Basic Definitions

and

The Spectral Estimation Problem

Lecture 1

Given: A finite record of a signal.

Determine: The distribution of signal power over frequency.

 ω = (angular) frequency in radians/(sampling interval) $f = \omega/2\pi$ = frequency in cycles/(sampling interval)

Temporal Spectral Analysis

- Vibration monitoring and fault detection
- Hidden periodicity finding
- Speech processing and audio devices
- Medical diagnosis
- Seismology and ground movement study
- Control systems design
- Radar, Sonar

Spatial Spectral Analysis

• Source location using sensor arrays

$$\{y(t)\}_{t=-\infty}^{\infty}$$
 = discrete-time deterministic data sequence

If:
$$\sum_{t=-\infty}^{\infty} |y(t)|^2 < \infty$$

Then:
$$Y(\omega) = \sum_{t=-\infty}^{\infty} y(t)e^{-i\omega t}$$

exists and is called the **Discrete-Time Fourier Transform** (**DTFT**)

Parseval's Equality:

$$\sum_{t=-\infty}^{\infty} |y(t)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} S(\omega) d\omega$$

where

$$S(\omega) \stackrel{\triangle}{=} |Y(\omega)|^2$$

= Energy Spectral Density

We can write

$$S(\omega) = \sum_{k=-\infty}^{\infty} \rho(k) e^{-i\omega k}$$

where

$$\rho(k) = \sum_{t=-\infty}^{\infty} y(t)y^*(t-k)$$

 $E\left\{\cdot\right\}$ = Expectation over the ensemble of realizations

$$E\left\{|y(t)|^2\right\}$$
 = Average power in $y(t)$

PSD = (Average) power spectral density

$$\phi(\omega) = \sum_{k=-\infty}^{\infty} r(k) e^{-i\omega k}$$

where r(k) is the **autocovariance sequence** (ACS)

$$r(k) = E \{y(t)y^*(t-k)\}$$
$$r(k) = r^*(-k), \quad r(0) \ge |r(k)|$$

Note that

$$r(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\omega) e^{i\omega k} d\omega$$
 (Inverse DTFT)

Interpretation:

$$r(0) = E\{|y(t)|^2\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(\omega) d\omega$$

SO

$$\phi(\omega)d\omega =$$
 infinitesimal signal power in the band
 $\omega \pm \frac{d\omega}{2}$

$$\phi(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\}$$

Note that

$$\phi(\omega) = \lim_{N \to \infty} E\left\{\frac{1}{N}|Y_N(\omega)|^2\right\}$$

where

$$Y_N(\omega) = \sum_{t=1}^N y(t) e^{-i\omega t}$$

is the finite DTFT of $\{y(t)\}$.

P1:
$$\phi(\omega) = \phi(\omega + 2\pi)$$
 for all ω .
Thus, we can restrict attention to
 $\omega \in [-\pi, \pi] \iff f \in [-1/2, 1/2]$
P2: $\phi(\omega) \ge 0$

P3: If
$$y(t)$$
 is real,
Then: $\phi(\omega) = \phi(-\omega)$
Otherwise: $\phi(\omega) \neq \phi(-\omega)$

System Function:
$$H(q) = \sum_{k=0}^{\infty} h_k q^{-k}$$

where
$$q^{-1}$$
 = unit delay operator: $q^{-1}y(t) = y(t-1)$
 $e(t)$
 $H(q)$
 $y(t)$
 $\phi_{e}(\omega)$
 $\psi_{v}(\omega) = |H(\omega)|^{2}\phi_{e}(\omega)$

Then

$$y(t) = \sum_{k=0}^{\infty} h_k e(t - k)$$
$$H(\omega) = \sum_{k=0}^{\infty} h_k e^{-i\omega k}$$
$$\phi_y(\omega) = |H(\omega)|^2 \phi_e(\omega)$$

The Problem:

From a sample $\{y(1), \ldots, y(N)\}$

Find an estimate of $\phi(\omega)$: { $\hat{\phi}(\omega), \ \omega \in [-\pi, \pi]$ }

Two Main Approaches :

• Nonparametric:

– Derived from the PSD definitions.

• Parametric:

Assumes a parameterized functional form of the PSD

Periodogram and Correlogram Methods

Lecture 2

Recall 2nd definition of $\phi(\omega)$:

$$\phi(\omega) = \lim_{N \to \infty} E\left\{ \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^2 \right\}$$

Given: $\{y(t)\}_{t=1}^{N}$

Drop " $\lim_{N \to \infty}$ " and " $E \{\cdot\}$ " to get

$$\widehat{\phi}_{p}(\omega) = \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^{2}$$

- Natural estimator
- Used by Schuster (~1900) to determine "hidden periodicities" (hence the name).

Recall 1st definition of $\phi(\omega)$:

$$\phi(\omega) = \sum_{k=-\infty}^{\infty} r(k) e^{-i\omega k}$$

Truncate the " \sum " and replace "r(k)" by " $\hat{r}(k)$ ":

$$\widehat{\phi}_c(\omega) = \sum_{k=-(N-1)}^{N-1} \widehat{r}(k) e^{-i\omega k}$$

Standard unbiased estimate:

$$\widehat{r}(k) = \frac{1}{N-k} \sum_{t=k+1}^{N} y(t) y^*(t-k), \quad k \ge 0$$

Standard biased estimate:

$$\hat{r}(k) = \frac{1}{N} \sum_{t=k+1}^{N} y(t) y^*(t-k), \quad k \ge 0$$

For both estimators:

$$\widehat{r}(k) = \widehat{r}^*(-k), \quad k < 0$$

If: the biased ACS estimator $\hat{r}(k)$ is used in $\hat{\phi}_c(\omega)$,

Then:

$$\hat{\phi}_{p}(\omega) = \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\omega t} \right|^{2}$$
$$= \sum_{k=-(N-1)}^{N-1} \hat{r}(k) e^{-i\omega k}$$
$$= \hat{\phi}_{c}(\omega)$$

$$\widehat{\phi}_p(\omega) = \widehat{\phi}_c(\omega)$$

Consequence: Both $\hat{\phi}_p(\omega)$ and $\hat{\phi}_c(\omega)$ can be analyzed simultaneously.

Summary:

• Both are asymptotically (for large N) unbiased:

$$E\left\{\widehat{\phi}_p(\omega)\right\} \to \phi(\omega) \text{ as } N \to \infty$$

• Both have "large" variance, even for large N.

Thus, $\hat{\phi}_p(\omega)$ and $\hat{\phi}_c(\omega)$ have **poor performance**.

Intuitive explanation:

- $\hat{r}(k) r(k)$ may be large for large |k|
- Even if the errors {r̂(k) − r(k)}^{N−1}_{|k|=0} are small, there are "so many" that when summed in [φ̂_p(ω) − φ(ω)], the PSD error is large.

$$E\left\{\hat{\phi}_{p}(\omega)\right\} = E\left\{\hat{\phi}_{c}(\omega)\right\} = \sum_{k=-(N-1)}^{N-1} E\left\{\hat{r}(k)\right\} e^{-i\omega k}$$
$$= \sum_{k=-(N-1)}^{N-1} \left(1 - \frac{|k|}{N}\right) r(k) e^{-i\omega k}$$
$$= \sum_{k=-\infty}^{\infty} w_{B}(k) r(k) e^{-i\omega k}$$

$$w_B(k) = \begin{cases} \left(1 - \frac{|k|}{N}\right), & |k| \le N - 1\\ 0, & |k| \ge N \end{cases}$$

= Bartlett, or triangular, window

Thus,

$$E\left\{\widehat{\phi}_{p}(\omega)\right\} = \frac{1}{2\pi}\int_{-\pi}^{\pi}\phi(\zeta)W_{B}(\omega-\zeta)\ d\zeta$$

Ideally: $W_B(\omega) = \text{Dirac impulse } \delta(\omega)$.

For "small" N, $W_B(\omega)$ may differ quite a bit from $\delta(\omega)$.

Main Lobe Width: smearing or smoothing

Details in $\phi(\omega)$ separated in f by less than 1/N are not resolvable.

Sidelobe Level: leakage

Summary of Periodogram Bias Properties:

- For "small" N, severe bias
- As $N \to \infty$, $W_B(\omega) \to \delta(\omega)$, so $\hat{\phi}(\omega)$ is asymptotically unbiased.

As
$$N \to \infty$$

$$E\left\{ \begin{bmatrix} \hat{\phi}_p(\omega_1) - \phi(\omega_1) \end{bmatrix} \begin{bmatrix} \hat{\phi}_p(\omega_2) - \phi(\omega_2) \end{bmatrix} \right\}$$

$$= \begin{cases} \phi^2(\omega_1), & \omega_1 = \omega_2 \\ 0, & \omega_1 \neq \omega_2 \end{cases}$$

- Inconsistent estimate
- Erratic behavior

Resolvability properties depend on both bias and variance.

Finite DTFT:
$$Y_N(\omega) = \sum_{t=1}^N y(t)e^{-i\omega t}$$

Let
$$\omega = \frac{2\pi}{N}k$$
 and $W = e^{-i\frac{2\pi}{N}}$.

Then $Y_N(\frac{2\pi}{N}k)$ is the Discrete Fourier Transform (DFT):

$$Y(k) = \sum_{t=1}^{N} y(t) W^{tk}, \qquad k = 0, \dots, N-1$$

Direct computation of $\{Y(k)\}_{k=0}^{N-1}$ from $\{y(t)\}_{t=1}^{N}$: $O(N^2)$ flops

Assume: $N = 2^m$ $Y(k) = \sum_{t=1}^{N/2} y(t) W^{tk} + \sum_{t=N/2+1}^{N} y(t) W^{tk}$ $= \sum_{t=1}^{N/2} [y(t) + y(t + N/2) W^{\frac{Nk}{2}}] W^{tk}$ with $W^{\frac{Nk}{2}} = \begin{cases} +1, & \text{for even } k \\ -1, & \text{for odd } k \end{cases}$

Let
$$\tilde{N} = N/2$$
 and $\tilde{W} = W^2 = e^{-i2\pi/\tilde{N}}$.

For $k = 0, 2, 4, \dots, N - 2 \stackrel{\triangle}{=} 2p$: $Y(2p) = \sum_{t=1}^{\tilde{N}} [y(t) + y(t + \tilde{N})] \tilde{W}^{tp}$ For $k = 1, 3, 5, \dots, N - 1 = 2p + 1$: \tilde{N}

$$Y(2p+1) = \sum_{t=1}^{N} \{ [y(t) - y(t+\tilde{N})] W^t \} \tilde{W}^{tp}$$

Each is a $\tilde{N} = N/2$ -point DFT computation.

Let c_k = number of flops for $N = 2^k$ point FFT.

Then

$$c_k = \frac{2^k}{2} + 2c_{k-1}$$
$$\Rightarrow c_k = \frac{k2^k}{2}$$

Thus,

$$c_k = \frac{1}{2}N\log_2 N$$

Append the given data by zeros prior to computing DFT (or FFT):

$$\{\underbrace{y(1), \ldots, y(N), 0, \ldots 0}_{\overline{N}}\}$$

Goals:

- Apply a radix-2 FFT (so \overline{N} = power of 2)
- Finer sampling of $\hat{\phi}(\omega)$:

Improved Periodogram-Based Methods

Lecture 3

Basic Idea: Weighted correlogram, with small weight applied to covariances $\hat{r}(k)$ with "large" |k|.

$$\hat{\phi}_{BT}(\omega) = \sum_{k=-(M-1)}^{M-1} w(k)\hat{r}(k)e^{-i\omega k}$$

 $\{w(k)\} =$ Lag Window

$$\widehat{\phi}_{BT}(\omega) = rac{1}{2\pi} \int_{-\pi}^{\pi} \widehat{\phi}_p(\zeta) W(\omega-\zeta) d\zeta$$

$$W(\omega) = DTFT\{w(k)\}$$

= Spectral Window

Conclusion: $\hat{\phi}_{BT}(\omega) =$ "locally" smoothed periodogram

Effect:

- Variance decreases substantially
- Bias increases slightly

By proper choice of *M*:

$$MSE = var + bias^2 \rightarrow 0 as N \rightarrow \infty$$

Nonnegativeness:

$$\widehat{\phi}_{BT}(\omega) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \underbrace{\widehat{\phi}_p(\zeta)}_{\geq 0} W(\omega - \zeta) d\zeta$$

If $W(\omega) \ge 0$ ($\Leftrightarrow w(k)$ is a psd sequence)

Then: $\hat{\phi}_{BT}(\omega) \geq 0$ (which is desirable)

Time-Bandwidth Product

$$N_e = \frac{\sum_{k=-(M-1)}^{M-1} w(k)}{w(0)} = \text{equiv time width}$$
$$\beta_e = \frac{\frac{1}{2\pi} \int_{-\pi}^{\pi} W(\omega) d\omega}{W(0)} = \text{equiv bandwidth}$$
$$\boxed{N_e \ \beta_e = 1}$$

- $\beta_e = 1/N_e = 0(1/M)$ is the BT resolution threshold.
- As *M* increases, bias decreases and variance increases.
 - $\Rightarrow Choose M as a tradeoff between variance and bias.$
- Once M is given, N_e (and hence β_e) is essentially fixed.
 - ⇒ Choose window shape to compromise between smearing (main lobe width) and leakage (sidelobe level).

The energy in the main lobe and in the sidelobes cannot be reduced *simultaneously*, once M is given.

Basic Idea:

Mathematically:

$$y_j(t) = y((j-1)M+t) \quad t = 1, \dots, M$$

= the *j*th subsequence
 $(j = 1, \dots, L \stackrel{\triangle}{=} [N/M])$

$$\hat{\phi}_j(\omega) = \frac{1}{M} \left| \sum_{t=1}^M y_j(t) e^{-i\omega t} \right|^2$$

$$\hat{\phi}_B(\omega) = \frac{1}{L} \sum_{j=1}^{L} \hat{\phi}_j(\omega)$$

Comparison of Bartlett and Blackman-Tukey Estimates

$$\hat{\phi}_B(\omega) = \frac{1}{L} \sum_{j=1}^L \left\{ \sum_{k=-(M-1)}^{M-1} \hat{r}_j(k) e^{-i\omega k} \right\}$$
$$= \sum_{k=-(M-1)}^{M-1} \left\{ \frac{1}{L} \sum_{j=1}^L \hat{r}_j(k) \right\} e^{-i\omega k}$$
$$\simeq \sum_{k=-(M-1)}^{M-1} \hat{r}(k) e^{-i\omega k}$$

Thus:

$$\widehat{\phi}_B(\omega) \simeq \widehat{\phi}_{BT}(\omega)$$
 with a rectangular
lag window $w_R(k)$

Since $\hat{\phi}_B(\omega)$ implicitly uses $\{w_R(k)\}$, the Bartlett method has

- High resolution (little smearing)
- Large leakage and relatively large variance

Similar to Bartlett method, but

- allow overlap of subsequences (gives more subsequences, and thus "better" averaging)
- use data window for each periodogram; gives mainlobe-sidelobe tradeoff capability

Let S = # of subsequences of length M. (Overlapping means $S > [N/M] \Rightarrow$ "better averaging".)

Additional flexibility:

The data in each subsequence are weighted by a *temporal* window

Welch is approximately equal to $\hat{\phi}_{BT}(\omega)$ with a non-rectangular lag window.

By a previous result, for $N \gg 1$,

 $\{\hat{\phi}_p(\omega_j)\}\$ are (nearly) uncorrelated random variables for

$$\left\{\omega_j = \frac{2\pi}{N} j\right\}_{j=0}^{N-1}$$

Idea: "Local averaging" of (2J + 1) samples in the frequency domain should reduce the variance by about (2J + 1).

$$\hat{\phi}_D(\omega_k) = \frac{1}{2J+1} \sum_{j=k-J}^{k+J} \hat{\phi}_p(\omega_j)$$

As J increases:

- Bias increases (more smoothing)
- Variance decreases (more averaging)

Let
$$\beta = 2J/N$$
. Then, for $N \gg 1$,

$$egin{aligned} \widehat{\phi}_D(\omega) \simeq rac{1}{2\pieta} \, \int_{-eta\pi}^{eta\pi} \, \widehat{\phi}_p(\overline{\omega}) d\overline{\omega} \end{aligned}$$

Hence: $\hat{\phi}_D(\omega) \simeq \hat{\phi}_{BT}(\omega)$ with a rectangular spectral window.

• Unwindowed periodogram

- reasonable bias
- unacceptable variance

• Modified periodograms

- Attempt to reduce the variance at the expense of (slightly) increasing the bias.

• BT periodogram

- Local smoothing/averaging of $\hat{\phi}_p(\omega)$ by a suitably selected spectral window.
- Implemented by truncating and weighting $\hat{r}(k)$ using a lag window in $\hat{\phi}_c(\omega)$

• Bartlett, Welch periodograms

- Approximate interpretation: $\hat{\phi}_{BT}(\omega)$ with a suitable *lag* window (rectangular for Bartlett; more general for Welch).
- Implemented by averaging subsample periodograms.

• Daniell Periodogram

- Approximate interpretation: $\hat{\phi}_{BT}(\omega)$ with a rectangular spectral window.
- Implemented by local averaging of periodogram values.

Parametric Methods for Rational Spectra

Lecture 4

Basic Idea of Parametric Spectral Estimation

Rational Spectra

$$\phi(\omega) = \frac{\sum_{|k| \le m} \gamma_k e^{-i\omega k}}{\sum_{|k| \le n} \rho_k e^{-i\omega k}}$$

 $\phi(\omega)$ is a rational function in $e^{-i\omega}$.

By Weierstrass theorem, $\phi(\omega)$ can approximate arbitrarily well any continuous PSD, provided m and n are chosen sufficiently large.

Note, however:

- choice of *m* and *n* is not simple
- some PSDs are *not* continuous

By Spectral Factorization theorem, a rational $\phi(\omega)$ can be factored as

$$\phi(\omega) = \left|\frac{B(\omega)}{A(\omega)}\right|^2 \sigma^2$$

$$A(z) = 1 + a_1 z^{-1} + \dots + a_n z^{-n}$$

$$B(z) = 1 + b_1 z^{-1} + \dots + b_m z^{-m}$$

and, e.g., $A(\omega) = A(z)|_{z=e^{i\omega}}$

Signal Modeling Interpretation:

e(t)	B(q)	y(t)
$\phi_e(\omega) = \sigma^2$	$\overline{A(q)}$	$\phi_y(\omega) = \left \frac{B(\omega)}{A(\omega)}\right ^2 \sigma^2$
white noise		filtered white noise

ARMA:	A(q)y(t) = B(q)e(t)
AR:	A(q)y(t) = e(t)
MA:	y(t) = B(q)e(t)

ARMA signal model:

$$y(t) + \sum_{i=1}^{n} a_i y(t-i) = \sum_{j=0}^{m} b_j e(t-j), \qquad (b_0 = 1)$$

Multiply by $y^*(t-k)$ and take $E\{\cdot\}$ to give:

$$r(k) + \sum_{i=1}^{n} a_{i}r(k-i) = \sum_{j=0}^{m} b_{j}E\{e(t-j)y^{*}(t-k)\}$$
$$= \sigma^{2}\sum_{j=0}^{m} b_{j}h_{j-k}^{*}$$
$$= 0 \text{ for } k > m$$
where $H(q) = \frac{B(q)}{A(q)} = \sum_{k=0}^{\infty} h_{k}q^{-k}, \quad (h_{0} = 1)$

AR:
$$m = 0$$
.

Writing covariance equation in matrix form for

$$k = 1 \dots n:$$

$$\begin{bmatrix} r(0) & r(-1) & \dots & r(-n) \\ r(1) & r(0) & & \vdots \\ \vdots & & \ddots & r(-1) \\ r(n) & \dots & & r(0) \end{bmatrix} \begin{bmatrix} 1 \\ a_1 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} \sigma^2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$R\begin{bmatrix} 1 \\ \theta \end{bmatrix} = \begin{bmatrix} \sigma^2 \\ 0 \end{bmatrix}$$

These are the Yule–Walker (YW) Equations.

Yule-Walker Method:

Replace r(k) by $\hat{r}(k)$ and solve for $\{\hat{a}_i\}$ and $\hat{\sigma}^2$:

$$\begin{bmatrix} \hat{r}(0) & \hat{r}(-1) & \dots & \hat{r}(-n) \\ \hat{r}(1) & \hat{r}(0) & & \vdots \\ \vdots & & \ddots & \hat{r}(-1) \\ \hat{r}(n) & \dots & & \hat{r}(0) \end{bmatrix} \begin{bmatrix} 1 \\ \hat{a}_1 \\ \vdots \\ \hat{a}_n \end{bmatrix} = \begin{bmatrix} \hat{\sigma}^2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Then the PSD estimate is

$$\widehat{\phi}(\omega) = \frac{\widehat{\sigma}^2}{|\widehat{A}(\omega)|^2}$$

Least Squares Method:

$$e(t) = y(t) + \sum_{i=1}^{n} a_i y(t-i) = y(t) + \varphi^T(t)\theta$$
$$\stackrel{\triangle}{=} y(t) + \hat{y}(t)$$
where $\varphi(t) = [y(t-1), \dots, y(t-n)]^T$.

Find $\theta = [a_1 \dots a_n]^T$ to minimize

$$f(\theta) = \sum_{t=n+1}^{N} |e(t)|^2$$

This gives $\hat{\theta} = -(Y^*Y)^{-1}(Y^*y)$ where

$$y = \begin{bmatrix} y(n+1) \\ y(n+2) \\ \vdots \\ y(N) \end{bmatrix}, \quad Y = \begin{bmatrix} y(n) & y(n-1) & \cdots & y(1) \\ y(n+1) & y(n) & \cdots & y(2) \\ \vdots & & & \vdots \\ y(N-1) & y(N-2) & \cdots & y(N-n) \end{bmatrix}$$

Fast, order-recursive solution to YW equations

$$\underbrace{\begin{bmatrix} \rho_0 & \rho_{-1} & \cdots & \rho_{-n} \\ \rho_1 & \rho_0 & \cdots & \vdots \\ \vdots & \cdots & \ddots & \rho_{-1} \\ \rho_n & \cdots & \rho_1 & \rho_0 \end{bmatrix}}_{R_{n+1}} \begin{bmatrix} 1 \\ \theta_n \end{bmatrix} = \begin{bmatrix} \sigma_n^2 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

 $\rho_k = \text{either } r(k) \text{ or } \hat{r}(k).$

Direct Solution:

- For one given value of $n: O(n^3)$ flops
- For $k = 1, \ldots, n$: $O(n^4)$ flops

Levinson–Durbin Algorithm:

Exploits the Toeplitz form of R_{n+1} to obtain the solutions for k = 1, ..., n in $O(n^2)$ flops!

Relevant Properties of *R***:**

- $Rx = y \iff R\tilde{x} = \tilde{y}$, where $\tilde{x} = [x_n^* \dots x_1^*]^T$
- Nested structure

$$R_{n+2} = \begin{bmatrix} R_{n+1} & \rho_{n+1}^* \\ \hline \rho_{n+1} & \tilde{r}_n^* & \rho_0 \end{bmatrix}, \quad \tilde{r}_n = \begin{bmatrix} \rho_n^* \\ \vdots \\ \rho_1^* \end{bmatrix}$$

Thus,

$$R_{n+2}\begin{bmatrix}1\\\\\\\\\hline\\0\end{bmatrix} = \begin{bmatrix}R_{n+1} & \rho_{n+1}^*\\\\\hline\\\hline\\\rho_{n+1} & \tilde{r}_n^* & \rho_0\end{bmatrix}\begin{bmatrix}1\\\\\\\\\\\hline\\0\end{bmatrix} = \begin{bmatrix}\sigma_n^2\\\\\\\\\\\hline\\0\\\\\hline\\\alpha_n\end{bmatrix}$$

where
$$\alpha_n = \rho_{n+1} + \tilde{r}_n^* \theta_n$$

$$R_{n+2} \begin{bmatrix} 1\\ \theta_n\\ 0 \end{bmatrix} = \begin{bmatrix} \sigma_n^2\\ 0\\ \alpha_n \end{bmatrix}, \qquad R_{n+2} \begin{bmatrix} 0\\ \tilde{\theta}_n\\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_n^*\\ 0\\ \sigma_n^2 \end{bmatrix}$$

Combining these gives:

$$R_{n+2}\left\{ \begin{bmatrix} 1\\ \theta_n\\ 0 \end{bmatrix} + k_n \begin{bmatrix} 0\\ \tilde{\theta}_n\\ 1 \end{bmatrix} \right\} = \begin{bmatrix} \sigma_n^2 + k_n \alpha_n^*\\ 0\\ \alpha_n + k_n \sigma_n^2 \end{bmatrix} = \begin{bmatrix} \sigma_{n+1}^2\\ 0\\ 0 \end{bmatrix}$$

Thus,
$$k_n = -\alpha_n / \sigma_n^2 \Rightarrow$$

 $\theta_{n+1} = \begin{bmatrix} \theta_n \\ 0 \end{bmatrix} + k_n \begin{bmatrix} \tilde{\theta}_n \\ 1 \end{bmatrix}$
 $\sigma_{n+1}^2 = \sigma_n^2 + k_n \alpha_n^* = \sigma_n^2 (1 - |k_n|^2)$

Computation count:

~ 2k flops for the step
$$k \to k + 1$$

 $\Rightarrow \boxed{\sim n^2 \text{ flops}}$ to determine $\{\sigma_k^2, \theta_k\}_{k=1}^n$

This is $O(n^2)$ times faster than the direct solution.

MA: n = 0

$$y(t) = B(q)e(t)$$

= $e(t) + b_1e(t-1) + \dots + b_me(t-m)$

Thus,

$$r(k) = 0 \text{ for } |k| > m$$

and

$$\phi(\omega) = |B(\omega)|^2 \sigma^2 = \sum_{k=-m}^m r(k) e^{-i\omega k}$$

Two main ways to Estimate $\phi(\omega)$:

1. Estimate $\{b_k\}$ and σ^2 and insert them in

$$\phi(\omega) = |B(\omega)|^2 \sigma^2$$

- nonlinear estimation problem
- $\hat{\phi}(\omega)$ is guaranteed to be ≥ 0
- 2. Insert sample covariances $\{\hat{r}(k)\}$ in:

$$\phi(\omega) = \sum_{k=-m}^{m} r(k) e^{-i\omega k}$$

- This is $\hat{\phi}_{BT}(\omega)$ with a rectangular lag window of length 2m + 1.
- $\hat{\phi}(\omega)$ is not guaranteed to be ≥ 0

Both methods are special cases of ARMA methods described below, with AR model order n = 0.

ARMA models can represent spectra with both peaks (AR part) and valleys (MA part).

$$A(q)y(t) = B(q)e(t)$$

$$\phi(\omega) = \sigma^2 \left| \frac{B(\omega)}{A(\omega)} \right|^2 = \frac{\sum_{k=-m}^m \gamma_k e^{-i\omega k}}{|A(\omega)|^2}$$

where

$$\gamma_k = E \{ [B(q)e(t)] [B(q)e(t-k)]^* \}$$

= $E \{ [A(q)y(t)] [A(q)y(t-k)]^* \}$
= $\sum_{j=0}^n \sum_{p=0}^n a_j a_p^* r(k+p-j)$

Two Methods:

- 1. Estimate $\{a_i, b_j, \sigma^2\}$ in $\phi(\omega) = \sigma^2 \left|\frac{B(\omega)}{A(\omega)}\right|^2$
 - nonlinear estimation problem; can use an approximate linear *two-stage least squares* method
 - $\hat{\phi}(\omega)$ is guaranteed to be ≥ 0
- 2. Estimate $\{a_i, r(k)\}$ in $\phi(\omega) = \frac{\sum_{k=-m}^{m} \gamma_k e^{-i\omega k}}{|A(\omega)|^2}$
 - linear estimation problem (the Modified Yule-Walker method).
 - $\hat{\phi}(\omega)$ is not guaranteed to be ≥ 0

Assumption: The ARMA model is invertible:

$$e(t) = \frac{A(q)}{B(q)}y(t)$$

= $y(t) + \alpha_1 y(t-1) + \alpha_2 y(t-2) + \cdots$
= $AR(\infty)$ with $|\alpha_k| \to 0$ as $k \to \infty$

Step 1: Approximate, for some large *K*

$$e(t) \simeq y(t) + \alpha_1 y(t-1) + \cdots + \alpha_K y(t-K)$$

- 1a) Estimate the coefficients $\{\alpha_k\}_{k=1}^K$ by using AR modelling techniques.
- **1b**) Estimate the noise sequence

$$\hat{e}(t) = y(t) + \hat{\alpha}_1 y(t-1) + \dots + \hat{\alpha}_K y(t-K)$$

and its variance

$$\hat{\sigma}^2 = \frac{1}{N-K} \sum_{t=K+1}^{N} |\hat{e}(t)|^2$$

Step 2: Replace $\{e(t)\}$ by $\hat{e}(t)$ in the ARMA equation,

$$A(q)y(t) \simeq B(q)\hat{e}(t)$$

and obtain estimates of $\{a_i, b_j\}$ by applying least squares techniques.

Note that the a_i and b_j coefficients enter linearly in the above equation:

ARMA Covariance Equation:

$$r(k) + \sum_{i=1}^{n} a_i r(k-i) = 0, \quad k > m$$

In matrix form for $k = m + 1, \ldots, m + M$

$$\begin{bmatrix} r(m) & \dots & r(m-n+1) \\ r(m+1) & & r(m-n+2) \\ \vdots & \ddots & \vdots \\ r(m+M-1) & \dots & r(m-n+M) \end{bmatrix} \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} = -\begin{bmatrix} r(m+1) \\ r(m+2) \\ \vdots \\ r(m+M) \end{bmatrix}$$

Replace $\{r(k)\}$ by $\{\hat{r}(k)\}$ and solve for $\{a_i\}$.

If M = n, fast Levinson-type algorithms exist for obtaining $\{\hat{a}_i\}$.

If M > n overdetermined YW system of equations; least squares solution for $\{\hat{a}_i\}$.

Note: For narrowband ARMA signals, the accuracy of $\{\hat{a}_i\}$ is often better for M > n

Summary of Parametric Methods for Rational Spectra

	Accuracy medium	$\hat{\phi}(\omega) \ge 0$? Yes	Use for
	medium	Yes	
			Spectra with (narrow) peaks but
	low-medium	No	Broadband spectra possibly with
			valleys but no peaks
ARMA: MYW low-medium	medium	No	Spectra with both peaks and (not
			too deep) valleys
ARMA: 2-Stage LS medium-high	medium-high	Yes	As above

Parametric Methods for Line Spectra — Part 1

Lecture 5

Many applications have signals with (near) sinusoidal components. Examples:

- communications
- radar, sonar
- geophysical seismology

ARMA model is a poor approximation

Better approximation by Discrete/Line Spectrum Models

Signal Model: Sinusoidal components of frequencies $\{\omega_k\}$ and powers $\{\alpha_k^2\}$, superimposed in white noise of power σ^2 .

$$y(t) = x(t) + e(t) \quad t = 1, 2, \dots$$
$$x(t) = \sum_{k=1}^{n} \underbrace{\alpha_k e^{i(\omega_k t + \phi_k)}}_{x_k(t)}$$

Assumptions:

A1:
$$\alpha_k > 0$$
 $\omega_k \in [-\pi, \pi]$
(prevents model ambiguities)

A2: $\{\varphi_k\}$ = independent rv's, uniformly distributed on $[-\pi, \pi]$ (realistic and mathematically convenient)

A3:
$$e(t) = \text{circular}$$
 white noise with variance σ^2
 $E \{e(t)e^*(s)\} = \sigma^2 \delta_{t,s}$ $E \{e(t)e(s)\} = 0$
(can be achieved by "slow" sampling)

Note that:

•
$$E\left\{e^{i\varphi_p}e^{-i\varphi_j}\right\} = 1$$
, for $p = j$

•
$$E\left\{e^{i\varphi_p}e^{-i\varphi_j}\right\} = E\left\{e^{i\varphi_p}\right\}E\left\{e^{-i\varphi_j}\right\}$$

= $\left|\frac{1}{2\pi}\int_{-\pi}^{\pi}e^{i\varphi}d\varphi\right|^2 = 0$, for $p \neq j$

Hence,

$$E\left\{x_p(t)x_j^*(t-k)\right\} = \alpha_p^2 \ e^{i\omega_p k} \ \delta_{p,j}$$

$$r(k) = E \{y(t)y^*(t-k)\}$$
$$= \sum_{p=1}^n \alpha_p^2 e^{i\omega_p k} + \sigma^2 \delta_{k,0}$$

and

$$\phi(\omega) = 2\pi \sum_{p=1}^{n} \alpha_p^2 \delta(\omega - \omega_p) + \sigma^2$$

Estimate either:

- $\{\omega_k, \alpha_k, \varphi_k\}_{k=1}^n, \sigma^2$ (Signal Model)
- $\{\omega_k, \alpha_k^2\}_{k=1}^n, \sigma^2$ (PSD Model)

Major Estimation Problem: $\{\hat{\omega}_k\}$

Once $\{\hat{\omega}_k\}$ are determined:

• $\{\hat{\alpha}_k^2\}$ can be obtained by a least squares method from $\hat{r}(k) = \sum_{p=1}^n \alpha_p^2 e^{i\hat{\omega}_p k} + \text{residuals}$

OR:

• Both $\{\hat{\alpha}_k\}$ and $\{\hat{\varphi}_k\}$ can be derived by a least squares method from

$$y(t) = \sum_{k=1}^{n} \beta_k e^{i\hat{\omega}_k t}$$
 + residuals

with $\beta_k = \alpha_k e^{i\varphi_k}$.

$$\min_{\{\omega_k,\alpha_k,\varphi_k\}} \underbrace{\sum_{t=1}^{N} \left| y(t) - \sum_{k=1}^{n} \alpha_k e^{i(\omega_k t + \varphi_k)} \right|^2}_{F(\omega,\alpha,\varphi)}$$

Let:

$$\beta_{k} = \alpha_{k} e^{i\varphi_{k}}$$

$$\beta = [\beta_{1} \dots \beta_{n}]^{T}$$

$$Y = [y(1) \dots y(N)]^{T}$$

$$B = \begin{bmatrix} e^{i\omega_{1}} \cdots e^{i\omega_{n}} \\ \vdots & \vdots \\ e^{iN\omega_{1}} \cdots & e^{iN\omega_{n}} \end{bmatrix}$$

Then:

$$F = (Y - B\beta)^{*}(Y - B\beta) = ||Y - B\beta||^{2}$$

= $[\beta - (B^{*}B)^{-1}B^{*}Y]^{*}[B^{*}B]$
 $[\beta - (B^{*}B)^{-1}B^{*}Y]$
 $+Y^{*}Y - Y^{*}B(B^{*}B)^{-1}B^{*}Y$

This gives:

$$\left|\widehat{\beta} = (B^*B)^{-1}B^*Y\right|_{\omega = \widehat{\omega}}$$

and

$$\hat{\omega} = \arg \max_{\omega} Y^* B (B^* B)^{-1} B^* Y$$

Excellent Accuracy:

$$\operatorname{var}\left(\widehat{\omega}_{k}\right) = \frac{6\sigma^{2}}{N^{3}\alpha_{k}^{2}} \quad (\text{for } N \gg 1)$$

Example: N = 300 $\text{SNR}_k = \alpha_k^2 / \sigma^2 = 30 \text{ dB}$

Then
$$\sqrt{\operatorname{var}(\widehat{\omega}_k)} \sim 10^{-5}$$

Difficult Implementation:

The NLS cost function F is multimodal; it is difficult to avoid convergence to local minima.

Unwindowed Periodogram as an Approximate NLS Method

For a single (complex) sinusoid, the maximum of the unwindowed periodogram is the NLS frequency estimate:

Assume: n = 1

Then: $B^*B = N$ $B^*Y = \sum_{t=1}^{N} y(t)e^{-i\omega t} = Y(\omega)$ (finite DTFT) $V^*B(B^*B)^{-1}B^*V = \frac{1}{2}|V(\omega)|^2$

$$Y^*B(B^*B)^{-1}B^*Y = \frac{1}{N}|Y(\omega)|^2$$

= $\hat{\phi}_p(\omega)$
= (Unwindowed Periodogram)

So, with no approximation,

$$\hat{\omega} = \arg \max_{\omega} \hat{\phi}_p(\omega)$$

Unwindowed Periodogram as an Approximate NLS Method, con't

Assume: n > 1

Then:

 $\{\hat{\omega}_k\}_{k=1}^n \simeq$ the locations of the *n* largest peaks of $\hat{\phi}_p(\omega)$

provided that

inf
$$|\omega_k - \omega_p| > 2\pi/N$$

which is the periodogram resolution limit.

If better resolution desired then use a *High/Super Resolution* method.

Recall:

$$y(t) = x(t) + e(t) = \sum_{k=1}^{n} \underbrace{\alpha_k e^{i(\omega_k t + \varphi_k)}}_{x_k(t)} + e(t)$$

"Degenerate" ARMA equation for y(t):

$$(1 - e^{i\omega_k}q^{-1})x_k(t)$$

= $\alpha_k \left\{ e^{i(\omega_k t + \varphi_k)} - e^{i\omega_k} e^{i[\omega_k(t-1) + \varphi_k]} \right\} = 0$

Let

$$B(q) = 1 + \sum_{k=1}^{L} b_k q^{-k} \stackrel{\triangle}{=} A(q)\overline{A}(q)$$

$$A(q) = (1 - e^{i\omega_1}q^{-1}) \cdots (1 - e^{i\omega_n}q^{-1})$$

$$\overline{A}(q) = \text{arbitrary}$$

Then $B(q)x(t) \equiv 0 \Rightarrow$

$$B(q)y(t) = B(q)e(t)$$

Estimation Procedure:

- Estimate $\{\hat{b}_i\}_{i=1}^L$ using an ARMA MYW technique
- Roots of $\hat{B}(q)$ give $\{\hat{\omega}_k\}_{k=1}^n$, along with L n "spurious" roots.

ARMA covariance:

$$r(k) + \sum_{i=1}^{L} b_i r(k-i) = 0, \quad k > L$$

In matrix form for $k = L + 1, \dots, L + M$

$$\underbrace{\begin{bmatrix} r(L) & \dots & r(1) \\ r(L+1) & \dots & r(2) \\ \vdots & & \vdots \\ r(L+M-1) & \dots & r(M) \end{bmatrix}}_{\stackrel{\triangle}{=}\Omega} b = -\underbrace{\begin{bmatrix} r(L+1) \\ r(L+2) \\ \vdots \\ r(L+M) \end{bmatrix}}_{\stackrel{\triangle}{=}\rho}$$

This is a high-order (if L > n) and overdetermined (if M > L) system of YW equations.

High-Order and Overdetermined YW Equations, con't

Fact: $\operatorname{rank}(\Omega) = n$

SVD of Ω : $\Omega = U\Sigma V^*$

•
$$U = (M \times n)$$
 with $U^*U = I_n$

•
$$V^* = (n \times L)$$
 with $V^*V = I_n$

• $\Sigma = (n \times n)$, diagonal and nonsingular

Thus,

$$(U\Sigma V^*)b = -\rho$$

The Minimum-Norm solution is

$$b = -\Omega^{\dagger} \rho = -V \Sigma^{-1} U^* \rho$$

Important property: The additional (L - n) spurious zeros of B(q) are located strictly *inside* the unit circle, if the Minimum-Norm solution b is used.

Let $\hat{\Omega} = \Omega$ but made from $\{\hat{r}(k)\}$ instead of $\{r(k)\}$.

Let \hat{U} , $\hat{\Sigma}$, \hat{V} be defined similarly to U, Σ , V from the SVD of $\hat{\Omega}$.

Compute

$$\hat{b} = -\hat{V}\hat{\Sigma}^{-1}\hat{U}^*\hat{\rho}$$

Then $\{\widehat{\omega}_k\}_{k=1}^n$ are found from the *n* zeroes of $\widehat{B}(q)$ that are closest to the unit circle.

When the SNR is low, this approach may give spurious frequency estimates when L > n; this is the price paid for increased accuracy when L > n.

Parametric Methods for Line Spectra — Part 2

Lecture 6

Let:

$$a(\omega) = [1 e^{-i\omega} \dots e^{-i(m-1)\omega}]^T$$

$$A = [a(\omega_1) \dots a(\omega_n)] \quad (m \times n)$$

Note: rank(A) = n (for $m \ge n$)

Define

$$ilde{y}(t) \stackrel{ riangle}{=} \left[egin{array}{c} y(t) \ y(t-1) \ dots \ y(t-m+1) \end{array}
ight] = A ilde{x}(t) + ilde{e}(t)$$

where

$$\begin{aligned} \tilde{x}(t) &= [x_1(t) \dots x_n(t)]^T \\ \tilde{e}(t) &= [e(t) \dots e(t-m+1)]^T \end{aligned}$$

Then

$$R \stackrel{\triangle}{=} E \left\{ \tilde{y}(t)\tilde{y}^*(t) \right\} = APA^* + \sigma^2 I$$

with

$$P = E\left\{\tilde{x}(t)\tilde{x}^*(t)\right\} = \begin{bmatrix} \alpha_1^2 & 0 \\ & \ddots \\ 0 & & \alpha_n^2 \end{bmatrix}$$

$$R = APA^* + \sigma^2 I \quad (m > n)$$

Let:

 $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_m$: eigenvalues of R

 $\{s_1, \ldots s_n\}$: orthonormal eigenvectors associated with $\{\lambda_1, \ldots, \lambda_n\}$

 $\{g_1, \dots, g_{m-n}\}: \text{ orthonormal eigenvectors associated}$ with $\{\lambda_{n+1}, \dots, \lambda_m\}$ $S = [s_1 \dots s_n] \qquad (m \times n)$ $G = [g_1 \dots g_{m-n}] \qquad (m \times (m-n))$

Thus,

$$R = \begin{bmatrix} S \ G \end{bmatrix} \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_m \end{bmatrix} \begin{bmatrix} S^* \\ G^* \end{bmatrix}$$

As rank
$$(APA^*) = n$$
:
 $\lambda_k > \sigma^2 \quad k = 1, \dots, n$
 $\lambda_k = \sigma^2 \quad k = n+1, \dots, m$
 $\mathring{\Lambda} = \begin{bmatrix} \lambda_1 - \sigma^2 & 0 \\ & \ddots & \\ 0 & & \lambda_n - \sigma^2 \end{bmatrix} = \text{nonsingular}$

Note:

$$RS = APA^*S + \sigma^2 S = S \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$$

$$S = A(PA^*S\mathring{\Lambda}^{-1}) \stackrel{\triangle}{=} AC$$

with $|C| \neq 0$ (since rank(S) = rank(A) = n). Therefore, since $S^*G = 0$,

$$A^*G = \mathbf{0}$$

$$A^*G = \begin{bmatrix} a^*(\omega_1) \\ \vdots \\ a^*(\omega_n) \end{bmatrix} G = 0$$
$$\Rightarrow \{a(\omega_k)\}_{k=1}^n \perp \mathcal{R}(G)$$

Thus,

$$\{\omega_k\}_{k=1}^n$$
 are the unique solutions of $a^*(\omega)GG^*a(\omega) = 0.$

Let:

$$\hat{R} = \frac{1}{N} \sum_{t=m}^{N} \tilde{y}(t) \tilde{y}^{*}(t)$$
$$\hat{S}, \hat{G} = S, G \text{ made from the}$$
eigenvectors of \hat{R}

Spectral MUSIC Method:

 $\{\hat{\omega}_k\}_{k=1}^n$ = the locations of the *n* highest peaks of the "pseudo-spectrum" function:

$$rac{1}{a^*(\omega)\widehat{G}\widehat{G}^*a(\omega)}, \hspace{1em} \omega \in [-\pi,\pi]$$

Root MUSIC Method:

 $\{\hat{\omega}_k\}_{k=1}^n$ = the angular positions of the *n* roots of:

$$a^T(z^{-1})\widehat{G}\widehat{G}^*a(z) = 0$$

that are closest to the unit circle. Here,

$$a(z) = [1, z^{-1}, \dots, z^{-(m-1)}]^T$$

Note: Both variants of MUSIC may produce spurious frequency estimates.

Pisarenko is a special case of MUSIC with m = n + 1(the minimum possible value).

If: m = n + 1

Then: $\hat{G} = \hat{g}_1$, $\Rightarrow \{\hat{\omega}_k\}_{k=1}^n$ can be found from the roots of

$$a^T(z^{-1})\hat{g}_1 = 0$$

- no problem with spurious frequency estimates
- computationally simple
- (much) less accurate than MUSIC with $m \gg n+1$

Goals: Reduce computational burden, and reduce risk of false frequency estimates.

Uses $m \gg n$ (as in MUSIC), but only one vector in $\mathcal{R}(G)$ (as in Pisarenko).

Let

 $\begin{bmatrix} 1\\ \hat{g} \end{bmatrix}$ = the vector in $\mathcal{R}(\hat{G})$, with first element equal to one, that has minimum Euclidean norm.

Spectral Min-Norm

 $\{\hat{\omega}\}_{k=1}^{n}$ = the locations of the *n* highest peaks in the "pseudo-spectrum"

$$egin{array}{c|c} 1 \ / \ \left| a^*(\omega) \ \left[egin{array}{c} 1 \ \widehat{g} \end{array}
ight|^2 \end{array}
ight|^2 \end{array}$$

Root Min-Norm

 $\{\hat{\omega}\}_{k=1}^{n}$ = the angular positions of the *n* roots of the polynomial

$$a^T(z^{-1})\left[egin{array}{c} 1 \ \widehat{g} \end{array}
ight]$$

that are closest to the unit circle.

Let
$$\widehat{S} = \begin{bmatrix} \alpha^* \\ \overline{S} \end{bmatrix} \begin{cases} 1 \\ m-1 \end{cases}$$

Then:

$$\begin{bmatrix} 1\\ \hat{g} \end{bmatrix} \in \mathcal{R}(\hat{G}) \implies \hat{S}^* \begin{bmatrix} 1\\ \hat{g} \end{bmatrix} = 0$$
$$\implies \bar{S}^* \hat{g} = -\alpha$$

Min-Norm solution: $\hat{g} = -\bar{S}(\bar{S}^*\bar{S})^{-1}\alpha$

As:
$$I = \hat{S}^* \hat{S} = \alpha \alpha^* + \bar{S}^* \bar{S}, (\bar{S}^* \bar{S})^{-1}$$
 exists iff
$$\alpha^* \alpha = \|\alpha\|^2 \neq 1$$

(This holds, at least, for $N \gg 1$.)

Multiplying the above equation by α gives:

$$\alpha(1 - \|\alpha\|^2) = (\bar{S}^*\bar{S})\alpha$$

$$\Rightarrow (\bar{S}^*\bar{S})^{-1}\alpha = \alpha/(1 - \|\alpha\|^2)$$

$$\Rightarrow \hat{g} = -\bar{S}\alpha/(1 - \|\alpha\|^2)$$

Let
$$A_1 = [I_{m-1} \ 0]A$$

 $A_2 = [0 \ I_{m-1}]A$

Then $A_2 = A_1 D$, where

$$D = \begin{bmatrix} e^{-i\omega_1} & 0 \\ & \ddots & \\ 0 & e^{-i\omega_n} \end{bmatrix}$$
$$S_1 = \begin{bmatrix} I_m & 1 & 0 \end{bmatrix} S$$

Also, let

$$S_1 = [I_{m-1} \ 0]S$$

 $S_2 = [0 \ I_{m-1}]S$

Recall S = AC with $|C| \neq 0$. Then

$$S_2 = A_2C = A_1DC = S_1\underbrace{C^{-1}DC}_{\phi}$$

So ϕ has the same eigenvalues as D. ϕ is uniquely determined as

$$\phi = (S_1^* S_1)^{-1} S_1^* S_2$$

From the eigendecomposition of \hat{R} , find \hat{S} , then \hat{S}_1 and \hat{S}_2 .

The frequency estimates are found by:

$$\{\hat{\omega}_k\}_{k=1}^n = -\arg(\hat{\nu}_k)$$

where $\{\hat{\nu}_k\}_{k=1}^n$ are the eigenvalues of

$$\hat{\phi} = (\hat{S}_1^* \hat{S}_1)^{-1} \hat{S}_1^* \hat{S}_2$$

ESPRIT Advantages:

- computationally simple
- no extraneous frequency estimates (unlike in MUSIC or Min–Norm)
- accurate frequency estimates

Method	Computational Burden	Accuracy / Resolution	Risk for False Freq Estimates
Periodogram	small	medium-high	medium
Nonlinear LS	very high	very high	very high
Yule-Walker	medium	high	medium
Pisarenko	small	low	none
MUSIC	high	high	medium
Min-Norm	medium	high	small
ESPRIT	medium	very high	none

Recommendation:

- Use Periodogram for medium-resolution applications
- Use **ESPRIT** for high-resolution applications

Filter Bank Methods

Lecture 7

Two main PSD estimation approaches:

- 1. Parametric Approach: Parameterize $\phi(\omega)$ by a finite-dimensional model.
- 2. Nonparametric Approach: Implicitly smooth $\{\phi(\omega)\}_{\omega=-\pi}^{\pi}$ by assuming that $\phi(\omega)$ is nearly constant over the bands

$$[\omega - \beta \pi, \omega + \beta \pi], \beta \ll 1$$

2 is more general than 1, but 2 requires

to ensure that the number of estimated values $(= 2\pi/2\pi\beta = 1/\beta)$ is < N.

 $N\beta > 1$ leads to the variability / resolution compromise associated with all nonparametric methods.

$$\hat{\phi}_{FB}(\omega) \stackrel{(a)}{\simeq} \frac{1}{2\pi} \int_{-\pi}^{\pi} |H(\tau)|^2 \phi(\tau) d\tau/\beta \stackrel{(b)}{\simeq} \frac{1}{2\pi} \int_{\omega-\pi\beta}^{\omega+\pi\beta} \phi(\tau) d\tau/\beta \stackrel{(c)}{\simeq} \phi(\omega)$$

- (a) consistent power calculation
- (b) Ideal passband filter with bandwidth β
- (c) $\phi(\tau)$ constant on $\tau \in [\omega 2\pi\beta, \omega + 2\pi\beta]$

Note that assumptions (a) and (b), as well as (b) and (c), are conflicting.

$$\hat{\phi}_{p}(\tilde{\omega}) \stackrel{\Delta}{=} \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{-i\tilde{\omega}t} \right|^{2}$$
$$= \frac{1}{N} \left| \sum_{t=1}^{N} y(t) e^{i\tilde{\omega}(N-t)} \right|^{2}$$
$$= N \left| \sum_{k=0}^{\infty} h_{k} y(N-k) \right|^{2}$$

where

$$h_k = \begin{cases} \frac{1}{N} e^{i\tilde{\omega}k}, & k = 0, \dots, N-1 \\ 0, & \text{otherwise} \end{cases}$$

$$H(\omega) = \sum_{k=0}^{\infty} h_k e^{-i\omega k} = \frac{1}{N} \frac{e^{iN(\tilde{\omega}-\omega)} - 1}{e^{i(\tilde{\omega}-\omega)} - 1}$$

- center frequency of $H(\omega) = \tilde{\omega}$
- 3dB bandwidth of $H(\omega) \simeq 1/N$

Filter Bank Interpretation of the Periodogram, con't

Conclusion: The periodogram $\hat{\phi}_p(\omega)$ is a filter bank PSD estimator with bandpass filter as given above, and:

- narrow filter passband,
- power calculation from only **1** sample of filter output.

Possible Improvements to the Filter Bank Approach

- 1. *Split the available sample*, and bandpass filter each subsample.
 - more data points for the power calculation stage.

This approach leads to Bartlett and Welch methods.

- 2. Use several bandpass filters on the whole sample. Each filter covers a small band centered on $\tilde{\omega}$.
 - provides several samples for power calculation.

This "multiwindow approach" is similar to the Daniell method.

Both approaches *compromise bias for variance*, and in fact are quite related to each other: splitting the data sample can be interpreted as a special form of windowing or filtering. Idea: Data-dependent bandpass filter design.

$$y_F(t) = \sum_{k=0}^m h_k y(t-k)$$

= $\underbrace{[h_0 \ h_1 \ \dots \ h_m]}_{h^*} \underbrace{\begin{bmatrix} y(t) \\ \vdots \\ y(t-m) \end{bmatrix}}_{\tilde{y}(t)}$

$$E\left\{|y_F(t)|^2\right\} = h^*Rh, \quad R = E\left\{\tilde{y}(t)\tilde{y}^*(t)\right\}$$

$$H(\omega) = \sum_{k=0}^{m} h_k e^{-i\omega k} = h^* a(\omega)$$

where $a(\omega) = [1, e^{-i\omega} \dots e^{-im\omega}]^T$

Capon Filter Design Problem:

$$\min_{h}(h^*Rh) \quad \text{subject to } h^*a(\omega) = 1$$

Solution:
$$h_0 = R^{-1}a/a^*R^{-1}a$$

The power at the filter output is:

$$E\{|y_F(t)|^2\} = h_0^*Rh_0 = 1/a^*(\omega)R^{-1}a(\omega)$$

which should be the power of y(t) in a passband centered on ω .

The Bandwidth
$$\simeq \frac{1}{m+1} = \frac{1}{\text{(filter length)}}$$

Conclusion Estimate PSD as:

$$\widehat{\phi}(\omega) = \frac{m+1}{a^*(\omega)\widehat{R}^{-1}a(\omega)}$$

with

$$\widehat{R} = \frac{1}{N-m} \sum_{t=m+1}^{N} \widetilde{y}(t)\widetilde{y}^{*}(t)$$

- *m* is the user parameter that controls the compromise between bias and variance:
 - as *m* increases, bias decreases and variance increases.
- Capon uses one bandpass filter only, but it splits the N-data point sample into (N - m) subsequences of length m with maximum overlap.

Relation between Capon and Blackman-Tukey Methods

Consider $\hat{\phi}_{BT}(\omega)$ with Bartlett window:

$$\hat{\phi}_{BT}(\omega) = \sum_{k=-m}^{m} \frac{m+1-|k|}{m+1} \hat{r}(k) e^{-i\omega k}$$
$$= \frac{1}{m+1} \sum_{t=0}^{m} \sum_{s=0}^{m} \hat{r}(t-s) e^{-i\omega(t-s)}$$
$$= \frac{a^*(\omega) \hat{R}a(\omega)}{m+1}; \quad \hat{R} = [\hat{r}(i-j)]$$

Then we have

$$\hat{\phi}_{BT}(\omega) = \frac{a^*(\omega)\hat{R}a(\omega)}{m+1}$$
$$\hat{\phi}_C(\omega) = \frac{m+1}{a^*(\omega)\hat{R}^{-1}a(\omega)}$$

Let

$$\widehat{\phi}_k^{\text{AR}}(\omega) = \frac{\widehat{\sigma}_k^2}{|\widehat{A}_k(\omega)|^2}$$

be the kth order AR PSD estimate of y(t).

Then

$$\hat{\phi}_C(\omega) = \frac{1}{\frac{1}{m+1}\sum_{k=0}^m 1/\hat{\phi}_k^{\text{AR}}(\omega)}$$

Consequences:

- Due to the average over k, $\hat{\phi}_C(\omega)$ generally has less statistical variability than the AR PSD estimator.
- Due to the low-order AR terms in the average, $\hat{\phi}_C(\omega)$ generally has worse resolution and bias properties than the AR method.

Spatial Methods — Part 1

Lecture 8

Problem: Detect and locate n radiating sources by using an array of m passive sensors.

Sensor 2

Emitted energy: Acoustic, electromagnetic, mechanical

Receiving sensors: Hydrophones, antennas, seismometers

Applications: Radar, sonar, communications, seismology, underwater surveillance

Basic Approach: Determine energy distribution over *space* (thus the name "spatial spectral analysis")

- Far-field sources in the same plane as the array of sensors
- Non-dispersive wave propagation

Hence: The waves are planar and the only location parameter is **direction of arrival (DOA)** (or angle of arrival, AOA).

- The number of sources *n* is known. (We do not treat the detection problem)
- The sensors are linear dynamic elements with known transfer characteristics and known locations
 (That is, the array is calibrated.)

Array Model — Single Emitter Case

- x(t) = the signal waveform as measured at a reference point (e.g., at the "first" sensor)
- $\tau_k =$ the delay between the reference point and the *k*th sensor
- $h_k(t)$ = the impulse response (weighting function) of sensor k
- $\bar{e}_k(t)$ = "noise" at the kth sensor (e.g., thermal noise in sensor electronics; background noise, etc.)

Note: $t \in \mathcal{R}$ (continuous-time signals).

Then the output of sensor k is

$$\bar{y}_k(t) = h_k(t) * x(t - \tau_k) + \bar{e}_k(t)$$

(* = convolution operator).

Basic Problem: Estimate the *time delays* $\{\tau_k\}$ with $h_k(t)$ known but x(t) unknown.

This is a *time-delay estimation problem* in the unknown input case.

Assume: The emitted signals are narrowband with known carrier frequency ω_c .

Then:
$$x(t) = \alpha(t) \cos[\omega_c t + \varphi(t)]$$

where $\alpha(t)$, $\varphi(t)$ vary "slowly enough" so that

$$\alpha(t-\tau_k)\simeq \alpha(t), \qquad \varphi(t-\tau_k)\simeq \varphi(t)$$

Time delay is now \simeq to a *phase shift* $\omega_c \tau_k$:

$$x(t- au_k) \simeq lpha(t) \cos[\omega_c t + \varphi(t) - \omega_c \tau_k]$$

$$h_k(t) * x(t - \tau_k) \simeq |H_k(\omega_c)|\alpha(t) \cos[\omega_c t + \varphi(t) - \omega_c \tau_k + \arg\{H_k(\omega_c)\}]$$

where $H_k(\omega) = \mathcal{F}\{h_k(t)\}\$ is the kth sensor's transfer function

Hence, the kth sensor output is

$$\bar{y}_k(t) = |H_k(\omega_c)|\alpha(t)$$

$$\cdot \cos[\omega_c t + \varphi(t) - \omega_c \tau_k + \arg H_k(\omega_c)] + \bar{e}_k(t)$$

The noise-free output has the form:

$$z(t) = \beta(t) \cos \left[\omega_c t + \psi(t)\right] =$$
$$= \frac{\beta(t)}{2} \left\{ e^{i[\omega_c t + \psi(t)]} + e^{-i[\omega_c t + \psi(t)]} \right\}$$

Demodulate z(t) (translate to baseband):

$$2z(t)e^{-\omega_c t} = \beta(t) \{\underbrace{e^{i\psi(t)}}_{\text{lowpass}} + \underbrace{e^{-i[2\omega_c t + \psi(t)]}}_{\text{highpass}} \}$$
where $2z(t)e^{-i\omega_c t}$ to obtain $\beta(t)e^{i\psi(t)}$

Lowpass filter $2z(t)e^{-i\omega_c t}$ to obtain $\beta(t)e^{i\psi(t)}$

Hence, by low-pass filtering and sampling the signal

$$\tilde{y}_k(t)/2 = \bar{y}_k(t)e^{-i\omega_c t} = \bar{y}_k(t)\cos(\omega_c t) - i\bar{y}_k(t)\sin(\omega_c t)$$

we get the **complex representation**: (for $t \in \mathbb{Z}$)

$$y_k(t) = \underbrace{\alpha(t) \ e^{i\varphi(t)}}_{s(t)} \underbrace{|H_k(\omega_c)| \ e^{i \arg[H_k(\omega_c)]}}_{H_k(\omega_c)} \ e^{-i\omega_c\tau_k} + e_k(t)$$

or

$$y_k(t) = s(t)H_k(\omega_c) e^{-i\omega_c\tau_k} + e_k(t)$$

where s(t) is the complex envelope of x(t).

Let

$$\theta = \text{the emitter DOA}$$

$$m = \text{the number of sensors}$$

$$a(\theta) = \begin{bmatrix} H_1(\omega_c) e^{-i\omega_c \tau_1} \\ \vdots \\ H_m(\omega_c) e^{-i\omega_c \tau_m} \end{bmatrix}$$

$$(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_m(t) \end{bmatrix} \quad e(t) = \begin{bmatrix} e_1(t) \\ \vdots \\ e_m(t) \end{bmatrix}$$

Then

y

$$y(t) = a(\theta)s(t) + e(t)$$

NOTE: θ enters $a(\theta)$ via both $\{\tau_k\}$ and $\{H_k(\omega_c)\}$. For *omnidirectional* sensors the $\{H_k(\omega_c)\}$ do not depend on θ . **Analog Processing Block Diagram**

Analog processing for each receiving array element

Given n emitters with

- received signals: $\{s_k(t)\}_{k=1}^n$
- DOAs: θ_k

Linear sensors \Rightarrow

$$y(t) = a(\theta_1)s_1(t) + \dots + a(\theta_n)s_n(t) + e(t)$$

Let

$$A = [a(\theta_1) \dots a(\theta_n)], \ (m \times n)$$
$$s(t) = [s_1(t) \dots s_n(t)]^T, \ (n \times 1)$$

Then, the **array equation** is:

$$y(t) = As(t) + e(t)$$

Use the *planar wave* assumption to find the dependence of τ_k on θ .

ULA Geometry

Sensor #1 = time delay reference

Time Delay for sensor k:

$$\tau_k = (k-1) \, \frac{d \sin \theta}{c}$$

where c = wave propagation speed

Let:

$$\omega_s \stackrel{\Delta}{=} \omega_c \frac{d\sin\theta}{c} = 2\pi \frac{d\sin\theta}{c/f_c} = 2\pi \frac{d\sin\theta}{\lambda}$$
$$\lambda = c/f_c = \text{signal wavelength}$$
$$a(\theta) = [1, e^{-i\omega_s} \dots e^{-i(m-1)\omega_s}]^T$$

By direct analogy with the vector $a(\omega)$ made from uniform samples of a *sinusoidal time series*,

 $\omega_s = \text{spatial frequency}$

The function $\omega_s \mapsto a(\theta)$ is one-to-one for

$$|\omega_s| \leq \pi \leftrightarrow rac{d|\sin heta|}{\lambda/2} \leq 1 \leftarrow \boxed{d \leq \lambda/2}$$

As

d = spatial sampling period

 $d \leq \lambda/2$ is a **spatial** Shannon sampling theorem.

Spatial Methods — Part 2

Lecture 9

Spatial filtering useful for

- DOA discrimination (similar to frequency discrimination of time-series filtering)
- Nonparametric DOA estimation

There is a strong analogy between temporal filtering and spatial filtering.

Temporal FIR Filter:

$$y_F(t) = \sum_{k=0}^{m-1} h_k u(t-k) = h^* y(t)$$

 $h = [h_o \dots h_{m-1}]^*$
 $y(t) = [u(t) \dots u(t-m+1)]^T$

If $u(t) = e^{i\omega t}$ then

$$y_F(t) = [h^*a(\omega)] u(t)$$

filter transfer function

$$a(\omega) = [1, e^{-i\omega} \dots e^{-i(m-1)\omega}]^T$$

We can select h to enhance or attenuate signals with different frequencies ω .

Spatial Filter:

 ${y_k(t)}_{k=1}^m$ = the "spatial samples" obtained with a sensor array.

Spatial FIR Filter output:

$$y_F(t) = \sum_{k=1}^m h_k y_k(t) = h^* y(t)$$

Narrowband Wavefront: The array's (noise-free) response to a narrowband (\sim sinusoidal) wavefront with complex envelope s(t) is:

$$y(t) = a(\theta)s(t)$$

$$a(\theta) = [1, e^{-i\omega_c\tau_2} \dots e^{-i\omega_c\tau_m}]^T$$

The corresponding filter output is

$$y_F(t) = \underbrace{[h^*a(\theta)]}_{\text{filter transfer function}} s(t)$$

We can select h to enhance or attenuate signals coming from different DOAs.

Analogy between Temporal and Spatial Filtering

r r O/

(a) Temporal filter

narrow band source with $\mathrm{DOA}{=}\theta$

(b) Spatial filter

Lecture notes to accompany *Introduction to Spectral Analysis* by P. Stoica and R. Moses, Prentice Hall, 1997

Example: The response magnitude $|h^*a(\theta)|$ of a spatial filter (or beamformer) for a 10-element ULA. Here, $h = a(\theta_0)$, where $\theta_0 = 25^\circ$

Spatial Filters can be used

- To pass the signal of interest only, hence filtering out interferences located outside the filter's beam (but possibly having the same temporal characteristics as the signal).
- To locate an emitter in the field of view, by sweeping the filter through the DOA range of interest ("goniometer").

A Filter Bank Approach to DOA estimation.

Basic Ideas

- Design a filter $h(\theta)$ such that for each θ
 - It passes undistorted the signal with $DOA = \theta$
 - It attenuates all DOAs $\neq \theta$
- Sweep the filter through the DOA range of interest, and evaluate the powers of the filtered signals:

$$E\left\{|y_F(t)|^2\right\} = E\left\{|h^*(\theta)y(t)|^2\right\}$$
$$= h^*(\theta)Rh(\theta)$$

with $R = E \{ y(t)y^{*}(t) \}.$

The (dominant) peaks of h*(θ)Rh(θ) give the DOAs of the sources.

Assume the array output is spatially white:

$$R = E \{y(t)y^*(t)\} = I$$

Then: $E \{|y_F(t)|^2\} = h^*h$

Hence: In direct analogy with the temporally white assumption for filter bank methods, y(t) can be considered as impinging on the array from *all* DOAs.

Filter Design:

min
$$(h^*h)$$
 subject to $h^*a(\theta) = 1$

Solution:

$$h = a(\theta)/a^*(\theta)a(\theta) = a(\theta)/m$$
$$E\left\{|y_F(t)|^2\right\} = a^*(\theta)Ra(\theta)/m^2$$

$$\widehat{R} = \frac{1}{N} \sum_{t=1}^{N} y(t)y^{*}(t)$$

The beamforming DOA estimates are:

$$\{\hat{\theta}_k\}$$
 = the locations of the *n* largest peaks of $a^*(\theta)\hat{R}a(\theta)$.

This is the direct spatial analog of the Blackman-Tukey periodogram.

Resolution Threshold:

$$\inf |\theta_k - \theta_p| > \frac{\text{wavelength}}{\text{array length}}$$
$$= \text{array beamwidth}$$

Inconsistency problem:

Beamforming DOA estimates are consistent if n = 1, but inconsistent if n > 1.

Filter design:

$$\min_{h}(h^*Rh) \text{ subject to } h^*a(\theta) = 1$$

Solution:

$$h = R^{-1}a(\theta)/a^*(\theta)R^{-1}a(\theta)$$
$$E\left\{|y_F(t)|^2\right\} = 1/a^*(\theta)R^{-1}a(\theta)$$

Implementation:

$$\{\hat{\theta}_k\}$$
 = the locations of the *n* largest peaks of $1/a^*(\theta)\hat{R}^{-1}a(\theta)$.

Performance: Slightly superior to Beamforming.

Both Beamforming and Capon are *nonparametric* approaches. They do not make assumptions on the covariance properties of the data (and hence do not depend on them).

Assumptions:

• The array is described by the equation:

$$y(t) = As(t) + e(t)$$

• The noise is spatially white and has the same power in all sensors:

$$E\left\{e(t)e^*(t)\right\} = \sigma^2 I$$

• The signal covariance matrix

$$P = E\left\{s(t)s^*(t)\right\}$$

is nonsingular.

Then:

$$R = E \left\{ y(t)y^*(t) \right\} = APA^* + \sigma^2 I$$

Thus: The NLS, YW, MUSIC, MIN-NORM and ESPRIT methods of frequency estimation can be used, almost without modification, for DOA estimation.

$$\min_{\{\theta_k\}, \{s(t)\}} \underbrace{\frac{1}{N} \sum_{t=1}^{N} \|y(t) - As(t)\|^2}_{f(\theta,s)}$$

Minimizing f over s gives

$$\hat{s}(t) = (A^*A)^{-1}A^*y(t), \quad t = 1, \dots, N$$

Then

$$f(\theta, \hat{s}) = \frac{1}{N} \sum_{t=1}^{N} || [I - A(A^*A)^{-1}A^*]y(t) ||^2$$

$$= \frac{1}{N} \sum_{t=1}^{N} y^*(t) [I - A(A^*A)^{-1}A^*]y(t)$$

$$= tr\{[I - A(A^*A)^{-1}A^*]\hat{R}\}$$

Thus, $\{\hat{\theta}_k\} = \arg\max_{\{\theta_k\}} tr\{[A(A^*A)^{-1}A^*]\hat{R}\}$

For N = 1, this is precisely the form of the NLS method of frequency estimation.

Properties of NLS:

- Performance: high
- Computational complexity: high
- Main drawback: need for multidimensional search.

$$y(t) = \begin{bmatrix} \bar{y}(t) \\ \tilde{y}(t) \end{bmatrix} = \begin{bmatrix} \bar{A} \\ \tilde{A} \end{bmatrix} s(t) + \begin{bmatrix} \bar{e}(t) \\ \tilde{e}(t) \end{bmatrix}$$

Assume: $E \{ \bar{e}(t) \tilde{e}^*(t) \} = 0$

Then:

$$\Gamma \stackrel{\triangle}{=} E\left\{\bar{y}(t)\tilde{y}^*(t)\right\} = \bar{A}P\tilde{A}^* \quad (M \times L)$$

Also assume:

- M > n, L > n ($\Rightarrow m = M + L > 2n$)
- $\operatorname{rank}(\bar{A}) = \operatorname{rank}(\tilde{A}) = n$

Then: rank(Γ) = n, and the SVD of Γ is

$$\Gamma = \begin{bmatrix} U_1 & U_2 \\ n & M-n \end{bmatrix} \begin{bmatrix} \Sigma_{n \times n} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1^* \\ V_2^* \end{bmatrix} \stackrel{}{}_{L-n}^{n}$$
Properties: $\tilde{A}^*V_2 = 0$ $V_1 \in \mathcal{R}(\tilde{A})$

Lecture notes to accompany *Introduction to Spectral Analysis* by P. Stoica and R. Moses, Prentice Hall, 1997

$$\{\hat{\theta}_k\} = \text{the } n \text{ largest peaks of} \\ 1/\tilde{a}^*(\theta)\hat{V}_2\hat{V}_2^*\tilde{a}(\theta)$$

where

- $\tilde{a}(\theta)$, $(L \times 1)$, is the "array transfer vector" for $\tilde{y}(t)$ at DOA θ
- \hat{V}_2 is defined similarly to V_2 , using

$$\widehat{\Gamma} = \frac{1}{N} \sum_{t=1}^{N} \bar{y}(t) \tilde{y}^{*}(t)$$

Properties:

- Computational complexity: medium
- Performance: satisfactory if $m \gg 2n$
- Main advantages:
 - weak assumption on $\{e(t)\}$
 - the subarray \overline{A} need not be calibrated

Both MUSIC and Min-Norm methods for frequency estimation apply with only minor modifications to the DOA estimation problem.

- Spectral forms of MUSIC and Min-Norm can be used for arbitrary arrays
- Root forms can be used only with ULAs
- MUSIC and Min-Norm break down if the source signals are coherent; that is, if

$$\operatorname{rank}(P) = \operatorname{rank}(E\{s(t)s^*(t)\}) < n$$

Modifications that apply in the coherent case exist.

Assumption: The array is made from *two identical subarrays* separated by a *known displacement vector*.

Let

$$\overline{m} = \#$$
 sensors in each subarray
 $A_1 = [I_{\overline{m}} \ 0]A$ (transfer matrix of subarray 1)
 $A_2 = [0 \ I_{\overline{m}}]A$ (transfer matrix of subarray 2)

Then $A_2 = A_1 D$, where $D = \begin{bmatrix} e^{-i\omega_c \tau(\theta_1)} & 0 \\ & \ddots & \\ 0 & e^{-i\omega_c \tau(\theta_n)} \end{bmatrix}$

 $\tau(\theta)$ = the time delay from subarray 1 to subarray 2 for a signal with DOA = θ :

$$\tau(\theta) = d\sin(\theta)/c$$

where d is the subarray separation and θ is measured from the perpendicular to the subarray displacement vector.

Properties:

- Requires special array geometry
- Computationally efficient
- *No risk* of spurious DOA estimates
- Does not require array calibration

Note: For a ULA, the two subarrays are often the first m-1 and last m-1 array elements, so $\overline{m} = m-1$ and

$$A_1 = [I_{m-1} \ 0]A, \qquad A_2 = [0 \ I_{m-1}]A$$