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Abstract

This paper presents a class of network optimization processes that account for the emergence of scale-
free network structures. We introduce a mathematical framework that captures the connectivity and
growth dynamics of a network with an arbitrary initial topology. We show how selection via differential
node fitness affects the proportion of connections a node makes to other nodes, and how a heavy-tailed
connectivity behavior manifests itself from consecutive achievements of ideal free distributions (IFDs).
Finally, we present simulation results that show how this class of networks may emerge even when
consecutive IFDs are not perfectly reached.

1 Introduction

There is growing interest in understanding the emergence of a class of real-world networks called “scale-free
networks” (e.g., computer networks such as the World Wide Web [1], some protein-protein interaction net-
works [2], and networks created by the formation of sexual partnerships [3]). In this context, the number of
edges (connections) that is most commonly found in a network (graph) indicates the scale of its connectivity
distribution (e.g., the peak in a Poisson or bell-shaped distribution). Broadly speaking, the most notable fea-
ture of a scale-free network is its heavy-tailed (power-law), rather than a Poisson or bell-shaped, connectivity
distribution. In particular, power-law distributions indicate that the probability P (k) that a node connects
to k other nodes is proportional to k−β for some positive constant β, implying that the number of edges (the
degree) of the nodes of the network comprises different orders of magnitude (i.e., with a few nodes having a
high degree, many having only a low one, and without a peak in the distribution). Although a prominent
feature of scale-free networks, power-law distributions alone do not entirely describe the topological structure
of these networks.

Another important feature that characterizes scale-free networks is the fact that highly connected nodes
are inter-connected. Such nodes are called “hubs” and they represent the core structure of the network.
They are both the strength and weakness of scale-free networks. If failures occur at randomly selected
nodes, the vast majority of nodes are those with a small degree (i.e., not hubs), and the likelihood that a hub
will be affected is almost negligible. By keeping its hubs intact, the network will not lose its connectedness.
However, for targeted attacks (e.g., if we choose a few major hubs and try to take them out of the network) the
likelihood of hub failures increases which consequently would cause the network to collapse. This property
has come to be known as the “Achilles’ heel” of scale-free networks.

Although both of the above topological features may emerge in networks without growth (e.g., [4],[5]),
most real-world networks describe interconnected systems that grow by the continuous addition of new
nodes. For growing networks, “preferential attachment” (a concept introduced in [6]) is perhaps the best
known mechanism that accounts for the emergence of scale-free networks (variations of this mechanism can
be found in [7]-[9]). Preferential attachment assumes that the probability that a new node will connect to
another node is proportional to the degree of that node. While preferential attachment has been proven to
produce scale-free networks [10], many different mechanisms that lead to these types of networks have also
been discovered (e.g., initial attractiveness [11], accelerating growth [12], and gradual aging [13]).

∗This work was partially supported by the AFRL/VA and AFOSR Collaborative Center of Control Science (Grant F33615-
01-2-3154).

1



In this paper, we do not focus on a particular mechanism that leads to scale-free networks. Instead,
we introduce a generic set of dynamical equations that captures the broad tendencies of the connectivity
of the nodes of a network. We concentrate on a particular state of the network where each node has the
same “suitability” level (assumed to be a correlate of the relative fitness of a node), and show how scale-free
network may emerge from consecutive achievements of this desired state. In particular, we use a concept
from ecology known as the “ideal free distribution” (IFD) [14] to define the desired state. The IFD concept
allows us to capture the dynamic coupling that results between the different nodes (i.e., it allows us to
characterize how an edge connecting any two nodes affects another node in the network). In this context,
the word “ideal” refers to the assumption that the connectivity dynamics of the network are equally affected
by every node (i.e., the impact of a node on the connectivity dynamics of the network depends on the state
of that node, but not on its location within the network). “Free” indicates that the nodes of the network
can connect instantaneously and at no cost to any other node. Although our framework assumes that both
assumptions will hold, there is an extensive literature that shows how an IFD may still be achived even when
one or both assumptions are relaxed (e.g., see [15]-[22]). It is, however, the general idea behind the IFD
concept and the emergence of scale-free networks that is the most important and novel contribution of this
paper.

It is important to understand how scale-free networks may emerge from IFD distributions for several
reasons. First, from a game theoretic perspective, the IFD is a Nash equilibrium. Therefore, when a
network reaches the IFD none of its nodes has anything to gain by unilaterally re-establishing edges to other
nodes. Moreover, the IFD has been shown to be an evolutionarily stable strategy (ESS) [22]-[24], which
broadly speaking means that whenever the IFD is achieved, there does not exist any other network topology
(with the same edge capacity) that could “take over” the existing IFD distribution. In other words, the
evolution of scale-free networks from IFDs shows that these networks may emerge from nodes adopting an
ESS strategy, which is in fact a pattern regularly found in a large class of adaptive dynamics [25]. Second,
the IFD is a concept that characterizes the outcome of a large class of attachment rules without explicitly
describing the particular mechanism that leads to the emerging networks. Our approach borrows concepts
from evolutionary ecology and control theory, and uses existing methods from both fields to relate these
concepts to the scale-free literature. Finally, the emergence of scale-free networks from IFDs seems to be
a robust process in the sense that even when perfect IFDs may not be achieved (e.g., under suboptimal
conditions where the nodes cannot connect to any other node) scale-free networks will still emerge.

The remainder of this paper is organized as follows: In Section 2 we introduce a model that captures
the connectivity and growth dynamics of a continuously growing network. We present sufficient conditions
that guarantee that for a fixed number of nodes the IFD is an asymptotically stable state of the network as
long as enough edges between the nodes can be established (Theorem 2.1). We then prove that consecutive
achievements of IFDs lead to connectivity distributions that are scale-free (Theorem 2.2). Finally, in Section 3
we consider information-constrained cases of our model and present simulation results that show that scale-
free networks may still emerge even when consecutive IFDs are not perfectly reached.

2 A Model of Network Evolution

Let the graph G0 represent a network at generation n = 0 with N0 nodes, each with M0 ∈ R+ edges,
R+ = (0,∞), that are randomly connected to other nodes. For every generation n ∈ N, n > 0, a new
node with M edges, ∞ > M ≥ M0, is added to the network (i.e., the new node may connect several
edges to the same node in Gn). After n generations the graph Gn has a total of Nn = n + N0 nodes. Let
H(n) = {1, . . . , Nn} represent all the nodes of the network at generation n, so that this set includes the node
that has been added at that generation. Furthermore, assume that the rate at which the newly added node
and the existing nodes establish new edges is considerably faster than the rate at which Gn grows. We will
justify this assumption below. Next, in Sections 2.1 and 2.2 we develop a two-time-scale model that captures
the particular connectivity and growth dynamics of such a network.

2



2.1 Connectivity Dynamics via Network Competition

For a fixed generation n, each node i ∈ H(n) is associated with a “suitability function” that characterizes
the benefit for that node from creating new edges to other nodes. We assume an inverse relationship between
the suitability level of a node and the number of new edges it establishes (e.g., in the internet since the server
performance can degrade if more users are added, or in biology since it becomes more difficult to establish
metabolic links if there are already too many present). In particular, let the suitability function of node i
during generation n be defined by

si(xi(t)) =
n−β

i

ki(n) + xi(t)
(1)

where ni ∈ N is the generation step at which node i ∈ H(n) was added to the network (let ni = 1 for all
nodes in G0 so that si is well defined), β ∈ (0, 1) is a predefined constant (e.g., β = 1/2 for networks with
linear growth and linear preferential attachment [6]), ki(n) ∈ R+ is the number of edges of node i between
the end of generation n − 1 and start of generation n (i.e., ki(n) does not take into account new edges that
are created during generation n and ki(0) = M0 for all nodes in G0), and xi(t) ∈ R+ is the number of edges
that are established during that generation with node i at some time t, t ∈ R+. We assume that edges
that were connecting any two nodes during previous generations (those characterized by ki(n)) cannot be
removed. On the other hand, a new edge connecting two nodes may be established and removed (i.e., we
allow for rewiring of edges that have been established within the same generation). Moreover, note that
Eq. (1) assumes an inverse relationship between the suitability level of a node and the generation step when
it is added to the network. If we let node i∗ denote the node that has been added to the network during
generation n > 0, then note that since a constant number of edges are added by node i∗ it always satisfies
ni∗ = n, ki∗(ni∗) = 0, and xi∗(t) = M for all t > 0.

Let t = 0 be the time instant at which the new node is added to the graph Gn (i.e., the start of generation
n), and assume that only when t → ∞ will Gn evolve into the next generation n + 1 (i.e., when another

node will be added to the network). Let x(t) = [x1(t), . . . , xNn
(t)]

⊤
represent the state of network at

generation n and time t (i.e., the degree of every one of its nodes). We now focus on the dynamics of
x(t) = [x1(t), . . . , xNn

(t)]⊤ for t > 0. In particular, let us assume that for a fixed generation n, the number
of edges of node i ∈ H(n) evolves with respect to t according to

ẋi

xi(t)
= αn





n−β
i

ki(n) + xi(t)
−

∑

j∈H(n)

xj(t)

Cn

n−β
j

kj(n) + xj(t)



 (2)

where Cn is a constant that we define below, and αn > 0 is a constant that characterizes the rate at which
new connections are established in the network. Note that the left-hand-side of Eq. (2) is the normalized
rate of change of the newly added edges of node i, and the right-hand-side indicates that if the benefit of
linking a new edge to node i is greater (less) than the (weighted) average, then the rate of change of added
edges of node i will increase (decrease). In other words, Eq. (2) characterizes tendencies of the connectivity
of the nodes of a network that may be driven by different attachment mechanisms.

Next, let Cn ∈ R+, Cn ≥ 2M , be the total number of new connections that are established during
generation n and let

∆n =







x ∈ R
Nn

+ :
∑

j∈H(n)

xj = Cn







represent the simplex over which these Cn new connections may be distributed. Note that since a given edge
connects two particular nodes, Cn new connections represent the endpoints of Cn/2 new edges. Furthermore,
let

XI(n) =

{

x ∈ R
Nn

+ : si(xi) =
n−β

M
for all i ∈ H(n)

}

(3)
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define an invariant set that characterizes the distribution of interest of new connections across the entire
network (recall that M ≥ M0 is the number of edges established with the new node that is added at each
generation). Note that for any generation n, x̄ ∈ XI(n) represents an IFD in the sense that edges are
distributed in such a way that all nodes in H(n) have the same suitability levels [14].

Theorem 2.1 For any fixed network generation n, there exists a positive constant Cn, such that if Cn new
connections are established in the network, and the degree of every node of Gn satisfies the dynamics described
by Eq. (2), then XI(n) (i.e., the IFD defined by Eq. (3)) is asymptotically stable with region of attraction ∆n.

Proof: Fix a generation n > 0. We begin by characterizing any edge distribution x̄ = [x̄1, . . . , x̄Nn
]⊤ such

that x̄ ∈ XI(n) . In particular, note that if x̄ ∈ XI(n) then dsi(x̄i)
dt = 0, and according to Eq. (1), dx̄i

dt = 0 for
all i ∈ H(n). Moreover, since x̄ > 0, if the degree of every node of Gn satisfies the dynamics described by
Eq. (2) then x̄ ∈ XI(n) satisfies

n−β
i

ki(n) + x̄i
=

1

Cn

∑

j∈H(n)

x̄j

n−β
j

kj(n) + x̄j

for all i ∈ H(n), which implies that

x̄i =
n−β

i

∑

j∈H(n) kj(n) + n−β
i

∑

j∈H(n) x̄j(n) − ki(n)
∑

j∈H(n) n−β
j

∑

j∈H(n) n−β
j

Furthermore, since
∑

j∈H(n) x̄j = Cn, we know that

x̄i =
n−β

i

∑

j∈H(n) kj(n) + n−β
i Cn − ki(n)

∑

j∈H(n) n−β
j

∑

j∈H(n) n−β
j

(4)

By substituting Eq. (4) into Eq. (1) we get

si(x̄i) =
n−β

i

∑

j∈H(n) n−β
j

n−β
i

∑

j∈H(n) kj(n) + n−β
i Cn − ki(n)

∑

j∈H(n) n−β
j + ki(n)

∑

j∈H(n) n−β
j

=

∑

j∈H(n) n−β
j

∑

j∈H(n) kj(n) + Cn
(5)

Note that for all i ∈ H(n) such that x̄ ∈ XI(n) each node i satisfies si(x̄i) = n−β

M . Furthermore, using Eq. (5)
we know that there exists a single constant

Cn = M
∑

j∈H(n)

(nj

n

)−β

−
∑

j∈H(n)

kj(n) (6)

and a unique distribution x̄ on ∆n that belongs to the invariant set XI(n). Next, we show that x̄ ∈ XI(n)
is asymptotically stable with region of convergence ∆n.

Let Vn be defined as

Vn = −
∑

i∈H(n)

x̄i

Cn
ln

(

xi

x̄i

)

which is known as the Kullback-Leibler distance or the relative entropy function [26],[27]. It has been shown
in [24] that this is a valid Lyapunov function candidate (i.e., it is positive definite and radially unbounded).
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Let s̄ =
∑

i∈H(n)
xi

Cn
si denote the weighted average of the suitability levels of all nodes, and note that by

taking the derivative along trajectories we obtain

V̇n =
∂V

∂x

∂x

∂t

= − 1

Cn

∑

i∈H(n)

x̄i
1

xi
ẋi

= − 1

Cn

∑

i∈H(n)

x̄iαn(si − s̄)

= −αn

Cn

∑

i∈H(n)

x̄isi +
αn

Cn
s̄

∑

i∈H(n)

x̄i

= −αn

Cn

∑

i∈H(n)

x̄isi +
αn

Cn
s̄Cn

= −αn

Cn

∑

i∈H(n)

x̄isi + αn

∑

i∈H(n)

xi

Cn
si

=
αn

Cn

∑

i∈H(n)

si(xi − x̄i)

In order to prove that V̇n < 0, we will show that the maximum of V̇n is zero, and that this maximum is
only reached when x ∈ XI(n). We use Lagrange multiplier theory [28], and define the following optimization
problem

maxJ =
αn

Cn

∑

i∈H(n)

n−β
i

ki(n) + xi
(xi − x̄i)

subject to x ∈ ∆n

First, we need to define the Jacobian of the cost function J which using Eq. (4) is given by

∂J

∂xi
=

αn

Cn

n−β
i (ki(n) + x̄i)

(ki(n) + xi)2

=
αn

Cn

n−β
i

(

n−β
i

∑

j∈H(n) kj(n) + n−β
i Cn

)

(ki(n) + xi)2
∑

j∈H(n) n−β
j

Using Lagrange multipliers for any i ∈ H(n), we obtain that

αn

Cn

(

n−β
i

)2 (

∑

j∈H(n) kj(n) + Cn

)

(ki(n) + x∗
i )

2
∑

j∈H(n) n−β
j

+ λ∗ = 0

where x∗ is the regular point for the optimization problem, and λ∗ is the Lagrange multiplier. For any
i, j ∈ H(n) this is equivalent to

αn

Cn

(

n−β
i

)2 (

∑

j∈H(n) kj(n) + Cn

)

(ki(n) + x∗
i )

2
∑

j∈H(n) n−β
j

=
αn

Cn

(

n−β
j

)2 (

∑

j∈H(n) kj(n) + Cn

)

(kj(n) + x∗
j )

2
∑

j∈H(n) n−β
j

(7)

Moreover, since all the terms are positive, Eq. (7) implies

n−β
i

(

kj(n) + x∗
j

)

= n−β
j (ki(n) + x∗

i )

Summing over all terms in H(n), we obtain that x∗
i is the same as the one defined in Eq. (4).
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Now, in order to prove that x∗
i is indeed a global optimum point, we need to show that the Hessian is

negative definite. In this case, note that

∂2J

∂x2
i

= −2αn

Cn

n−β
i (x̄i + ki)

(ki(n) + xi)3
< 0

and
∂2J

∂xi∂xj
= 0

Hence, ∇2J is negative definite and x∗ is a global maximum for the constrained optimization problem.
Moreover, the maximum value of J is given by

maxJ =
αn

Cn

∑

i∈H(n)

n−β
i

ki(n) + x∗
i

(x∗
i − x̄i) = 0

Since V̇n = maxJ , V̇n < 0 for all xi 6= x̄i and V̇n = 0 if xi = x̄i the equilibrium point in Eq. (4) is
asymptotically stable. In other words, V̇n is negative, except when it is equal to the equilibrium point.
Therefore, the region of asymptotic stability is defined by the set ∆n.

Remarks:

- The proposed connectivity dynamics imply that, given the same number of connecting edges, nodes
that have been added to the network at earlier generation steps will have higher suitability levels than
those added at later generations (i.e., by the way suitability functions are defined in Eq. (1)). They
relate broadly to the basic idea behind preferential attachment [6] where older nodes establish more
edges because they have been part of the network for more generations, and had higher chances of
establishing them. Note, however, that unlike preferential attachment our model assumes that several
edges may be established between any two nodes.

- There are different models that lead to the IFD (or an approximate version of it) even when the ideal
and free assumptions are relaxed to some extent. Such models may allow for suboptimal conditions that
are far from the ones assumed in this section. In particular, nodes may establish random connections
between them or create new edges with nodes of lower suitabilities, the nodes’ rate of change of new
edges may not be proportional to the difference in suitabilities, but to the highest suitability level of
the entire network, etc. (for a brief overview of several mechanisms leading to IFDs see [22]).

- The IFD reached at each generation step can also be seen as an “ideal dominance distribution”
(IDD) [14]. In behavioral ecology, the IDD is interpreted via sequential settling of species of ani-
mals at IFDs (i.e., in this context, sequential edge attachments). At each generation step when a new
node enters the system, the network will try to distribute its connections with respect to those nodes
that are “better” (i.e., have higher suitability levels). However, not all nodes can be connected to the
best ones since this becomes harder as the number of connections increases (and its suitability levels
decrease).

- For a given network generation n, note that according to Eq. (6) Cn increases as M increases. This
implies that for the IFD to be achieved, as more connections are made by a new node, the total
number of new connections across the entire network must also increase. Moreover, as β increases, the
difference in suitability of two consecutively added nodes (with the same number edges) also increases,
and the total number of new connections must again increase for the IFD to be reached.

Next, we show how consecutive achievements of IFDs may impact the connectivity distribution of the network
as it grows.
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2.2 Network Evolution

Given Gn, let the degree of node i at generation n + 1 be given by

ki(n + 1) = ki(n) + x̄i (8)

where x̄ ∈ XI(n) holds the number of edges ultimately established by all nodes during generation n. Theo-
rem 2.2 characterizes the evolution of ki(n) as n → ∞.

Theorem 2.2 Given any initial graph G0 with N0 nodes, each with M0 randomly distributed edges, if a new
node with M ≥ M0 edges is added to the network and the degree of each node evolves according to Eq. (8),
then as n → ∞ the graph Gn attains a scale-free connectivity distribution. Moreover, the total number of
edges created during each generation Cn → M

1−β as n → ∞.

Proof: Note that for any generation n and for all nodes to achieve the same suitability the IFD must be
reached at the suitability level of the node that has been added during that generation, i.e., node i∗, since
it establishes a constant number of new connections. In particular, since ni∗ = n, ki∗(n) = 0, and xi∗ = M
we know that

si∗(xi∗) =
n−β

M
(9)

Moreover, if x̄ ∈ XI(n) for each n (i.e., if the IFD is achieved at every generation step n), then according to
Eqs. (1), (3), and (9)

n−β

M
=

n−β
i

ki(n) + x̄i

for all i ∈ H(n). Moreover, according to Eq. (8) we know that

ki(n + 1) = M

(

n

ni

)β

which indicates that the degree of any node i follows a power law. Following the same ideas as in [29], one
can then write the probability that a node has degree ki(n + 1) smaller than k as,

P [ki(n + 1) < k] = P

[

M

(

n

ni

)β

< k

]

= P

[

ni > n

(

M

k

)1/β
]

= 1 − M1/βn

k1/β(n + N0)

since nodes are added at equal time intervals to the network. Therefore, the distribution of edges is given by

P (k) =
∂P [ki(n + 1) < k]

∂k
∼ 2M1/βk−γ

as n → ∞ with γ = 1
β + 1, which leads to a scale-free connectivity distribution.

Finally, we show that Cn converges as n tends to infinity. In particular, note that the the total number
of established connections at a generation n can be rewritten as

∑

j∈H(n)

kj(n) =

n−1
∑

j=1

Cj + M0N0
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so that according to Eq. (6) we can write the total number of connections that have been added up to (and
including) generation n as

n
∑

j=1

Cj = M
∑

j∈H(n)

(nj

n

)−β

− M0N0 (10)

Applying Eq. (10) to generations n−1 and n we obtain the the total number of edges added during generation
n expressed as

Cn = M





∑

j∈H(n)

(nj

n

)−β

−
∑

j∈H(n−1)

(

nj

n − 1

)−β




= M





∑

j∈H(n)

(nj

n

)−β

−
∑

j∈H(n−1)

(

nj

n − 1

)−β

−
(

n

n − 1

)−β

+

(

n

n − 1

)−β




= M

(

n

n − 1

)−β

+ M





∑

j∈H(n)

(nj

n

)−β

−
∑

j∈H(n)

(

nj

n − 1

)−β




= M

(

n

n − 1

)−β

+ M





∑

j∈H(n)

nβ − (n − 1)β

nβ
j





Since limn→∞

(

n
n−1

)−β

= 1 and limn→∞

∑

j∈H(n)
nβ

−(n−1)β

nβ
j

= β
1−β we conclude that

lim
n→∞

Cn = M

(

1 +
β

1 − β

)

=
M

1 − β

Remarks:

- Note that our model assumes that the edge connectivity process which is represented by a fast time
scale does not interfere with the network’s growing process which is represented by a slow one (i.e.,
the two time scales are isolated). Although our results in Theorem 2.2 require that the time indices
of both scales tend to infinity, this is a valid approximation that is commonly used in evolutionary
ecology when two processes are known to evolve at disparate rates.

- While the hubs in a scale-free network play the key role in determining the robustness properties against
random node failures, the emergence of a scale-free network from consecutive achievements of IFDs
suggests that its connectivity distribution evolves from a particular node strategy, which if adopted by
every node in the network cannot be invaded by any competing alternative strategy (i.e., since an IFD
strategy where the suitability of every node is equal is in fact an ESS). In a game theory context, this
means that if we view the new node that is added at every generation step as a mutant strategy, then
such a strategy will never invade an incumbent IFD strategy (adopted by all other nodes) by playing
against the field. It implies that natural selection would be the driving force that selects against using
strategies with lower payoffs and ensures that all nodes adopt an IFD strategy which would then lead to
a scale-free connectivity distribution. Broadly speaking, our results relate to the emergence of scaling
in software architecture graphs from well-defined local optimization processes [30].

3 Simulations

To gain insight into the connectivity dynamics of the network let us first illustrate some concepts introduced
in Section 2.1. Let β = 1

2 , M = 2, M0 = 1, and N0 = 1, and let us study the evolution of the network for
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Figure 1: The suitability functions defined by Eq. (1) are plotted for different generations; when n = 110
(left), n = 230 (right). In both cases β = 1

2 , M = 2, M0 = 1, and N0 = 1.

up to 250 generations. Using these parameters we simulate the dynamics described in Eq. (2) for each node
at every generation step. Figure 1 shows the suitability for generations n = 110 and n = 230. As we proved
above, an equilibrium point is reached and it is indeed the IFD described by Eq. (3). For instance, if we take
the 50th network generation, the suitability function for each of node i ∈ H(n) converges to

√
2/20, which

is equal to n−β

M , when n = 110 and the values for β and M are the ones selected before (of course, the same
holds for each generation step n). Note that the equilibrium point decreases as n increases as we expected
from Eq. (3). Moreover, as the number of generation steps increases, the time it takes to converge increases
also, but an IFD is still reached.

Next, to study the network’s emerging connectivity we run simulations using 10000 generations. The
top plot in Figure 2a shows the results when β = 1

2 , M = 50, M0 = 50, and N0 = 1. The dotted
line represents the theoretical probability distribution, while the dots represent the results for our network
model. As expected, the probability that a node has many connections is small and decreases as the number
of connections increases. The exponent for the power law in this case is γ = 3. An important feature of our
model is the fact that the number of edges added per generation does not grow unbounded. The bottom
plot in Figure 2a illustrates the convergence of the total number of new connections Cn for the first 500
generation steps and the same parameters as before.

Finally, in order to study robustness properties of our model, we study the effect of not reaching the IFD

at its desired level (i.e., at n−β

M for generation n). Figure 2b shows the connectivity distribution and the total
number of edges created during each generation when we perturb the desired IFD state by adding random
noise to Cn (i.e., when too many or too few edges are established). We modify the Cn value computed in
Eq. (6) by adding to it a zero mean random variable with finite variance. While the top plot in Figure 2b
shows that a scale-free distribution will still emerge, the bottom plot shows that Cn no longer converges to
M

1−β , yet remains bounded.
Next, we allow for some random edges to be created between any two nodes, so that equal suitability

levels at the IFD cannot be achieved (i.e., only an approximate IFD can be reached, but x(t) ∈ ∆n for all t).
Even with this type of perturbation (on the state of the network), a scale-free distribution again emerges,
and the simulation results are similar to those presented in Figure 2a.

Note that Figure 2 represents information constrained cases of our model. For the first case (Figure 2b)
we would have some type of irregularity in the system when determining the number of edges that need
to be added per generation. Consequently, instead of having a perfect value for Cn we obtain just a noisy
estimated value. In the second case, the information is altered when we distribute the number of edges that
are ultimately established. In either case, this implies that the IFD is only reached approximately (i.e., not
as defined by Eq. (3)), but a scale-free network may still emerge.
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reached.
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(b) Simulation results when approximate IFDs are reached.

Figure 2: Simulation results for 10000 generations. The parameters selected for these simulations are β = 1
2 ,

M = 50, M0 = 50, and N0 = 1. The top plots illustrates the connectivity distributions from the theory
(dashed) [6] and from simulations (o). The bottom plots illustrate the total number of new connections that
are added each generation. The small inset plots show the suitability at which the IFD is achieved for the
first 100 generations.

4 Conclusions

In our model of network evolution, any two nodes establish new connections as a result of their difference
in suitability levels. Due to maintenance costs, establishing a new edge punishes the connected nodes by
degrading their suitability levels. We define a particular class of suitability functions where nodes that have
been part of the network for longer pay a lower penalty to maintain the same amount of connections than
nodes recently added. We then prove that for this class of suitability functions, a node connectivity where
all nodes have equal suitability levels, namely an ideal free distribution (IFD), is an asymptotically stable
equilibrium point.

When a new node is added to the network it attaches to a finite number of nodes, thereby forcing the
suitability levels of these nodes to decrease. We show that under certain conditions a new IFD will be
reached, so that the suitability of the new node eventually equals that of all other nodes. Furthermore, we
prove that as the network grows and more connections are established, subsequent achievements of IFDs will
lead to a connectivity distribution that is scale-free.

Finally, our simulation results suggest that not achieving perfect IFDs does not considerably affect the
emergent distribution. Developing a mathematical model that takes into account how information flow
constraints (e.g., delays in sensing suitability levels and establishing new connections) affect the achievable
IFD and the emerging connectivity distributions remains a future research direction, as does considering a
wider class of suitability functions.
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