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ABSTRACT

We present a fast, scalable method to simultaneously register and classify vehicles in circular synthetic aperture
radar imagery. The method is robust to clutter, occlusions, and partial matches. Images are represented as a
set of attributed scattering centers that are mapped to local sets, which are invariant to rigid transformations.
Similarity between local sets is measured using a method called pyramid match hashing, which applies a pyramid
match kernel to compare sets and a Hamming distance to compare hash codes generated from those sets. By
preprocessing a database into a Hamming space, we are able to quickly find the nearest neighbor of a query
among a large number of records. To demonstrate the algorithm, we simulated X-band scattering from ten
civilian vehicles placed throughout a large scene, varying elevation angles in the 35 to 59 degree range. We
achieved better than 98 percent classification performance. We also classified seven vehicles in a 2006 public
release data collection with 100% success.
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1. INTRODUCTION

Identification of civilian vehicles in all-weather persistent surveillance of a large scene is enabled by wide aper-
ture synthetic aperture radar (SAR) imagery. In this paper, we present a new algorithm, based on attributed
scattering centers,1 that finds the closest entry of a training vehicle database for a vehicle query. To accomplish
this, we combine three concepts: mapping attributed scattering centers to sets that are invariant to rotations and
translations,2, 3 applying a method called pyramid match hashing4 (PMH), and performing a simple fusion5, 6 of
results for individual scatterers.

Figure 1 displays an outline for our algorithm. In an offline step, wide aperture circular SAR training imagery
is abstracted to attributed scattering centers ( or point patterns). These points have 2D location information,
and hence vary with respect to rotations and translations in a plane. The invariant mapping block describes
each scattering center by a local neighborhood of points in a local frame of reference described by the point and
its azimuth to the radar; as a result, the scattering centers are represented as a set of sets. Subsequently, the
PMH algorithm represents each local set with a binary hash code for fast digital processing.

As shown in Figure 1, a query image is subjected to the same extraction, invariance, and PMH steps during
online processing. Each hash code from the query is compared to the hash codes of the database using a Hamming
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Figure 1. The classification algorithm as two input branches, where the training data is processed offline and the query is
processed when data is available. Query hash codes are compared against the database, and the nearest several candidates
from the database are evaluated using the pyramid match kernel for classification.
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distance to find a set of nearest neighbors (NN), which are candidate nearest neighbors. This reduced set of
candidates is further processed by the more sensitive pyramid match kernel7 (PMK); the PMK is our measure of
similarity in comparing the invariant, local, attributed point patterns. Finally, each point (local set) of the query
is assigned a label from the training set, and we implement a majority vote or mode decision for classification.

We created two experiments to demonstrate the capabilities of our classification algorithm. The first data set
contains synthetic variations of ten civilian vehicles that are placed in a large scene. This simulation was first used
by Dungan and Potter8 based on synthetic data domes in the CVDomes data set.9 For a second experiment,
a 2006 challenge problem10 provided phase history for eight circular orbits of a parking lot containing seven
civilian vehicles. We extracted imagery for the seven vehicles and classified vehicles from the last seven orbits,
using the first orbit for training data. As with CVDomes data, the 2006 data set was previously exploited and
used in classification experiments.11

The invariant PMH based method of Figure 1 is fast compared to the minimized least trimmed squares
Hausdorff distance method8, 11, 12 of our previous work. Single threaded query times for the 10-class synthetic
data set reduced from 20 minutes to less than 10 seconds, while performance improved from 96.5% (97.7% in
a submitted manuscript) to 98.7%. We also achieved a similar two orders of magnitude decrease in processing
time for the 2006 data set; the performance numbers showed the same 100% classification.

The CVDomes based experiment was designed to be more difficult than the 2006 based experiment. By
moving a vehicle to different locations in a large scene, variations in elevation to the radar from 35 to 59 degrees
cause vehicle signatures to differ primarily due to layover13 changes.

The remaining sections of the paper are organized as follows. First, in Section 2, we describe the extraction
of attributed point patterns and the formation experiments using the CVDomes and 2006 data sets. Next, in
Section 3, we describe the pose invariant mapping of point patterns along with Mahalanobis-based distances and
whitening of the data. Then, in Section 4, we briefly describe the PMH algorithm, implementation, and decision
process. Finally, in Section 5, we show classification results for the CVDomes and 2006 data sets.

2. CIVILIAN VEHICLE CIRCULAR SAR DATABASES

In this section, we describe the design of two databases that are used to evaluate the classification algorithm
of Figure 1. The first data set is synthetically generated imagery using ten vehicles of the CVDomes data set.9

The second database contains imagery for seven vehicles that were extracted from the parking lot of the 2006
challenge problem.10

2.1 Experiment Design using CVDomes

In circular SAR, the radar, along with its ground projection, orbit the origin in a circular path. The angle of
elevation from a vehicle to the radar varies throughout the orbit, except for a vehicle at the origin. For our
experiments, we assume the radar is orbiting with an elevation of 45 degrees with respect to the scene center.
Furthermore, we assume the terrain is flat asphalt across the patch, resulting in elevation angles between 35 and
59 degrees.

To generate imagery from the phase history data in the CVDomes data set,9 we used fast backprojection14, 15

over a 5 degree aperture and generated 120 images around the SAR orbit with an 40 percent overlap. Figure 2
shows example images for a Maxima (v5), where all 120 images are coherently added to give a 360 degree
representation of a vehicle. When generating 2D SAR imagery of a vehicle on asphalt, it is typically possible to
visualize an inner and outer ring of scattering. The inner ring is generated by radar echoes that experience a
two-bounce path between the asphalt and the side of the vehicle; thus, the inner ring represents time-of-flight
to the base outline of the vehicle.16 In contrast, the outer ring arises from radar echoes reflected by elevated
portions of the vehicle, such as the roof line. These elevated features project onto the image in a direction
orthogonal to the radar line of sight – an effect known as layover.13 The polarization feature, ν, encodes even
versus odd bounce echoes.17–19

Depending upon the pose and location of the vehicle within the scene, scattering features may migrate or not
persist, and the elevated features will exhibit different layover as a function of elevation angle. Thus the same



Figure 2. If a vehicle is offset from the center of a large circular SAR scene it will experience different elevations to the
radar over the flight path. As a result, the same vehicle looks differnt when translated around the scene. We generated
simulated vehicle imagery for each of the dots in the graph; imagery for six of the locations are displayed. The circled
dots are locations used in the classification training set.

CVDomes Vehicles
1 2 3 4 5 6 7 8 9 10

Camry Civic Jeep93 Jeep99 Maxima MPV Mitsubishi Sentra Avalon Tacoma

Table 1. The CVDomes data set contains simulations for ten civilian vehicles. In this paper, we refer to these vehicles
with a number in one through ten.

vehicle in two different locations can appear significantly different, as shown in Figure 2. The top left image
shows the vehicle centered in the scene, while the remaining images show the vehicle offset by 0.4 times the flight
path radius in five different locations in the scene.

Based on the dots in the right half of Figure 2, we generated 50 sets of images for each of the ten vehicle
classes in Table 1. There are ten 36-degree pose rotations at the center and ten locations on each of the four
concentric rings about the center. Each vehicle location v = ||v|| ejθv , in polar coordinates, is represented by the
pair (q, θv), where q ∈ {0.0, 0.1, 0.2, 0.3, 0.4} is the ratio q = ||v|| / ||rv|| and ||rv|| is the flight path radius. The
resulting database contains 500 sets of images. Each set of images contains 120, five degree, subaperture images
with 40 percent overlap. The six circled locations in Figure 2 are set aside as training samples. Thus, samples in
the set {(0.0, 0◦), (0.3, 0◦), (0.3, 72◦), (0.3, 144◦), (0.3, 216◦), (0.3, 288◦)} are used for training, while the remaining
44 locations are used as classification samples.

The first step in applying the approach shown in Figure 1 is to process the SAR imagery into an attributed
point pattern. The high-frequency scattering response of an object is well approximated as a sum of scat-
tering centers,20 and it is possible to discriminate amongst various objects using an unordered set of feature
points.8, 11, 21–25 These attributed scattering centers or feature points can include location, amplitude, polariza-
tion, and a variety of other attributes.1 Although radar bandwidth limits the ability to distinguish point sets
from two vehicles observed from a given viewing angle,26 the fusion of a diversity of vehicle aspects can greatly
enhance discrimination.27–29

For each image in each set, we implemented a simple peak extractor to approximate scattering center locations.
Each scattering center is represented as a vector containing the x and y location, the center azimuth, θ, of
the associated imaging aperture, the amplitude, A, of the peak, and an even/odd bounce bit ν to encode
polarization.8, 17–19 Thus each point in an image is represented by

�p = (x, y, θ, A, ν). (1)



Figure 3. By extracting attributed scattering centers from the imagery shown in Figure 2, vehicles are abstracted to a
set of attributed points. Among the attributes for a scattering center are 2D location and azimuth to the radar. Darker
points in the plots start with a zero degree azimuth in the x direction; lighter points represent increasing azimuths as the
radar orbits counterclockwise from the x-axis. The plot to the right shows a spiral pattern by representing the azimuth
on a z-axis.

2006 Data
1 2 3 4 5 6 7

Prizm Maxima Sentra Santa Fe Camry Taurus Malibu

Table 2. The 2006 data collection contains seven identifiable civilian vehicles. In this paper, we refer to these vehicles
with a number in one through seven.

A vehicle sample is represented by a set
P = {�p1, · · · , �pn} (2)

containing all of the attributed scattering centers in the collection of 120 subaperture images. Figure 3 shows
example views of {x, y, θ} for the images of Figure 2. As azimuth increases counterclockwise from the x-axis, the
azimuth attribute goes from dark to light points. The 3D plot shows the azimuth on the z-axis, and the leading
edge (to the radar) of the vehicle is apparent by the spiral pattern.

2.2 Experiment Design using 2006 Collection
A 2006 data collection10 generated circular SAR phase history for a parking lot scene containing seven charac-
terized civilian vehicles. The data set contained information for eight orbits of the radar. The top left image
in Figure 4 shows an image of the parking lot with numeric labels for the seven vehicles, while Table 2 cross-
references the label numbers with vehicle model.

Using the same imaging technique from Section 2.1, we isolated the seven vehicles as shown by the seven
remaining images of Figure 4. Each image is a sum of 120, five degree aperture, backprojection images with 40
percent overlap around the SAR orbit. To generate attributed point patterns, we extracted the same information
as described with Equation (1).

For the experiment, the attributed point patterns from the first orbit of the SAR are used as training data.
Then, in the subsequent seven passes, the vehicles are identified based on the training data.

3. INVARIANT MAPPING OF ATTRIBUTED POINT PATTERNS

A set of attributed scattering centers describes a class sample; this set of attributed points is considered equiva-
lent to another set under rigid transformations for purposes of pattern recognition. In other words, a translated



Figure 4. There are seven identifiable civilian passenger vehicles in 2006 data collection parking lot. The top left image
shows the seven vehicles in one scene, while the remaining images show close-up views of each vehicle independently. We
extracted attributed scattering centers of these seven vehicles for all eight orbits of the radar.

Figure 5. An example attributed point pattern with an anisotropy (azimuth) attribute is displayed on the left. A point
pi is represented by a set Hi containing the point along with three nearest neighbors in a local frame of reference.

or rotated vehicle is the same vehicle. However, matching sets of points under rigid transformations is compu-
tationally intensive. For example, Dungan and Potter applied a nonlinear optimization called a particle swarm
to minimize a distance between point patterns.8, 11

To avoid the nonlinear optimization, some researchers have aligned point patterns using an anisotropic
attribute.2, 3 We have adapted a variation of local alignment to the SAR recognition problem. Let P =
{p1, p2, · · · , pn} ⊂ R

f represent a class sample, where f is the number of attributes (i.e. f = 5 from Equa-
tion (1)) and n is the number of points in a class sample. Next, we proceed with invariant transformation and
whitening steps.

First, as illustrated in Figure 5, we represent each point in P by a set of its K nearest neighbors. The distance
between points is measured using a Mahalanobis distance,

d(pi, pj) =
√

(pi − pj)T Σ−1(pi − pj), (3)

where Σ is the measurement error covariance matrix. A local origin centers on the point, and the direction of
the azimuth attribute defines a local x′-axis with the y′-axis 90 degrees counterclockwise. Each of the x, y, and
θ attributes for the K nearest neighbors of pi is transformed to the local frame of reference (A and ν attributes
do not change). Thus, each pi ∈ P is represented as a set of K + 1 points.

Secondly, the transformed local sets are whitened to give an identity error covariance, a desirable property
for the PMK of the next section. Sets are whitened using the transformation W ,

Σ = V ΛV T ⇒ W = V Λ− 1
2 V T . (4)



Notice that the local transformation process aligns nearest neighbor points to a frame of reference that is noisy.
This introduces additional error; thus, the whitening process is approximate.

In summary, each pi ∈ P is mapped to a transformed and whitened set along with its K nearest neighbors,

pi → Hi = {h
ξ
(i)
0

, h
ξ
(i)
1

, · · · , h
ξ
(i)
K

}, (5)

where {ξ(i)
0 , ξ

(i)
1 , · · · , ξ

(i)
K } is a sequence of indexes in P to the K nearest neighbors of the ith element of P . Thus

P is mapped to the set of sets H ,

P = {p1, p2, · · · , pn} → H = {H1, H2, · · · , Hn}. (6)

As a result, each point of each class sample is represented as a set that is considered a database entry. The
training database H consists of a union of all H mappings for the class samples, creating one big database. Thus,
H is a set of sets containing an entry for every point of every training sample; it is necessary to maintain an
index cross referencing members Hi ∈ H to a class label.

When accessing the database, a query is invariantly mapped to a set of sets Q = {Q1, Q2, Q3, · · · }, where
the number of sets in Q is the same as the number of points in the query attributed point pattern.

4. PYRAMID MATCH HASHING AND FUSION OF RESULTS

The pyramid histogram,7 pyramid match kernel,7 and pyramid match hashing4 are described in detail by Grau-
man and Darrell; here, we provide a brief overview of the concept along with insight into our implementation.

4.1 The Pyramid Histogram

To begin, the data must be represented as pyramid histograms, described as follows:

• For the base layer of a pyramid histogram, scale, shift, and quantize the K + 1 points for a member of the
database H in Equation 6 onto a discrete grid of integers in {1, · · · , N0} for each of the f dimensions. The
Nf

0 discrete locations represent single counts in bins of a very sparse histogram;

• For subsequent layers, repeatedly decimate the grid by a factor of two in each dimension while accumulating
the bin counts. Eventually all points in H are counted in a single bin;

• For L = �log2 N0� layers, there are (N0/2l)f bins per layer for l ∈ {0, · · · , L − 1}.

4.2 The Pyramid Match Kernel

For a database entry Hi ∈ H and a query Qj ∈ Q, the PMK is a measure of similarity between two pyramid
histograms given by

PΔ(Ψ(Hi), Ψ(Qj)) = wL−1IL−1 +
L−2∑
l=0

(wl − wl+1)Il, (7)

where Ψ is the pyramid histogram function, wl = 2−l is a weighting function, and Il is an intersection between
the lth layers of the two pyramid histograms. To create a Mercer kernel, the entries of weighting function must
be monotonically decreasing, and wl satisfies this condition.7 The intersection between each level of two pyramid
histograms Ψ(Hi) and Ψ(Qj), Il, is defined as the sum of the minimum number in corresponding bins between
the hypercubes at that pyramid level.

Our implementation quantizes the data, using N0 = 512 and f = 5, to a 5125 hypercube (histogram); the
invariantly mapped databases for both the CVDomes and 2006 collection, consisting of each point of each class
sample, adequately fits in this grid. The hypercube is large, and the complexity of calculating the PMK is based
in large part on the time to intersect two hypercubes. However, the hypercubes are sparsely populated and the
intersection is a matter of comparing populated indices; thus time complexity is on the order of the number of
points in the sets Hi and Qj as opposed to the size of the hypercube.



Figure 6. Each point of each training sample is mapped to a set of nearest neighbors in a local frame of reference. These
sets are coded into M -bit hash keys. The points of a query sample are also coded to M -bit hash keys. The query codes
are compared to database entries using Hamming distances.

4.3 Pyramid Match Hashing
The PMK can be used to implement a kernel-based classifier, such as a nearest neighbor, where the classifier
chooses the largest kernel between Qj and the database H. However, the time complexity grows linearly in the
number of elements in H. The PMH algorithm, on the other hand, provides a faster method to preprocess the
database into binary hash codes, where queries are compared to the database using Hamming distances (sum
of XOR between binary codes). A nearest neighbor search still requires linear time complexity in calculating
Hamming distances, but it is significantly faster than calculating the PMK. Furthermore, it is possible to perform
an approximate nearest neighbor search in sublinear time,4 if desired, for large databases.

An M -bit hash code y for a member of the database or a set in the query is generated from a 1-bit quantized
map of the vectorized and square-root weighted pyramid histogram4 x,

y = Q(Ax). (8)

The 1-bit quantization, Q, is calculated using the sign of Ax, and the A ∈ R
M×N matrix is a zero mean unit

variance random matrix. The row count N is the size of the vectorized pyramid histogram, i.e.,

N =
L−1∑
l=0

(
N02−l

)f
. (9)

Since A is very large, while x is sparse, we seed a fast Mersenne Twister30 pseudorandom number generator with
an index to the entry of A to generate values in A on demand.

4.4 Overview and Fusion of Decisions
Figure 6 shows an overview of the invariant mapping and hash coding process of Figure 1. The scattering centers
of each class sample are represented by an f dimensional attributed point pattern. Each point of each class
sample is mapped to a rotation and translation invariant set of its K nearest neighbors. These sets are then
hash coded into a database. For example, 60 class samples with 200 points each would generate a database of
12, 000 hash codes.

Next, a query image is also hash coded using PMH to generate a set of hash codes for each point in the
query pattern. As described in Figure 1, the query hash codes are compared to the database hash codes using
Hamming distances. To preserve the measure of similarity/distance between sets in the PMK vs. Hamming
distance, the hash code would need to be large. Thus, we limit the length of the hash code and calculate several
nearest neighbors (or approximate nearest neighbors) using the Hamming distance. Those nearest neighbors are
then evaluated using the uncoded sets with the PMK for a final decision for a point in the query pattern.

Each point in the query pattern is independently classified to a member of the database. In a final fusion5, 6

of decisions, we simply choose the most frequently occurring decision or mode.



5. EXPERIMENTAL RESULTS

Based on data sets described in Section 2, we applied invariant mapping and generated hash coded databases.
Implementation of the classification algorithm requires setting the measurement error covariance matrix Σ and
PMH parameters based on the physics of the application.

To design Σ in the Mahalanobis distance, we choose to populate only the main diagonal for simplicity. Our
strategy begins by creating rough estimates for the measurement error variances of the five attributes. Suppose
that we are 95% confident that our scattering center peak locations x and y are within two pixels of their true
locations (i.e. within a 12 cm). Thus,

2 = 1.98σx ⇒ σ2
x = σ2

y = 1. (10)

Now, suppose that the azimuth attribute for each peak is uniformly distributed over the 5 degree aperture; hence

σ2
θ =

(b − a)2

12
=

52

12
= 2. (11)

For the amplitude attribute, log-normal and quarter-power normal models have been widely adopted for non-
clutter peaks.31 Under the log-normal assumption, suppose that with 95% confidence, the amplitude measure-
ment is accurate within 5 dB (zero dB is the maximum peak in the data set); thus

5 = 1.98σA ⇒ σ2
A = 2.52 = 6.25. (12)

Lastly, suppose that the even/odd bounce bit ν is correct with probability p = 0.95; thus

σ2
ν = p(1 − p) = 0.95(1− 0.95) = 0.05. (13)

For the invariant mapping, we choose to set K = 32 for the nearest neighbors in the local groups; a typical
point pattern had approximately 200 points. After invariant mapping, all sets in H had 32 members each with
the five dimensions of Equation (1). A pyramid histogram with a base level side of N0 = 512 was sufficient to
digitize all of the data; as a result, the histogram pyramids had L = 9 levels. The following sections apply these
parameters to the CVDomes and 2006 collection experiments.

5.1 Classification Results using CVDomes

In addition to classification performance, this section shows the effect on performance of using hash codes. Recall,
as described in Section 2.1, we are classifying vehicles placed on the red dots of Figure 7c based on a training
vehicles placed on the circled dots.

Figure 7a shows a histogram classifying vehicle 5, sample 1 (a pose rotation at the center), using only 1% of the
Hamming nearest neighbors and a 120-bit hash key. The histogram shows that 126 of 184 points in the attributed
point pattern were properly classified in the database, and the mode is convincing. The misclassification errors
are caused by quantization errors during the imaging, too few Hamming nearest neighbors, and measurement
error. To make the problem more difficult, Figure 7b shows classification results for vehicle 5 imaged at the
edge of the scene. The peak in the histogram is smaller but clear. The farthest point from a training sample is
sample 44 labeled in Figure 7c; as shown in Figures 7d and 7e, using too few Hamming nearest neighbors causes
a misclassification. Finally, in Figure 7f, we show an example using approximate nearest neighbors, where time
complexity scales with the square root of the database size.

By applying the PMK to all 440 test samples, we achieved a peak classification performance of 98.7%.
Depending on the hash key length and number of nearest neighbors in the Hamming distance, performance
can degrade. Thus, the hashing provides a performance versus time-complexity trade-off. Figure 8 shows the
effects of key length and the number of Hamming nearest neighbors on performance. As shown, a 120-bit key
length using 400 Hamming nearest neighbors (3.4% of the database of 11875 hash codes) was sufficient for peak
performance. The example confusion matrix in Figure 8 shows the methodology in calculating performance,
where Pid is the trace divided by 440. Notice that most of the few errors are caused by distinguishing two model
years of the Jeep, and all errors occurred for q = 0.4, i.e., in the outer ring of the scene.
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Figure 7. A query sample (vehicle) contains on the order of 150 scattering centers; each are identified to a member of the
training set. A simple mode based fusion method identifies the query. In (a), v5 is rotated and placed at the center is
easily identified. In (b), (d), (e), and (f), the vehicle is placed at the edge of the scene (c) and is more difficult to classify.
Notice that setting the Hamming NN parameter too small causes a misclassification in (e).
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Figure 8. Performance of the classifier on the CVDomes imagery varies with respect to hash key length and number
of nearest neighbors in a Hamming space. The peak performance is achieved using greater than 120-bit keys and 400
Hamming distance nearest neighbors. The confusion matrix shows 98.7% performance in our application.

Using MATLAB with some mex C files, calculating the PMK required 13.4ms on a 2.67 GHz Intel Core i7.
Thus, calculating the PMK for all 11875 members of the database would require 159 seconds. By calculating only
the PMK on the 400 Hamming nearest neighbors, the required CPU time was just over 5 seconds. The overhead
required to hash code the query and find the Hamming nearest neighbors required approximately 5 seconds.
Hence, hash coding reduced query times from 159 s to 10 s. We expect improved coding and moving the algorithm
to C would reduce query times significantly. We did not fully evaluate the performance of using approximate
Hamming nearest neighbors, but this should also reduce time-complexity, especially on large databases.
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Figure 9. It is possible to achieve 100% classification on the 2006 data. The histogram shows an example of v5 correctly
classified with a 40-bit hash key. Performance peaks with a 30-bit hash key and time complexity is directly proportional
to key length. The confusion matrix shows all seven passes classified properly.

5.2 Classification Results using the Circular SAR 2006 Collection

The experiment for the 2006 collection was described in Section 2.2, where training samples are generated from
the first pass of the SAR and test samples are generated from the remaining seven passes. The peak performance
of classifying the vehicles using the PMK was 100%, however, we could evaluate performance versus reduced
time complexity.

Figure 9 shows some results from applying PMH to the 2006 collection. The first plot is a histogram generated
when classifying vehicle 5 on pass 4 using a 40-bit hash key and 2% of the Hamming nearest neighbors; vehicle
5 is clearly selected as the decision. Although not shown, the peak is more pronounced as the hash key length is
increased to 80 or 120. The middle plot shows that a 30-bit hash code was sufficient to achieve 100% classification
for the 49 test samples with approximately 0.9 second query times. The middle plot also shows that query times
increase as hash key length increases. The confusion matrix is shown at the right of Figure 9.

6. DISSCUSION

Notice that the 2006 collection experiment has only 7 training samples versus the 60 training samples of the
CVDomes experiment; both had approximately 200 attributed scattering centers per training sample. The
smaller training set along with a shorter hash key explains the 10:1 ratio of query times. By using the uncoded
PMK or a long hash key, we achieved 100% performance by a wide margin (i.e. the decision histogram had a
strong peak for every test sample). The relative ease of identifying vehicles in the 2006 collection was due to the
vehicles being place near the scene center and remaining stationary during the eight passes; any changes would
be caused by noise, quantization errors, and focusing errors. This was our motivation for simulating the more
challenging experiment using CVDomes.

Anecdotally, test samples that are spatially closer to a training sample (see Figure 7c) are easier to identify.
This is due to the anisotropy of SAR imagery; vehicles look different from every azimuth and elevation. We
found that it was adequate to place six training samples in a large scene when identifying well focused images.
Other sources of error such clutter, occlusion, and defocus would reduce the range of certainty around training
samples. Thus, we believe well focused data to a digital elevation map32 may be important to identify civilian
vehicle from X-band circular SAR in a single pass. We also identified vehicles based on 360 degrees of aspect
around each vehicle; limited aspect can reduce classification performance significantly.11

Based on the two experiments in this paper, our algorithm applying invariant mapping along with PMH is
successful at identifying civilian vehicles from circular SAR imagery in near real-time. The algorithm is fast,
scalable to large databases, and expandable to additional information such as 3D or other scattering attributes.
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