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Abstract

First, you will design a proportional controller to meet a given set of specifications. Then, you will
design a proportional integral derivative (PID) controller. Next the practical problems of noise and
nonlinearities in PID control are considered. The ideas of derivative filtering and anti-windup schemes
for PID control are introduced. You are asked to study the effects of derivative filtering and design an
anti-windup scheme.
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1 PID Controllers and Root Locus Design

1.1 Proportional Control Design

You will be working with
θ(s)

Vin(s)
in this lab.

To develop a proportional controller use the following steps:

1. Let θd be the reference input to a unity feedback output shaft position control system for the DC servo
and

e = θd − θ

Choose a proportional controller
Vin = Kpe

2. What is the “system type”? What would you expect to get for the steady state error ess with a unit
step input? A ramp input (1 rad/sec) on θd? A parabolic input?

3. Using Matlab, plot the root locus. What value of Kp should you use to get ζ = 0.707 so that you get
an overshoot due to a unit step input (1 rad) of about 5%?

4. For the value of Kp that you found in the last step simulate the closed-loop for a unit step reference
input and plot it and θ(t) on the same plot. Also, plot the control input. What is the value of ess?
What is the value of the overshoot? What is the rise time and settling time (1% criterion)? Does this
agree with the theory? Derive the theory and compare.

1.2 PID Control Design

Suppose that you use the PID controller

Vin = Kpe + Kdė + Ki

∫ t

0

e(τ )dτ

so that
Vin(s)
E(s)

=
Kds2 + Kps + Ki

s

1. Find Kp, Kd, and Ki so that the zeros of the PID controller are on the ζ = 0.707 line with ωn = 50
rad/sec.

2. Find the value of K for a root locus (of the unity feedback control system) that puts two closed-loop
poles within a ball of radius 5 of the zeros of the PID controller. What are the three closed-loop pole
locations for this choice of K?

3. Find the closed-loop unit step response. Also, plot the control input. From the plots, what are the
values of the overshoot, rise time, settling time (1% criterion), and steady state error? What is ess for
a ramp and parabola input?

4. Re-design: Repeat the above process, but find Kp, Kd, and Ki to get an overshoot and rise time that
is better than what you found in the last step, and better than what you found for the proportional
controller above. There is a practical issue, however, that you must consider in solving this problem. In
simulation you can achieve any specification that you want to achieve. Why? Increasingly demanding
specifications result in unreasonably large control inputs and hence the use of too much control energy.
Also, the control inputs will tend to move very fast and hence try to move the motor faster than is
physically possible; the linear model breaks down and there is a disconnect between what the theory
and implementation wil show. Here, you must also take take into consideration the use of control
energy in the following way:
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• For your proportional controller design did the value of the control input Vin go outside of the
range of ±5 V (what is physically possible for this DC servo)? If so, then reduce the proportional
gain until it does not go outside that range for a unit step input to the closed-loop system. If
not, then find the upper value of the proportional gain that results in the Vin value to just hit the
limit of its valid range. Provide this value.

• Repeat this last step but for the PID controller and the root locus gain K.

• Now, return to the re-design problem. Find the best values of rise time and overshoot that you
can obtain by tuning Kp, Kd, and Ki (and the root locus gain if you use that) but with the
constraint that Vin does not go outside of the range of ±5 V.

2 Effects of Noise and Nonlinearities on PID Control

For practical problems, the PID designs of the previous section often do not work properly since they ignore
noise and nonlinear effects. Here, we discuss some commonly encountered problems in PID control in industry
and provide solutions to these problems.

2.1 Derivative Filtering for PID Control

Two problems with implementing the derivative term Kds (Kdė) in a PID controller are as follows:

1. The reference input thetad sometimes has sharp corners (e.g., when it is a square wave) and then
Kdė = Kd(θ̇d − θ̇) will be large, since θ̇d is large, resulting in unreasonable size control inputs to the
plant if you use a derivative term in the PID controller.

2. There is noise produced by any real sensor such as the encoder or potentiometer that produces the
measurement of the output shaft position θ. This noise is typically high frequency noise which implies
that it has high values of derivatives of that noise. Hence, the sensor noise will result in Kdė = Kd(θ̇d−θ̇)
being large, since θ̇ is large, so that the plant input can be too large if a derivative term is used in the
PID controller.

These two reasons often lead to complications in practical applications and hence in actual industrial control
systems the “D term” (derivative term) is often “turned off” (i.e., Kd = 0). Other times, however, it is not
turned off due to the benefits it can offer, especially its “predictive capability” (why is this term appropriate?)
that typically allows you to overcome problems with overshoot in the closed-loop system. Why?

So, if you turn on the derivative term, how do you solve the above two problems? The typical industrial
solution to the first problem is to change the form of the derivative term. How? Note that in many
applications θd is constant for long periods of time so often θ̇d = 0; hence it is reasonable to implement the
derivative term as

−Kdθ̇

and hence to avoid having the derivative of θd enter into the Vin control input, yet still make it possible to
give the controller a predictive capability.

The practical solution to the second problem above is to put a first order filter on the derivative term
and tune its pole so that the chattering due to the noise does not occur since it attenuates high frequency
noise (smooths it out) so that the derivative will not amplify the high frequency noise.

The resulting PID controller when we use both practical modifications is then

Vin(s) = KpE(s) − αKds

s + α
θ(s) +

Ki

s
E(s)

where α is the location of the root of the “derivative filter” (note that we make the DC gain of the filter
unity by putting α in the numerator also).
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2.2 An Anti-Windup Scheme for PID Control

Another practical problem that arises in industrial PID control is “integral windup” that is due to the
nonlinear effect of plant input saturation that occurs with any real plant. For our DC servo the input Vin

can only lie in the range of ±5 V so it is saturated at the extreme values when it is outside that range. In
other words, the actual voltage that is input is not the commanded one, Vin, but is equal to

V actual
in =




5 if Vin ≥ 5
Vin if −5 ≤ Vin ≤ 5
−5 if Vin ≤ −5

(1)

This provides a model of the saturation that occurs in the actual plant. If the input Vin hits an exteme
value and stays there then the plant is essentially running “open loop.” Why? During such a saturation
condition the error e is integrated by the integral term and hence accumulates (“winds up”). This causes
an undesirable effect where even though the control comes off the extreme value the integral term is still
large which results in large swings in the control input and hence undesirable slow oscillatory behavior by
the plant output. See the handout on PID control which is pp. 10–15 taken from:

K.J. Astrom and T. Hagglund, Automatic Tuning of PID Controllers, Instrument Society of
America, NC, 1988.

2.3 Derivative Filtering and Anti-Windup Scheme Design

Use your best Kp, Kd, and Ki values from above (i.e., your best design).

1. Derivative Filtering:Find a value of α such that there is very little performance degradation compared
to the case when derivative filtering is not used (but find try to find the smallest such value that has
essentially no effect). Show plots to illustrate your comparisons.

2. Anti-Windup Scheme: Add to your model a saturation as given in Equation (1) so that your new plant
input is V actual

in for a given commanded plant input of Vin. This is a nonlinear effect so now you need
to simulate a nonlinear system (e.g., via Simulink).

• Illustrate Anti-Windup Effect: Use a step input for θd with a magnitude of β rad. Find a value
of β that will result in integrator windup. Show plots to illustrate the windup that are similar to
the ones in the handout (i.e., as in Fig. 2.4 there).

• Integrator Windup Scheme Design: Next, design an anti-windup scheme (like in Fig. 2.5B in
the handout on PID control) that will mitigate the integral windup effect (as in Fig. 2.6 in the
handout; see also Fig. 2.7). Note that es = V actual

in − Vin in the handout. Find a value of Tt

(see the handout) which is the gain in the anti-windup scheme that will significantly reduce the
integrator windup effect. Demonstrate the reduction in simulation.
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