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Abstract

The hierarchical real-time control systems (RCS) ref-
erence model architecture that is under development
at the National Institute of Standards and Technol-
ogy aims at designing and developing intelligent
control for large and complex systems.   A method-
ology being developed to create RCS-based systems
exhibits many characteristics that are similar to ob-
ject-oriented paradigms.   The authors compare cer-
tain key attributes of object-oriented approaches to
the RCS methodology.  They find many similarities
and suggest that RCS provides unique multiple
resolution, behavior-oriented features which can be
considered to go beyond most object-oriented para-
digms.  Examples from a recent RCS testbed for a
manufacturing inspection system are detailed for
clarification.

Keywords:  hierarchical systems, intelligent control,
methodology, object-oriented

1. Introduction

The Intelligent Systems Division (ISD) of the Na-
tional Institute of Standards and Technology (NIST)
has been researching and developing a reference
model architecture for hierarchical real-time control
systems.  The reference model is called the NIST
Real-time Control System (RCS) [ALB96-1]. ISD is
also describing a methodology to create RCS-based
systems.  RCS aims at designing and developing in-
telligent control for large and complex systems.
RCS brings forth a distinctive behavior-oriented
paradigm to manage system complexity.

One of the most recent applications of RCS is the
NIST National Advanced Manufacturing Testbed
(NAMT) project. The NAMT is established to allow
scientists and engineers from industry, NIST, other
government agencies, and academia to work together
to solve measurement and standards issues in infor-
mation-based manufacturing. NAMT also develops
the needed tests and test methods for industry that

are part of NIST's mission.  In this paper, the authors
use the NAMT inspection subsystem to illustrate
their research findings.

Object-oriented (OO) paradigms are emerging as a
major methodology for system development. Al-
though there are skeptics, it is generally believed that
these object-oriented paradigms provide several sig-
nificant advantages over some traditional methods,
such as functional decomposition, structured design
and analysis, and information engineering in that OO
paradigms focus on the depiction of the real-world.
Object-oriented methodologies typically refer to
three distinct activities which are often, although not
necessarily, interrelated:  Object-oriented  analysis,
object-oriented design, and object-oriented pro-
gramming.

The authors attempted to compare RCS and OO.  
They discovered that, although both methodologies
emphasize depiction of the real world, RCS, addi-
tionally, describes a reference model and a process
for engineering and structuring real world entities to
achieve user-defined goals. The authors describe
their findings in this paper.  The comparison reveals
that RCS is an object-oriented methodology which
focuses on behavioral abstraction.  Note that due to
the existence of the variety of OO methods and the
wide span of system life cycle these OO paradigms
cover, the comparison and example given in this pa-
per may reference only part of the general OO con-
cepts or particular OO methods.  In particular, the
authors compared RCS with the inheritance, abstrac-
tion, association, aggregation, and encapsulation
concepts of the OO paradigms.

2. Object-Oriented Concepts

For in-depth descriptions of object-oriented meth-
odologies, the reader is referred to texts like
[BOO94], [COA91], [RUM91], or [SHL92].  A very
brief definition of the OO concepts discussed in this
paper is included for the reader’s convenience.
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Inheritance is “the sharing of attributes and opera-
tions among classes based on a hierarchical relation-
ship” [RUM91]. For example, lathes and milling
machines are subclasses of machine tools.   They
would inherit the properties of the class “machine
tools,” such as having multiple axes, a tool holder
and tool changer, or the ability to remove material.

Inheritance may take the forms of specialization or
augmentation. A class derivation may involve tai-
loring the features defined in the base class to the
needs of the derived class.  A derived class may also
contain features in addition to the base class
[DEW89].

Abstraction is eliminating nonessential information
when considering an object’s prop-
erties and behavior. What is consid-
ered essential about an object may
vary according to the development
stage or to the application in which
the object is to be used.

Associations establish the relation-
ships among objects or classes.  The
relationships are described at Links
that connect objects or classes
[RUM91].

Aggregation is a form of association
where a relationship is established
between objects that represent com-
ponents of an assembly and an ob-
ject representing the entire assembly
[RUM91].  The assembly subsumes
the components via the aggregation.
The assembly may derive its proper-
ties from the component properties.
For example, an inspection system
consists of a table, a three-axis arm, a
probe, and a control box, with
monitor, CPU, and other components.  Because the
components of the control box are spelled out in this
example, this is a multi-level aggregation.   When
convenient, the inspection system can be referred to
by its aggregate identity.  Yet the option of refer-
encing its constituent elements is still available.
Properties may apply to the aggregate. For example,
a system can be modeled such that its total mass is a
sum of all of its component's masses.

Encapsulation is used to hide object information that
should not matter to the external objects.  The inter-
nal representation of information and other imple-
mentation details which are irrelevant to the access of
and communication with an object should not be
exposed.

3. The RCS reference model

3.1 The intelligent machine system model

RCS originates with an intelligent machine system
model (IMS), as shown in Figure 1.  The model
contains a behavior generation (BG) function that
makes decisions based on the received task com-
mands and on the current state of the world.  BG is
supported by world modeling (WM), value judging
(VJ), and  sensory processing  (SP) functions
[ALB96-1], [BAR84].

BG employs a task planning function that generates
a set of possible schedules.  WM simulates these can-
didates and generates the predicted results.  VJ uses a

set of cost functions to judge the simulation results
and provides the values of these schedule candidates
for the BG planning function to determine a final
schedule for execution.

SP processes sensory data and generates measured
states for the system.  Different processing algo-
rithms or algorithm gain values may need to be de-
termined for particular data sets.  This process may
involve WM and VJ, as the left side of Figure 1
shows. Figure 1 also shows that SP handles data with
multiple resolutions.  The remainder of this paper
describes this multiple resolution concept.

3.2 Multiple resolutions

RCS is a hierarchical architecture that was developed
through spatial and temporal decompositions.
Higher levels operate in a state space with larger spa-
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tial and temporal span but coarser resolution.  Rules
which guide the hierarchical decomposition with re-
spect to resolution of space and time are based on
control theory and biological evidence.  In his
“Outline for a Theory of Intelligence,” [ALB91],
Albus proposed a theorem which states,

“In a hierarchically structured, goal-driven,
sensory interactive, intelligent control system
architecture:
1. control bandwidth decreases about an

order of magnitude at each higher level,
2. perceptual resolution of spatial and tem-

poral patterns decreases about an order
of magnitude at each higher level,

3. goals expand in scope and planning ho-
rizons expand in space and time about
an order of magnitude at each higher
level, and

4. models of the world and memories of
events decrease in resolution and expand
in spatial and temporal range by about
an order of magnitude at each higher
level.”

By following these guidelines, RCS-based systems
have a sound basis for decomposing a system at its
constituent resolution levels.  Depending on the
scope of individual problems, RCS prescribes up to
six types of levels that form a smooth transition of
spatial and temporal resolution from the highest to
the lowest levels.  These levels are application do-
main, group, equipment, emove (kinematic), primi-
tive (dynamic), and servo.  Each level may have zero
or multiple control nodes that are modeled after the
IMS (except for the highest level which has one
node).  At each level of the hierarchy, the control for
individual and collective physical entities, such as
robots, vehicles, workstations, manufacturing shops,
and robotic motors, are modeled.  Note that if the
problem is for the control of a machining center
only, then the workstation and even upper level con-
trol become not applicable.

These guidelines also help operators to understand
and anticipate the way a high-level goal can be de-
composed to low-level and detailed behavior.

3.3 Behavior and behavior generation

Albus and Meystel defined behavior as “an ordered
set of consecutive or concurrent changes among the
states registered at the output of the system or sub-
systems [ALB96-2].”  In a complex system, agents
or subsystems are capable of performing certain be-
haviors. A mechanism is required to coordinate the
individual behaviors to form system behavior.  This
mechanism does not necessarily have to be external

to the agents, but can be embedded within the agents
themselves and manifest itself as “cooperation.”

In RCS, nodes generate behavior through planning
and execution processes.  The objective of the gen-
erated behavior is to command and coordinate the
sub-behavior of all the nodes’ subordinates.  The
system behavior may be initiated when a user enters
a high-level goal that results in the actuation of the
hardware components to achieve the goal within a
given tolerance.  In the NAMT Next Generation In-
spection Workstation (NGIS) testbed, a system goal
could be “Inspect_part.”  The performance of this
goal can involve a series of sub-behaviors such as
“Inspect_feature.” The performance of inspecting a
specific feature can involve a series of even lower
level “Go_to_point” sub-behaviors to be conducted
by the inspection arm controller.  These sub-
behaviors are further decomposed until individual
motor behavior is generated.

Note that OO also uses the term behavior either gen-
erally or specifically, but in a different context
[BOO94]].  In this paper, the term behavior refers to
the definition given in this section.

3.4 Command authority

The combination of the multiple resolution
(described in section 3.1) and the behavior genera-
tion concepts forms a relationship of command
authority between the superior and the subordinate
control nodes.  The superiors command the subordi-
nates.  The subordinates report back the status of
command execution.

4. Assessing the behavioral aspect within the two
paradigms

4.1 Behavior as a principle of abstraction

Abstraction is defined as denoting the essential char-
acteristics of an object that distinguish it from other
objects, while suppressing other details.  Different
types of abstractions are described in various OO
paradigms, including object, class, data, function, and
process [BOO94].  The abstraction relationship
among objects within a system leads to system hier-
archies.  Functional abstraction leads to a hierarchy
with functional decomposition.

RCS views goals and behavior as the most important
aspects of an intelligent system.  Therefore, RCS uses
behavior abstraction to derive control system hierar-
chies.  In other words, the tasks that each node can
perform, which are limited in amount and are com-
pliant with the resolution requirement, may be re-
ferred to as the “task abstraction” or “behavior ab-
straction.”
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4.2 Analysis of a system with respect to its behav-
ior

RCS provides for an analysis phase during which the
available system is methodically dissected to glean
the basic components, hierarchy, and information or
commands required [QUI93]. These aspects bear a
strong resemblance to Object-Oriented Design and
Object-Oriented Analysis.

All of the RCS applications thus far have controlled
either physical systems or their simulations, such as
machine tools, robots, submarines, or autonomous
vehicles.  However, at the beginning of the analysis
and design phase, physical entities may or may not
be totally available.  The developers may need to
specify and acquire certain sensors and communica-
tion systems.  The developers must closely examine
the available physical entities in terms of their sens-
ing, actuation, and communication capabilities. The
developers must then closely interleave the physical
system analysis and the task analysis to construct a
hierarchical control system.  This control system
must manifest the multiple resolution behavior gen-
eration capability.  At the same time, it is advanta-
geous to have a software node configuration that is
as close to the existent physical entities as feasible.
This would preserve the control system’s depiction
of the physical world.  The behavior oriented analy-
sis may also dictate the additional physical entity re-
quirements as part of the design effort. Operational
scenarios are typically developed to help analyze the
system behavior, explain the system operational
characteristics and the control flow, and validate sys-
tem requirements. The developer must reflect the
system requirement specifications in these scenarios.
Such a process may help bring to light unspecified,
unclear, or unattainable requirements.

4.3 Behavior orientation and object orientation

Behavior is considered part of an object’s model in
most of the object-oriented methods.  For example,
Coad and Yourdon describe parameters such as fre-
quency and location which control a radar system’s

behavior [COA91]. Shlaer and Mellor describe real-
world things as having stages in their behavior pat-
terns [SHL92].  However, there is a subtle distinction
between “behavior as a part of objects” in the ob-
ject-oriented methods and the “behavior-oriented”
methodology in RCS. From a global perspective, the
system behavior determines an RCS hierarchy and
the underlined control flow.  In RCS, developers may
choose to analyze and identify system behavior be-
fore designing control nodes, or “objects,” to per-
form the behavior.  This concept has not been em-
phasized in most object-oriented methods.  The
authors believe that this behavior orientation could
significantly strengthen the general object-oriented
methods, particularly in the large complex real-time
control problems that the RCS architecture excels.

5. Assessing the object and inheritance aspects

A careful study shows that RCS contains many ob-
ject-oriented concepts.  However, these OO concepts
are refined and given explicit meanings in RCS.

5.1 Control node objects with a generic processing
model

An RCS hierarchy is composed of the control nodes.
The control nodes have a generic functional model,
IMS, as described in Section 3.1.  In a simplest case,
one can view IMS as a type of object.  This OO rep-
resentation leads to the creation of an IMS  based
OO base class.  The base class serves as a single
building block, or progenitor, for the design of RCS
systems.  

The IMS based base class also contains basic mes-
sage passing and processing functionality.  Typical
operations that must occur every control cycle may
include processing input buffers and writing to out-
put buffers (commands, status, and world modeling
updates) according to prescribed rules. This ap-
proach has been used successfully in several major
RCS implementations [ALB96-1][HUA96].

A general OO representation of IMS still is under
investigation.  One possibility is to model each of the
functional modules or submodules (SP, planning,
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etc.) as a type of objects.  These object types consti-
tute a set of generic templates for RCS development.
Applications will then use specific planning or sen-
sory processing algorithms.

5.2 Multiple layers of inheritance

Figure 2 conceptualizes multiple layers of inheri-
tance.  RCS control node types (classes), shown as
boxes, inherit the desired functionality of the node
types to the left, when applicable [HUA95].  The ar-
rowhead in the figure highlights this inheritance re-
lationship.  RCS, being a reference model architec-
ture, implies that the properties of the intelligent ma-
chine model are inherited by any class of applica-
tions that use the architecture.  Manufacturing con-
trol systems can be considered one class of applica-
tions. A discrete parts manufacturing control system
inherits properties developed for the generic manu-
facturing control system RCS.  This inheritance rela-
tionship can extend to many layers. The mechanism
of inheritance may be either specialization or aug-
mentation.  The inherited properties can be in the
forms of software libraries or data sets.

The authors anticipate that, when the RCS environ-
ment is fully developed, a node class will contain
common behavioral, modeling, or information fea-
tures for problem classes such as manufacturing
processing or vehicle mobility. This contributes to
the richness of the RCS development environment.

5.3 Mapping behavior to a node
hierarchy as a means of encapsu-
lation

Encapsulation publicizes the inter-
face of a model and hides the im-
plementation (procedures and
data). In a class declaration within
an object-oriented model, the inter-
face is in the public portion, and
implementation is in the private
portion of the model [BOO94].  In
RCS, the task structure is integrated
with the node hierarchy. Each node
has a set of tasks that it is capable
of performing.  An input com-
mand set corresponding to the task
set is used by the node’s superior
to command the node’s behavior.
In the same manner, the node’s
behavior results in the generation
of sub-commands for its subordi-
nates.

In this way, in RCS, the nodes’ be-
havioral capabilities are encapsu-
lated via the task set that it is capa-

ble of processing.  A given node within an RCS hier-
archy needs to be aware only of its immediate sub-
ordinates’ interfaces.  It does not need to be con-
cerned about how the subtasks the node passes down
are carried out or if the subtasks are further decom-
posed.

6. Assessing the concept of control hierarchy

6.1 The contribution of multiple resolutions

A major distinction between RCS and the prevailing
OO methods is the concept of multiple resolutions.
One premise of the OO paradigm is for the object
models to reflect the physical world.  In this sense,
large physical entities can require complicated object
models.  OO paradigms may apply the concept of
abstraction to handle system complexity by focusing
on the important and ignoring the secondary char-
acteristics of the objects.

To this effect, the authors propose that designers
may use the RCS multiple resolution principle as an
explicit guideline to systematically determine the
significance of the object characteristics.  This, in
turn, will determine whether to focus or ignore the
characteristics.  In other words, the designers model
the complex physical entities as an object hierarchy.
In this hierarchy, the objects handle the characteris-
tics that are of appropriate levels of temporal and
spatial resolutions. Information or behavior that is
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Figure 3: An implementation of RCS-enhanced OO methodology
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too detailed or too coarse in detail should be left for
the objects at other levels with the appropriate levels
of resolution.  

6.2 RCS hierarchies as viewed from various OO
perspectives

An RCS control hierarchy, such as the one shown in
Figure 3, may be compared to various OO concepts,
as the following describes:

The RCS superior and subordinate nodes form an
association relationship.  The links between these two
types of nodes are the <send_command> and
<report_status> pairs (see Figure 1).  In the Figure 3
example, the inspection workstation issues an
“inspect_feature” command to the measurement
node.  This relationship is necessary for the hierar-
chy to perform tasks.

The RCS command authority concept might be
compared to the OO aggregation relationship. One
can argue that physically the measurement controller
is not a part of the workstation controller.  Therefore,
this fact would not warrant an aggregation relation-
ship.  However, logically, measurement control is a
part of the workstation subsystem.  This does seem to
warrant an aggregation relationship, to this particular
workstation and measurement pair, as well as to RCS
superior and subordinate pairings in general.

Similarly, from a hierarchical behavior generation
viewpoint, a node at a level is concerned with behav-
ior at this level of resolution.  One may regard the
behavior at the higher levels of resolution as hidden.
Therefore, this encapsulation relationship in RCS
hierarchies states that, with respect to a node at a
given level, all the subordinates are encapsulated.

This explicit command and status relationship helps
to focus the analysis and design effort.  In designing
an automobile system, the initial steps for an RCS
developer would be to consider the types of tasks
that the driver can ask of the car: to drive to hospital
in a snowy day, to haul a trailer  through hilly roads,
or to enter a race.  These behavioral, or command
and response, requirements would be used to derive
the methods for an OO car class.  The derivation
process would also yield the required data such as
tire size and traction, engine type and size, and
transmission type to specifically support the com-
mand execution.  In this sense, RCS focuses on the
intelligence in agents.  On the contrary, a data mod-
eling based OO approach might start with describing
a car as an aggregation of wheels, axles, body, engine
type and size, etc.  Each has knowledge of its own
capabilities encoded within itself as a “method.”
While the RCS approach is concordant with this ap-
proach and this approach may produce comparable

class structures, there may be concern that the data
modeling approach may specify information that is
with excessive or insufficient level of details for a
given task within a certain level of a system.  In this
regard, the RCS design approach stresses the com-
mand hierarchy (and behavior) in a system as op-
posed to data modeling based hierarchies.

7. The RCS enhanced object-oriented methodol-
ogy:  current implementation

The authors studied the current RCS implementation
on the NIST National Advanced Manufacturing
Testbed (NAMT) inspection workstation.  A base
class RCS node was developed and was inherited by
all the control nodes in the hierarchy.  The control
hierarchy implemented has several levels of resolu-
tion, as shown in Figure 3.  Control nodes populate
the entire hierarchy.  The nodes are abstracted ac-
cording to their specific behavior and according to
their “natural resolution.”  The hierarchy emerges
through analysis of command (task) flow downward
and status reporting flowing upward.  The inspection
workstation controller receives an “inspect_part”
command. The controller issues a “load_part”
command for the fixturing control node and an
“inspect_feature” command for the measurement
node.

Further generalization of this implementation toward
a construct as described in Figure 2 may allow the
node classes to be inherited and reused by broader
classes of applications.  For example, the inspection
task set may be substituted with one appropriate to
machining operations, including “drill_hole.”  Such
work is underway at NIST.

8. Summary

The case study reveals that RCS shares many char-
acteristics with object-oriented methodologies.  RCS
strengthens the general object-oriented concepts with
a focus on behavioral abstraction and multiple reso-
lution.  RCS emphasizes that behavior is the central
ingredient of an object. This behavior orientation
brings forth guidelines which facilitate the analysis
and design processes for object-oriented control hi-
erarchies. The multiple resolution concept of RCS
brings forth guidelines for organizing the object hi-
erarchies that are designed for complex system in-
telligent control.
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