y $ R~x = ~y, where ~x = [x�n : : : x
�
1]
T

� Nested structure

Rn+2 =

2
4 Rn+1

��
n+1
~rn

�n+1 ~r�n �0

3
5 ; ~rn =

2
64 �

�
n...
��1

3
75

Thus,

Rn+2

2
4 1
�n
0

3
5=

2
4 Rn+1

��
n+1
~rn

�n+1 ~r�n �0

3
5
2
4 1
�n
0

3
5=

2
4 �2n

0
�n

3
5

where �n = �n+1+~r�n�n
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Levinson-Durbin Alg, con't

Rn+2

2
4 1
�n
0

3
5 =

2
4 �2n

0
�n

3
5 ; Rn+2

2
4 0
~�n
1

3
5=

2
4 ��n

0

�2n

3
5

Combining these gives:

Rn+2

8<
:
2
4 1
�n
0

3
5+ kn

2
4 0
~�n
1

3
5
9=
;=

2
4 �2n + kn��n

0

�n+ kn�2n

3
5=

2
4 �2

n+1
0
0

3
5

Thus, kn = ��n=�2n )

�n+1 =

"
�n
0

#
+ kn

"
~�n
1

#

�2n+1 = �2n+ kn��n = �2n(1� jknj
2)

Computation count:
� 2k flops for the step k ! k+1

) � n2 flops to determine f�2k ; �kg
n
k=1

This is O(n2) times faster than the direct solution.
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MA Signals

MA: n= 0

y(t) = B(q)e(t)

= e(t) + b1e(t� 1) + � � �+ bme(t�m)

Thus,

r(k) = 0 for jkj > m

and

�(!) = jB(!)j2�2 =
mX

k=�m

r(k)e�i!k
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MA Spectrum Estimation

Two main ways to Estimate �(!):

1. Estimate fbkg and �2 and insert them in

�(!) = jB(!)j2�2

� nonlinear estimation problem

� �̂(!) is guaranteed to be� 0

2. Insert sample covariances fr̂(k)g in:

�(!) =
mX

k=�m

r(k)e�i!k

� This is �̂BT (!) with a rectangular lag window of

length 2m+1.

� �̂(!) is not guaranteed to be� 0

Both methods are special cases of ARMA methods

described below, with AR model order n = 0.
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ARMA Signals

ARMA models can represent spectra with both peaks

(AR part) and valleys (MA part).

A(q)y(t) = B(q)e(t)

�(!) = �2
�����B(!)A(!)

�����
2

=

Pm
k=�m 
ke

�i!k

jA(!)j2

where


k = E f[B(q)e(t)][B(q)e(t � k)]�g

= E f[A(q)y(t)][A(q)y(t � k)]�g

=
nX

j=0

nX
p=0

aja
�
p r(k+ p� j)

Lecture notes to accompany Introduction to Spectral Analysis Slide L4–13
by P. Stoica and R. Moses, Prentice Hall, 1997



ARMA Spectrum Estimation

Two Methods:

1. Estimate fai; bj; �2g in �(!) = �2
���B(!)
A(!)

���2

� nonlinear estimation problem; can use an approximate

linear two-stage least squares method

� �̂(!) is guaranteed to be� 0

2. Estimate fai; r(k)g in �(!) =
Pm

k=�m 
ke
�i!k

jA(!)j2

� linear estimation problem (the Modified Yule-Walker

method).

� �̂(!) is not guaranteed to be� 0

Lecture notes to accompany Introduction to Spectral Analysis Slide L4–14
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Two-Stage Least-Squares Method

Assumption: The ARMA model is invertible:

e(t) =
A(q)

B(q)
y(t)

= y(t) + �1y(t� 1) + �2y(t� 2) + � � �

= AR(1) with j�kj ! 0 as k !1

Step 1: Approximate, for some large K

e(t) ' y(t) + �1y(t� 1) + � � �+ �Ky(t�K)

1a) Estimate the coefficients f�kg
K
k=1 by using AR

modelling techniques.

1b) Estimate the noise sequence

ê(t) = y(t) + �̂1y(t� 1) + � � �+ �̂Ky(t�K)

and its variance

�̂2 =
1

N �K

NX
t=K+1

jê(t)j2

Lecture notes to accompany Introduction to Spectral Analysis Slide L4–15
by P. Stoica and R. Moses, Prentice Hall, 1997



Two-Stage Least-Squares Method, con't

Step 2: Replace fe(t)g by ê(t) in the ARMA equation,

A(q)y(t) ' B(q)ê(t)

and obtain estimates of fai; bjg by applying least squares

techniques.

Note that the ai and bj coefficients enter linearly in the

above equation:

y(t)� ê(t) ' [�y(t� 1) : : :� y(t� n);

ê(t� 1) : : : ê(t�m)]�

� = [a1 : : : an b1 : : : bm]
T
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Modified Yule-Walker Method

ARMA Covariance Equation:

r(k) +
nX
i=1

air(k � i) = 0; k > m

In matrix form for k = m+1; : : : ;m+M2
64

r(m) : : : r(m� n+1)
r(m+1) r(m� n+2)

... . . . ...
r(m+M � 1) : : : r(m� n+M)

3
75
"

a1
...
an

#
= �

2
64

r(m+1)
r(m+2)

...
r(m+M)

3
75

Replace fr(k)g by fr̂(k)g and solve for faig.

If M = n, fast Levinson-type algorithms exist for

obtaining fâig.

If M > n overdetermined YW system of equations; least

squares solution for fâig.

Note: For narrowband ARMA signals, the accuracy of

fâig is often better for M > n

Lecture notes to accompany Introduction to Spectral Analysis Slide L4–17
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Parametric Methods

for

Line Spectra — Part 1

Lecture 5
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Line Spectra

Many applications have signals with (near) sinusoidal
components. Examples:

� communications

� radar, sonar

� geophysical seismology

ARMA model is a poor approximation

Better approximation by Discrete/Line Spectrum Models

-

6

6

6

6

�2

�� �!1 !2 !3

(2��21)
(2��22)

(2��23)

!

�(!)

An “Ideal” line spectrum
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Line Spectral Signal Model

Signal Model: Sinusoidal components of frequencies

f!kg and powers f�2kg, superimposed in white noise of

power �2.

y(t) = x(t) + e(t) t = 1;2; : : :

x(t) =
nX

k=1

�ke
i(!kt+�k)| {z }
xk(t)

Assumptions:

A1: �k > 0 !k 2 [��; �]

(prevents model ambiguities)

A2: f'kg= independent rv's, uniformly

distributed on [��; �]

(realistic and mathematically convenient)

A3: e(t) = circular white noise with variance �2

E fe(t)e�(s)g = �2�t;s E fe(t)e(s)g = 0

(can be achieved by “slow” sampling)
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Covariance Function and PSD

Note that:

� E
n
ei'pe�i'j

o
= 1, for p = j

� E
n
ei'pe�i'j

o
= E

n
ei'p

o
E
n
e�i'j

o
=

���� 12�
Z �
��

ei' d'

����2 = 0, for p 6= j

Hence,

E
n
xp(t)x

�
j(t� k)

o
= �2p e

i!pk �p;j

r(k) = E fy(t)y�(t� k)g

=
Pn
p=1�

2
pe
i!pk+ �2�k;0

and

�(!) = 2�
nX

p=1

�2p�(! � !p) + �2
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Parameter Estimation

Estimate either:

� f!k; �k; 'kg
n
k=1; �

2 (Signal Model)

� f!k; �
2
kg
n
k=1; �

2 (PSD Model)

Major Estimation Problem: f!̂kg

Once f!̂kg are determined:

� f�̂2kg can be obtained by a least squares method from

r̂(k) =
nX

p=1

�2pe
i!̂pk + residuals

OR:

� Both f�̂kg and f'̂kg can be derived by a least
squares method from

y(t) =
nX

k=1

�ke
i!̂kt + residuals

with �k = �ke
i'k .
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Nonlinear Least Squares (NLS) Method

min
f!k;�k;'kg

NX
t=1

������y(t)�
nX

k=1

�ke
i(!kt+'k)

������
2

| {z }
F(!;�;')

Let:

�k = �ke
i'k

� = [�1 : : : �n]
T

Y = [y(1) : : : y(N)]T

B =

2
64 ei!1 � � � ei!n

... ...
eiN!1 � � � eiN!n

3
75
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Nonlinear Least Squares (NLS) Method, con't

Then:

F = (Y �B�)�(Y �B�) = kY �B�k2

= [� � (B�B)�1B�Y ]�[B�B]

[� � (B�B)�1B�Y ]

+Y �Y � Y �B(B�B)�1B�Y

This gives:

�̂ = (B�B)�1B�Y
���
!=!̂

and

!̂ = arg max
!

Y �B(B�B)�1B�Y
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NLS Properties

Excellent Accuracy:

var (!̂k) =
6�2

N3�2k
(for N � 1)

Example: N = 300

SNRk = �2k=�
2 = 30 dB

Then
q

var(!̂k) � 10�5.

Difficult Implementation:

The NLS cost function F is multimodal; it is difficult to

avoid convergence to local minima.
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Unwindowed Periodogram as an
Approximate NLS Method

For a single (complex) sinusoid, the maximum of the

unwindowed periodogram is the NLS frequency estimate:

Assume: n = 1

Then: B�B = N

B�Y =
NX
t=1

y(t)e�i!t = Y (!) (finite DTFT)

Y �B(B�B)�1B�Y =
1

N
jY (!)j2

= �̂p(!)

= (Unwindowed Periodogram)

So, with no approximation,

!̂ = argmax
!

�̂p(!)
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Unwindowed Periodogram as an
Approximate NLS Method, con't

Assume: n > 1

Then:

f!̂kg
n
k=1 ' the locations of the n largest

peaks of �̂p(!)

provided that

inf j!k � !pj > 2�=N

which is the periodogram resolution limit.

If better resolution desired then use a High/Super
Resolution method.
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High-Order Yule-Walker Method

Recall:

y(t) = x(t) + e(t) =
nX

k=1

�ke
i(!kt+'k)| {z }
xk(t)

+e(t)

“Degenerate” ARMA equation for y(t):

(1 � ei!kq�1)xk(t)

= �k
n
ei(!kt+'k) � ei!k ei[!k(t�1)+'k]

o
= 0

Let

B(q) = 1+
LX

k=1

bkq
�k 4= A(q) �A(q)

A(q) = (1� ei!1q�1) � � � (1� ei!nq�1)

�A(q) = arbitrary

Then B(q)x(t) � 0 )

B(q)y(t) = B(q)e(t)
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High-Order Yule-Walker Method, con't

Estimation Procedure:

� Estimate f̂bigLi=1 using an ARMA MYW technique

� Roots of B̂(q) give f!̂kg
n
k=1, along with L� n

“spurious” roots.
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High-Order and Overdetermined YW Equations

ARMA covariance:

r(k) +
LX
i=1

bir(k � i) = 0; k > L

In matrix form for k = L+1; : : : ; L+M

2
6664

r(L) : : : r(1)
r(L+1) : : : r(2)

... ...
r(L+M � 1) : : : r(M)

3
7775

| {z }
4
=


b = �

2
6664
r(L+1)
r(L+2)

...
r(L+M)

3
7775

| {z }
4
=�

This is a high-order (if L > n) and overdetermined

(if M > L) system of YW equations.
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High-Order and Overdetermined YW Equations,
con't

Fact: rank(
) = n

SVD of 
: 
 = U�V �

� U = (M � n) with U�U = In

� V � = (n� L) with V �V = In

� � = (n� n), diagonal and nonsingular

Thus,

(U�V �)b = ��

The Minimum-Norm solution is

b = �
y�= �V��1U��

Important property: The additional (L� n) spurious

zeros of B(q) are located strictly inside the unit circle, if

the Minimum-Norm solution b is used.
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HOYW Equations, Practical Solution

Let 
̂ = 
 but made from fr̂(k)g instead of fr(k)g.

Let Û , �̂, V̂ be defined similarly to U , �, V from the

SVD of 
̂.

Compute b̂ = �V̂ �̂�1Û��̂

Then f!̂kg
n
k=1 are found from the n zeroes of B̂(q) that

are closest to the unit circle.

When the SNR is low, this approach may give spurious

frequency estimates when L > n; this is the price paid for

increased accuracy when L > n.
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Parametric Methods

for

Line Spectra — Part 2

Lecture 6
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The Covariance Matrix Equation

Let:

a(!) = [1 e�i! : : : e�i(m�1)!]T

A = [a(!1) : : : a(!n)] (m� n)

Note: rank(A) = n (for m � n )

Define

~y(t)
4
=

2
6664

y(t)
y(t� 1)

...
y(t�m+1)

3
7775 = A~x(t) + ~e(t)

where

~x(t) = [x1(t) : : : xn(t)]
T

~e(t) = [e(t) : : : e(t�m+1)]T

Then

R
4
= E f~y(t)~y�(t)g = APA�+ �2I

with

P = E f~x(t)~x�(t)g =

2
64 �

2
1 0

. . .
0 �2n

3
75
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Eigendecomposition of R and Its Properties

R = APA�+ �2I (m > n)

Let:

�1 � �2 � : : : � �m: eigenvalues of R

fs1; : : : sng: orthonormal eigenvectors associated

with f�1; : : : ; �ng

fg1; : : : ; gm�ng: orthonormal eigenvectors associated

with f�n+1; : : : ; �mg

S = [s1 : : : sn] (m� n)

G = [g1 : : : gm�n] (m� (m� n))

Thus,

R = [S G]

2
64 �1 . . .

�m

3
75
"
S�

G�

#
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Eigendecomposition of R and Its Properties,
con't

As rank(APA�) = n:

�k > �2 k = 1; : : : ; n

�k = �2 k = n+1; : : : ;m

�
�
=

2
64 �1 � �

2 0
. . .

0 �n � �2

3
75 = nonsingular

Note:

RS = APA�S+ �2S = S

2
64 �1 0

. . .
0 �n

3
75

S = A(PA�S�
� �1)

4
= AC

with jCj 6= 0 (since rank(S) = rank(A) = n).

Therefore, since S�G= 0,

A�G = 0
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MUSIC Method

A�G=

2
64 a

�(!1)
...

a�(!n)

3
75 G = 0

) fa(!k)g
n
k=1 ? R(G)

Thus,

f!kg
n
k=1 are the unique solutions of

a�(!)GG�a(!) = 0.

Let:

R̂ =
1

N

NX
t=m

~y(t)~y�(t)

Ŝ; Ĝ = S;G made from the

eigenvectors of R̂
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Spectral and Root MUSIC Methods

Spectral MUSIC Method:

f!̂kg
n
k=1 = the locations of the n highest peaks of the

“pseudo-spectrum” function:

1

a�(!)ĜĜ�a(!)
; ! 2 [��; �]

Root MUSIC Method:

f!̂kg
n
k=1 = the angular positions of the n roots of:

aT (z�1)ĜĜ�a(z) = 0

that are closest to the unit circle. Here,

a(z) = [1; z�1; : : : ; z�(m�1)]T

Note: Both variants of MUSIC may produce spurious
frequency estimates.
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Pisarenko Method

Pisarenko is a special case of MUSIC with m = n+1

(the minimum possible value).

If: m = n+1

Then: Ĝ = ĝ1,

) f!̂kg
n
k=1 can be found from the roots of

aT (z�1)ĝ1 = 0

� no problem with spurious frequency estimates

� computationally simple

� (much) less accurate than MUSIC with m� n+1
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Min-Norm Method

Goals: Reduce computational burden, and reduce risk of

false frequency estimates.

Uses m� n (as in MUSIC), but only one vector in

R(G) (as in Pisarenko).

Let "
1
ĝ

#
= the vector in R(Ĝ), with first element equal

to one, that has minimum Euclidean norm.
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Min-Norm Method, con't

Spectral Min-Norm

f!̂gnk=1 = the locations of the n highest peaks in the

“pseudo-spectrum”

1 =

�����a�(!)
"
1
ĝ

#�����
2

Root Min-Norm

f!̂gnk=1 = the angular positions of the n roots of the

polynomial

aT (z�1)

"
1
ĝ

#

that are closest to the unit circle.
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Min-Norm Method: Determining ĝ

Let Ŝ =

"
��

�S

#
g 1
g m� 1

Then: "
1
ĝ

#
2 R(Ĝ) ) Ŝ�

"
1
ĝ

#
= 0

) �S�ĝ = ��

Min-Norm solution: ĝ = ��S(�S��S)�1�

As: I = Ŝ�Ŝ = ���+ �S��S, (�S��S)�1 exists iff

��� = k�k2 6= 1

(This holds, at least, for N � 1.)

Multiplying the above equation by � gives:

�(1� k�k2) = (�S��S)�

) (�S��S)�1� = �=(1� k�k2)

) ĝ = ��S�=(1� k�k2)
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ESPRIT Method

Let A1 = [Im�1 0]A

A2 = [0 Im�1]A

Then A2 = A1D, where

D =

2
64 e

�i!1 0
. . .

0 e�i!n

3
75

Also, let S1 = [Im�1 0]S

S2 = [0 Im�1]S

Recall S = AC with jCj 6= 0. Then

S2 = A2C = A1DC = S1C
�1DC| {z }
�

So � has the same eigenvalues as D. � is uniquely

determined as

� = (S�1S1)
�1S�1S2
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ESPRIT Implementation

From the eigendecomposition of R̂, find Ŝ, then Ŝ1 and

Ŝ2.

The frequency estimates are found by:

f!̂kg
n
k=1 = �arg(�̂k)

where f�̂kg
n
k=1 are the eigenvalues of

�̂ = (Ŝ�1Ŝ1)
�1Ŝ�1Ŝ2

ESPRIT Advantages:

� computationally simple

� no extraneous frequency estimates (unlike in MUSIC

or Min–Norm)

� accurate frequency estimates

Lecture notes to accompany Introduction to Spectral Analysis Slide L6–12
by P. Stoica and R. Moses, Prentice Hall, 1997



S
u

m
m

ar
y

o
f

F
re

q
u

en
cy

E
st

im
at

io
n

M
et

h
o

d
s

C
om

pu
ta

ti
on

al
A

cc
ur

ac
y

/
R

is
k

fo
r

F
al

se
M

et
ho

d
B

ur
de

n
R

es
ol

ut
io

n
F

re
q

E
st

im
at

es
Pe

ri
od

og
ra

m
sm

al
l

m
ed

iu
m

-h
ig

h
m

ed
iu

m
N

on
lin

ea
r

L
S

ve
ry

hi
gh

ve
ry

hi
gh

ve
ry

hi
gh

Y
ul

e-
W

al
ke

r
m

ed
iu

m
hi

gh
m

ed
iu

m
Pi

sa
re

nk
o

sm
al

l
lo

w
no

ne
M

U
SI

C
hi

gh
hi

gh
m

ed
iu

m
M

in
-N

or
m

m
ed

iu
m

hi
gh

sm
al

l
E

SP
R

IT
m

ed
iu

m
ve

ry
hi

gh
no

ne

R
ec

om
m

en
da

tio
n:

�

U
se

P
er

io
do

gr
am

fo
r

m
ed

iu
m

-r
es

ol
ut

io
n

ap
pl

ic
at

io
ns

�

U
se

E
SP

R
IT

fo
r

hi
gh

-r
es

ol
ut

io
n

ap
pl

ic
at

io
ns

L
ec

tu
re

no
te

s
to

ac
co

m
pa

ny
In

tr
od

uc
tio

n
to

Sp
ec

tr
al

A
na

ly
si

s
Sl

id
e

L
6–

13
by

P.
St

oi
ca

an
d

R
.M

os
es

,P
re

nt
ic

e
H

al
l,

19
97



Filter Bank Methods

Lecture 7

Lecture notes to accompany Introduction to Spectral Analysis Slide L7–1
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Basic Ideas

Two main PSD estimation approaches:

1. Parametric Approach: Parameterize �(!) by a

finite-dimensional model.

2. Nonparametric Approach: Implicitly smooth

f�(!)g�!=�� by assuming that �(!) is nearly

constant over the bands

[! � ��; !+ ��]; � � 1

2 is more general than 1, but 2 requires

N� > 1

to ensure that the number of estimated values

(= 2�=2�� = 1=�) is < N .

N� > 1 leads to the variability / resolution compromise

associated with all nonparametric methods.
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Filter Bank Interpretation of the Periodogram

�̂p(~!)
4
=

1

N

������
NX
t=1

y(t)e�i~!t

������
2

=
1

N

������
NX
t=1

y(t)ei~!(N�t)

������
2

= N

������
1X
k=0

hky(N � k)

������
2

where

hk =

(
1
N e

i~!k; k = 0; : : : ; N � 1

0; otherwise

H(!) =
1X
k=0

hke
�i!k =

1

N

eiN(~!�!) � 1

ei(~!�!) � 1

� center frequency of H(!) = ~!

� 3dB bandwidth of H(!) ' 1=N
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Filter Bank Interpretation of the Periodogram,
con't

jH(!)j as a function of (~! � !), for N = 50.

−3 −2 −1 0 1 2 3
−40

−35

−30

−25

−20

−15

−10

−5

0

dB

ANGULAR FREQUENCY

Conclusion: The periodogram �̂p(!) is a filter bank PSD

estimator with bandpass filter as given above, and:

� narrow filter passband,

� power calculation from only 1 sample of filter output.

Lecture notes to accompany Introduction to Spectral Analysis Slide L7–5
by P. Stoica and R. Moses, Prentice Hall, 1997



Possible Improvements to the Filter Bank
Approach

1. Split the available sample, and bandpass filter each

subsample.

� more data points for the power calculation stage.

This approach leads to Bartlett and Welch methods.

2. Use several bandpass filters on the whole sample.

Each filter covers a small band centered on ~!.

� provides several samples for power calculation.

This “multiwindow approach” is similar to the

Daniell method.

Both approaches compromise bias for variance, and in fact

are quite related to each other: splitting the data sample

can be interpreted as a special form of windowing or

filtering.
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Capon Method

Idea: Data-dependent bandpass filter design.

yF(t) =
mX
k=0

hky(t� k)

= [h0 h1 : : : hm]| {z }
h�

2
64 y(t)

...
y(t�m)

3
75

| {z }
~y(t)

E
n
jyF(t)j

2
o
= h�Rh; R = E f~y(t)~y�(t)g

H(!) =
mX
k=0

hke
�i!k = h�a(!)

where a(!) = [1; e�i! : : : e�im!]T
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Capon Method, con't

Capon Filter Design Problem:

min
h
(h�Rh) subject to h�a(!) = 1

Solution: h0 = R�1a=a�R�1a

The power at the filter output is:

E
n
jyF(t)j

2
o
= h�0Rh0 = 1=a�(!)R�1a(!)

which should be the power of y(t) in a passband centered
on !.

The Bandwidth' 1
m+1 =

1
(filter length)

Conclusion Estimate PSD as:

�̂(!) =
m+1

a�(!)R̂�1a(!)

with

R̂ =
1

N �m

NX
t=m+1

~y(t)~y�(t)
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Capon Properties

� m is the user parameter that controls the compromise

between bias and variance:

– as m increases, bias decreases and variance

increases.

� Capon uses one bandpass filter only, but it splits the

N -data point sample into (N �m) subsequences of

length m with maximum overlap.
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Relation between Capon and Blackman-Tukey
Methods

Consider �̂BT (!) with Bartlett window:

�̂BT (!) =
mX

k=�m

m+1� jkj

m+1
r̂(k)e�i!k

=
1

m+1

mX
t=0

mX
s=0

r̂(t� s)e�i!(t�s)

=
a�(!)R̂a(!)

m+1
; R̂ = [r̂(i� j)]

Then we have

�̂BT (!) =
a�(!)R̂a(!)

m+1

�̂C(!) =
m+1

a�(!)R̂�1a(!)
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Relation between Capon and AR Methods

Let

�̂AR
k (!) =

�̂2k
jÂk(!)j

2

be the kth order AR PSD estimate of y(t).

Then

�̂C(!) =
1

1

m+1

mX
k=0

1=�̂AR
k (!)

Consequences:

� Due to the average over k, �̂C(!) generally has less
statistical variability than the AR PSD estimator.

� Due to the low-order AR terms in the average,

�̂C(!) generally has worse resolution and bias
properties than the AR method.
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Spatial Methods — Part 1

Lecture 8
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The Spatial Spectral Estimation Problem

Source n

Source 2
Source 1








�

B
B
B
B
BN

@
@
@@R

v

v

v

Sensor 1

@@ ��

@@ ��

@@ ��

Sensor 2

Sensor m

c
c
c
cc

c
c
c
c

c
c
c

���
�����
����,

,
,

,,

,
,
,

,
,

,
,

Problem: Detect and locate n radiating sources by using

an array of m passive sensors.

Emitted energy: Acoustic, electromagnetic, mechanical

Receiving sensors: Hydrophones, antennas, seismometers

Applications: Radar, sonar, communications, seismology,

underwater surveillance

Basic Approach: Determine energy distribution over

space (thus the name “spatial spectral analysis”)
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Simplifying Assumptions

� Far-field sources in the same plane as the array of

sensors

� Non-dispersive wave propagation

Hence: The waves are planar and the only location

parameter is direction of arrival (DOA)
(or angle of arrival, AOA).

� The number of sources n is known. (We do not treat

the detection problem)

� The sensors are linear dynamic elements with known
transfer characteristics and known locations

(That is, the array is calibrated.)
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Array Model — Single Emitter Case

x(t) = the signal waveform as measured at a reference
point (e.g., at the “first” sensor)

�k = the delay between the reference point and the
kth sensor

hk(t) = the impulse response (weighting function) of
sensor k

�ek(t) = “noise” at the kth sensor (e.g., thermal noise in
sensor electronics; background noise, etc.)

Note: t 2 R (continuous-time signals).

Then the output of sensor k is

�yk(t) = hk(t) � x(t� �k) + �ek(t)

(� = convolution operator).

Basic Problem: Estimate the time delays f�kg with hk(t)
known but x(t) unknown.

This is a time-delay estimation problem in the unknown
input case.

Lecture notes to accompany Introduction to Spectral Analysis Slide L8–4
by P. Stoica and R. Moses, Prentice Hall, 1997



Narrowband Assumption

Assume: The emitted signals are narrowband with known

carrier frequency !c.

Then: x(t) = �(t) cos[!ct+ '(t)]

where �(t); '(t) vary “slowly enough” so that

�(t� �k) ' �(t); '(t� �k) ' '(t)

Time delay is now' to a phase shift !c�k:

x(t� �k) ' �(t) cos[!ct+ '(t)� !c�k]

hk(t) � x(t� �k)

' jHk(!c)j�(t) cos[!ct+ '(t)� !c�k +argfHk(!c)g]

where Hk(!) = Ffhk(t)g is the kth sensor's transfer

function

Hence, the kth sensor output is

�yk(t) = jHk(!c)j�(t)

� cos[!ct+ '(t)� !c�k+ argHk(!c)] + �ek(t)
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Complex Signal Representation

The noise-free output has the form:

z(t) = �(t) cos [!ct+  (t)] =

=
�(t)

2

n
ei[!ct+ (t)]+ e�i[!ct+ (t)]

o
Demodulate z(t) (translate to baseband):

2z(t)e�!ct = �(t)f ei (t)| {z }
lowpass

+ e�i[2!ct+ (t)]| {z }
highpass

g

Lowpass filter 2z(t)e�i!ct to obtain �(t)ei (t)

Hence, by low-pass filtering and sampling the signal

~yk(t)=2 = �yk(t)e
�i!ct

= �yk(t) cos(!ct)� i�yk(t) sin(!ct)

we get the complex representation: (for t 2 Z)

yk(t) = �(t) ei'(t)| {z }
s(t)

jHk(!c)j e
iarg[Hk(!c)]| {z }

Hk(!c)

e�i!c�k + ek(t)

or

yk(t) = s(t)Hk(!c) e
�i!c�k + ek(t)

where s(t) is the complex envelope of x(t).
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Vector Representation for a Narrowband Source

Let

� = the emitter DOA

m = the number of sensors

a(�) =

2
64 H1(!c) e

�i!c�1
...

Hm(!c) e�i!c�m

3
75

y(t) =

2
64 y1(t)

...
ym(t)

3
75 e(t) =

2
64 e1(t)

...
em(t)

3
75

Then

y(t) = a(�)s(t) + e(t)

NOTE: � enters a(�) via both f�kg and fHk(!c)g.

For omnidirectional sensors the fHk(!c)g do not depend

on �.
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Multiple Emitter Case

Given n emitters with

� received signals: fsk(t)g
n
k=1

� DOAs: �k

Linear sensors )

y(t) = a(�1)s1(t) + � � �+ a(�n)sn(t) + e(t)

Let

A = [a(�1) : : : a(�n)]; (m� n)

s(t) = [s1(t) : : : sn(t)]
T ; (n� 1)

Then, the array equation is:

y(t) = As(t) + e(t)

Use the planar wave assumption to find the dependence of
�k on �.
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Uniform Linear Arrays

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Source

-

+

�

?]�

p p p

Sensor

m4321

d sin �JĴ
JJ]

d -�

�
�
�
�
�
�
�
�
�
�
�

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
JJ

J
J
J
J
Ĵ

h

v v v v v

ULA Geometry

Sensor #1 = time delay reference

Time Delay for sensor k:

�k = (k � 1)
d sin �

c

where c = wave propagation speed

Lecture notes to accompany Introduction to Spectral Analysis Slide L8–10
by P. Stoica and R. Moses, Prentice Hall, 1997



Spatial Frequency

Let:

!s
4
= !c

d sin �

c
= 2�

d sin �

c=fc
= 2�

d sin �

�

� = c=fc = signal wavelength

a(�) = [1; e�i!s : : : e�i(m�1)!s]T

By direct analogy with the vector a(!) made from

uniform samples of a sinusoidal time series,

!s = spatial frequency

The function !s 7! a(�) is one-to-one for

j!sj � � $
dj sin �j

�=2
� 1 d � �=2

As

d = spatial sampling period

d � �=2 is a spatial Shannon sampling theorem.
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Spatial Methods — Part 2

Lecture 9
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Spatial Filtering

Spatial filtering useful for

� DOA discrimination (similar to frequency

discrimination of time-series filtering)

� Nonparametric DOA estimation

There is a strong analogy between temporal filtering and

spatial filtering.
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Analogy between Temporal and Spatial Filtering

Temporal FIR Filter:

yF(t) =
m�1X
k=0

hku(t� k) = h�y(t)

h = [ho : : : hm�1]
�

y(t) = [u(t) : : : u(t�m+1)]T

If u(t) = ei!t then

yF(t) = [h�a(!)]| {z }
filter transfer function

u(t)

a(!) = [1; e�i! : : : e�i(m�1)!]T

We can select h to enhance or attenuate signals with

different frequencies !.
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Analogy between Temporal and Spatial Filtering

Spatial Filter:

fyk(t)g
m
k=1 = the “spatial samples” obtained with a

sensor array.

Spatial FIR Filter output:

yF(t) =
mX
k=1

hkyk(t) = h�y(t)

Narrowband Wavefront: The array's (noise-free)

response to a narrowband (� sinusoidal) wavefront with

complex envelope s(t) is:

y(t) = a(�)s(t)

a(�) = [1; e�i!c�2 : : : e�i!c�m]T

The corresponding filter output is

yF(t) = [h�a(�)]| {z }
filter transfer function

s(t)

We can select h to enhance or attenuate signals coming

from different DOAs.
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Analogy between Temporal and Spatial Filtering

(Temporal sampling)
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Spatial Filtering, con't

Example: The response magnitude jh�a(�)j of a spatial

filter (or beamformer) for a 10-element ULA. Here,

h = a(�0), where �0 = 25�

2 4 6 8 100

Magnitude

Theta (deg)

−90

−60

−30

0

30

60

90
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Spatial Filtering Uses

Spatial Filters can be used

� To pass the signal of interest only, hence filtering out

interferences located outside the filter's beam (but

possibly having the same temporal characteristics as

the signal).

� To locate an emitter in the field of view, by sweeping

the filter through the DOA range of interest

(“goniometer”).
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Nonparametric Spatial Methods

A Filter Bank Approach to DOA estimation.

Basic Ideas

� Design a filter h(�) such that for each �

– It passes undistorted the signal with DOA = �

– It attenuates all DOAs 6= �

� Sweep the filter through the DOA range of interest,

and evaluate the powers of the filtered signals:

E
n
jyF(t)j

2
o

= E
n
jh�(�)y(t)j2

o
= h�(�)Rh(�)

with R = E fy(t)y�(t)g.

� The (dominant) peaks of h�(�)Rh(�) give the

DOAs of the sources.
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Beamforming Method

Assume the array output is spatially white:

R = E fy(t)y�(t)g = I

Then: E
n
jyF(t)j

2
o
= h�h

Hence: In direct analogy with the temporally white

assumption for filter bank methods, y(t) can be

considered as impinging on the array from all DOAs.

Filter Design:

min
h

(h�h) subject to h�a(�) = 1

Solution:

h = a(�)=a�(�)a(�) = a(�)=m

E
n
jyF(t)j

2
o
= a�(�)Ra(�)=m2
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Implementation of Beamforming

R̂ =
1

N

NX
t=1

y(t)y�(t)

The beamforming DOA estimates are:

f�̂kg= the locations of the n largest peaks of

a�(�)R̂a(�).

This is the direct spatial analog of the Blackman-Tukey

periodogram.

Resolution Threshold:

inf j�k � �pj >
wavelength

array length

= array beamwidth

Inconsistency problem:
Beamforming DOA estimates are consistent if n= 1, but

inconsistent if n > 1.
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Capon Method

Filter design:

min
h
(h�Rh) subject to h�a(�) = 1

Solution:

h = R�1a(�)=a�(�)R�1a(�)

E
n
jyF(t)j

2
o

= 1=a�(�)R�1a(�)

Implementation:

f�̂kg = the locations of the n largest peaks of

1=a�(�)R̂�1a(�):

Performance: Slightly superior to Beamforming.

Both Beamforming and Capon are nonparametric
approaches. They do not make assumptions on the

covariance properties of the data (and hence do not

depend on them).
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Parametric Methods

Assumptions:

� The array is described by the equation:

y(t) = As(t) + e(t)

� The noise is spatially white and has the same power in
all sensors:

E fe(t)e�(t)g = �2I

� The signal covariance matrix

P = E fs(t)s�(t)g

is nonsingular.

Then:

R = E fy(t)y�(t)g = APA�+ �2I

Thus: The NLS, YW, MUSIC, MIN-NORM and ESPRIT
methods of frequency estimation can be used, almost
without modification, for DOA estimation.
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Nonlinear Least Squares Method

min
f�kg; fs(t)g

1

N

NX
t=1

ky(t)�As(t)k2

| {z }
f(�;s)

Minimizing f over s gives

ŝ(t) = (A�A)�1A�y(t); t = 1; : : : ; N

Then

f(�; ŝ) =
1

N

NX
t=1

k [I �A(A�A)�1A�]y(t)k2

=
1

N

NX
t=1

y�(t)[I �A(A�A)�1A�]y(t)

= trf[I �A(A�A)�1A�]R̂g

Thus, f�̂kg= argmax
f�kg

trf[A(A�A)�1A�]R̂g

For N = 1, this is precisely the form of the NLS method

of frequency estimation.
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Nonlinear Least Squares Method

Properties of NLS:

� Performance: high

� Computational complexity: high

� Main drawback: need for multidimensional search.
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Yule-Walker Method

y(t) =

"
�y(t)
~y(t)

#
=

"
�A
~A

#
s(t) +

"
�e(t)
~e(t)

#

Assume: E f�e(t)~e�(t)g = 0

Then:

�
4
= E f�y(t)~y�(t)g = �AP ~A� (M � L)

Also assume:

� M > n; L > n () m =M + L > 2n)

� rank( �A) = rank( ~A) = n

Then: rank(�) = n, and the SVD of � is

� = [U1|{z}
n

U2|{z}
M�n

]

"
�n�n 0
0 0

# "
V �1
V �2

#
g n
g L�n

Properties: ~A�V2 = 0 V1 2 R( ~A)
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YW-MUSIC DOA Estimator

f�̂kg= the n largest peaks of

1=~a�(�)V̂2V̂
�
2~a(�)

where

� ~a(�), (L� 1), is the “array transfer vector” for ~y(t)
at DOA �

� V̂2 is defined similarly to V2, using

�̂ =
1

N

NX
t=1

�y(t)~y�(t)

Properties:

� Computational complexity: medium

� Performance: satisfactory if m� 2n

� Main advantages:

– weak assumption on fe(t)g

– the subarray �A need not be calibrated
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MUSIC and Min-Norm Methods

Both MUSIC and Min-Norm methods for frequency

estimation apply with only minor modifications to the

DOA estimation problem.

� Spectral forms of MUSIC and Min-Norm can be used

for arbitrary arrays

� Root forms can be used only with ULAs

� MUSIC and Min-Norm break down if the source

signals are coherent; that is, if

rank(P) = rank(E fs(t)s�(t)g) < n

Modifications that apply in the coherent case exist.

Lecture notes to accompany Introduction to Spectral Analysis Slide L9–17
by P. Stoica and R. Moses, Prentice Hall, 1997



ESPRIT Method

Assumption: The array is made from two identical
subarrays separated by a known displacement vector.

Let

�m = # sensors in each subarray

A1 = [I�m 0]A (transfer matrix of subarray 1)

A2 = [0 I�m]A (transfer matrix of subarray 2)

Then A2 = A1D, where

D =

2
64 e

�i!c�(�1) 0
. . .

0 e�i!c�(�n)

3
75

�(�) = the time delay from subarray 1 to

subarray 2 for a signal with DOA = �:

�(�) = d sin(�)=c

where d is the subarray separation and � is measured from

the perpendicular to the subarray displacement vector.
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ESPRIT Method, con't

ESPRIT Scenario

subarray 1

subarray 2

source

θ

known displacement vector

Properties:

� Requires special array geometry

� Computationally efficient

� No risk of spurious DOA estimates

� Does not require array calibration

Note: For a ULA, the two subarrays are often the first
m�1 and last m�1 array elements, so �m = m�1 and

A1 = [Im�1 0]A; A2 = [0 Im�1]A
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