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Abstract The main objective of this research is to develop and evaluate the per-
formance of strategies for cooperative control of autonomous air vehicles
that seek to gather information about a dynamic target environment,
evade threats, and coordinate strikes against targets. The air vehicles
are equipped with sensors to view a limited region of the environment
they are visiting, and are able to communicate with one another to
enable cooperation. They are assumed to have some \physical" lim-
itations including possibly maneuverability limitations, fuel/time con-
straints and sensor range and accuracy. The developed cooperative
search framework is based on two inter-dependent tasks: (i) on-line
learning of the environment and storing of the information in the form
of a \target search map"; and (ii) utilization of the target search map
and other information to compute on-line a guidance trajectory for the
vehicle to follow. We study the stability of vehicular swarms to try to
understand what types of communications are needed to achieve coop-
erative search and engagement, and characteristics that a�ect swarm
aggregation and disintegration. Finally, we explore the utility of using
biomimicry of social foraging strategies to develop coordination strate-
gies.
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1. Introduction

1.1. UAAV Operational Scenarios

Recent technological advances are making it possible to deploy mul-
tiple Uninhabited Autonomous Air Vehicles (UAAVs) that can gather
information about a dynamic threat/target environment, evade threats,
and coordinate strikes against targets (see Figure 1.1). Here, we show
a section of land (the black regions indicate mountains/rugged terrain
where targets/threats generally do not reside) where there are targets
with certain priorities (e.g., set by the command center) and threats
with di�erent severities relative to their ability to eliminate the UAAV
or other assets. A target may also be a threat, but there may be threats
that are not high priority targets, or targets that are not severe threats
to the UAAV (e.g., the autonomous munition is assumed small and ex-
pendable, so targets are not considered to be threats to the munition
itself). Mobile target/threats are designated by showing their path of
travel. There are also stationary targets/threats. There are some tar-
gets/threats that are in groups, while others are distant from a group.
There are groups with certain types of compositions (e.g., some in a
high threat/low target priority group that are protecting a low threat
severity/high target priority site). The proposed formulation can also
allow for negative target priorities, which may include undesirable tar-
gets such as a truckload of civilians (collateral damage). The UAAVs
are designated with shaded triangles (the black one has extra UAAV
supervisory responsibility), and the ellipses show the region where the
sensor resources of the UAAVs are currently focused (and they can only
\see" targets/threats within this ellipse). In our general formulation we
assume that in addition to sensing and maneuvering capabilities, the
UAAVs have an ability to strike a target with on-board munitions, or
the UAAV is a munition itself. There are some communications that
are allowed between UAAVs, and these are represented via the bidirec-
tional dotted arrows; however, there are communication limitations (e.g.
bandwidth, delays, or range constraints). The general problem is to co-
ordinate the movement of the UAAVs so that they can evade threats
and locate and destroy the highest priority targets, before they expend
their own resources (e.g. fuel).

1.2. UAAV Cooperation to Enhance Mission
E�ectiveness

While each UAAV could certainly operate independently of the oth-
ers, the overall mission e�ectiveness can be improved via communica-
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(i,j): i=threat severity index relative to UAAV (1=most severe),
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Figure 1.1. UAAVs operating in a dynamic target/threat environment.

tions and coordination of their activities. For instance, for the situa-
tion depicted in Figure 1.1 suppose that one UAAV has identi�ed the
(2; 4)-target/threat (since it is in the focus of its sensors) and another
UAAV has just identi�ed a (4; 2)-target/threat. The notation used here
is that (i; j) implies threat severity index i and target priority index j,
where 1 denotes the highest priority (or the most severe threat). Fur-
ther suppose that in the recent past the second UAAV also identi�ed
the (4; 2)-target/threat to its southwest. Note that this \identi�cation"
entails estimating the position of the target/threat, and the type of
the target/threat (i.e., an estimate of the target/threat indices given in
the �gure), and there is uncertainty associated with each of these. In
Figure 1.1 the \supervisory" UAAV is capable of receiving information
from all other UAAV's subject to range limitations and data loss as-
sumptions. This communication could be direct or via retransmission
by all UAAV's. In this situation suppose the supervisor decides that
since the one UAAV has encountered a target/threat with high threat
severity, but low target priority, while the second has encountered two
target/threats with higher target priority, but lower threat severity, the
one UAAV ought to evade the threat, and go assist the second UAAV
in identifying and possibly eliminating the high priority targets. No-
tice that these decisions could have been made without the supervisor
UAAV, but if it is available, and has established communications with
other nearby UAAVs it can make more e�ective decisions.
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In the case, however, where there are no nearby UAAVs to commu-
nicate with, each UAAV must be able to act entirely on its own in the
most e�ective manner possible. This situation is depicted in the south-
east corner of the target/threat environment. There, we have a group
of low target priority/high threat severity vehicles that are \protecting"
a relatively defenseless, but high priority target (i.e., the (6; 1) site).
Suppose that the nearby UAAV has identi�ed two of the three in the
group that is protecting the valuable target. The UAAV should then
have a strategy where it tries to evade the threats and continue to seek
a higher priority target, and decide in an optimal fashion when to strike
targets. Hence, we see that UAAVs must be able to exibly operate in-
dependently, but if communication is possible with nearby UAAVs, then
the information should be exploited to optimize the balance between the
need to identify target/threats, and to evade and destroy these.
This leads to the following principle: Wide-area search and identi-

�cation of targets/threats is desirable, but it must be balanced with
fuel/time constraints, threats that may dictate the need to evade and
hence obtain poor identi�cation, and the need to ultimately engage the
highest priority targets with the limited resources available (e.g., for
the autonomous munition problem we assume a single shot, expendable
UAAV).

1.3. Distributed Guidance and Control
Architecture

Consider N vehicles deployed in some search region X of known di-
mension. As each vehicle moves around in the search region, it obtains
sensory information about the environment, which helps to reduce the
uncertainty about the environment. This sensory information is typically
in the form of an image, which can be processed on-line to determine
the presence of a certain item or target. Alternatively, it can be in the
form of a sensor coupled with automatic target recognition (ATR) soft-
ware. In addition to the information received from its own sensors, each
vehicle also receives information from other vehicles via a wireless com-
munication channel. The information received from other vehicles can
be in raw data form or it may be pre-processed, and it may be coming
at a di�erent rate (usually at a slower rate) than the sensor information
received by the vehicle from its own sensors.
Depending on the speci�c mission, the global objective pursued by the

team of vehicles may be di�erent. In this paper, we focus mainly on the
problem of cooperative search, where the team of vehicles seeks to follow
a trajectory that would result in maximum gain in information about
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the environment; i.e., the objective is to minimize the uncertainty about
the environment. Intuitively, each vehicle wants to follow a trajectory
that leads to regions in X that have not been visited frequently before by
the team of vehicles. The presented framework can be easily expanded
to include more advanced missions such as evading threats, attacking
targets, etc. In general, the team may have an overall mission that
combines several of these objectives according to some desired priority.
Each vehicle has two basic control loops that are used in guidance

and control, as shown in Figure 1.2. The \outer-loop" controller for
vehicle Ai utilizes sensor information from Ai, as well as sensor infor-
mation from Aj, j 6= i, to compute on-line a desired trajectory (path)
to follow, which is denoted by Pi(k). The sensor information utilized in
the feedback loop is denoted by vi and may include information from
standard vehicle sensors (e.g. pitch, yaw, etc.) and information from
on-board sensors that has been pre-processed by resident ATR software.
The sensor information coming from other vehicles is represented by the
vector

Vi = [v1; : : : ; vi�1; vi+1; : : : ; vN ]
> ;

where vj represents the information received from vehicle Aj. Although
in the above formulation it appears that all vehicles are in range and can
communicate with each other, this is not a required assumption|the
same framework can be used for the case where some of the information
from other vehicles is missing, or the information from di�erent vehicles
is received at di�erent sampling rates. The desired trajectory Pi(k) is
generated as a digitized look-ahead path of the form

Pi(k) = fpi(k); pi(k + 1); : : : ; pi(k + q)g ;
where pi(k+ j) is the desired location of vehicle Ai at time k+ j, and q
is the number of look-ahead steps in the path planning procedure.
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Figure 1.2. Inner- and outer-loop controllers for guidance and control of air vehicles.

The inner-loop controller uses sensed information vi from Ai to gen-
erate inputs ui to the actuators of Ai so that the vehicle will track the
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desired trajectory Pi(k). We largely ignore the vehicle dynamics, and
hence concentrate on the outer-loop control problem. In this way, our
focus is solidly on the development of the controller for guidance, where
the key is to show how resident information of vehicle Ai can be com-
bined with information from other vehicles so that the team of vehicles
can work together to minimize the uncertainty in the search region X .
The design of the outer-loop control scheme is broken down into two

basic functions, as shown in Figure 1.3. First, it uses the sensor informa-
tion received to update its \search map", which is a representation of the
environment|this will be referred to as the vehicle's learning function,
and for convenience it will be denoted by Li. Based on its search map,
as well as other information (such as its location and direction, the loca-
tion and direction of the other vehicles, remaining fuel, etc.), the second
function is to compute a desired path for the vehicle to follow|this is
referred to as the vehicle's guidance decision function, and is denoted
by Di. In this setting we assume that the guidance control decisions
made by each vehicle are autonomous, in the sense that no vehicle tells
another what to do in a hierarchical type of structure, nor is there any
negotiation between vehicles. Each vehicle simply receives information
about the environment from the remaining vehicles (or a subset of the
remaining vehicles) and makes its decisions, which are typically based
on enhancing a global goal, not only its own goal. Therefore, the pre-
sented framework can be thought of as a passive cooperation framework,
as opposed to active cooperation where the vehicles may be actively co-
ordinating their decisions and actions.

vi
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for where to search,
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how to evade

Vi

L i D i

Guidance Controller
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Figure 1.3. Learning and decision-making components of the outer-loop controller
for trajectory generation of air vehicles.

Generally, the characteristics of the N trajectories of the group of
UAAVs combine to result in the \emergence" of a set of vehicle trajec-
tories that represent, for example:
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Cooperative search so that search resources of the group are mini-
mized in obtaining maximum information about the environment,
or

Cooperative engagement where an attack is coordinated between
UAAVs (e.g., for a particularly high priority target).

While the development of a guidance algorithm for a single UAAV is
challenging, in this project it is especially important to develop learning
and decision-making strategies that exploit information from other ve-
hicles in order to realize the bene�ts of cooperative control for mission
e�ectiveness enhancement.

2. Autonomous Munition Problem

There are several types of UAAVs at various stages of development
in the US Air Force. For instance, it is envisioned that two smart Un-
inhabited Combat Air Vehicles (UCAVs) may be used for coordinated
strike missions, and work is progressing on this topic at the Air Force
Research Laboratory (AFRL). Alternatively, there is another class of
UAAVs where there is a larger number of inexpensive and expendable au-
tonomous munitions (AMs) with wide area search capability that could
be deployed in a seek/destroy mission against critical ground mobile tar-
gets, the so-called LOCAAS problem (Jacques and Leblanc, 1998). In
our research work we use this type of UAAV problem as a benchmark
for the study of design and evaluation of distributed coordination and
control strategies for UAAVs. Here, we will summarize the AM prob-
lem and our current progress on developing and evaluating search and
engagement strategies.

2.1. Autonomous Munitions: Characteristics
and Goals

For the AM problem we will assume that there are no threats, only
mobile targets, so that we do not need to consider evasive maneuvers
(i.e., so we only have a seek/destroy mission). We consider the coordina-
tion of multiple munitions (N � 4) and consider the case where there are
multiple target types, with di�erent priorities that are speci�ed a priori.
Although we assume that the targets lie in the (x; y) plane, we intend
to consider terrain e�ects that could restrict target movement. Terrain
considerations can be used to discourage munitions from searching areas
where targets are not expected to be located, thus improving the overall
search eÆciency. We assume that each AM has a \generic sensor" (our
methods will not be sensor-speci�c) that \illuminates" (allows it to see)
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only a �xed (e.g., elliptical or trapezoidal) region on the (x; y) plane (i.e.,
like the shaded regions in Figure 1.1). If an object is in its illumination
area, the sensor will have the opportunity to recognize the object (target
priority i or non-target), and if the munition declares it to be a target,
provide an estimate of the (x; y) location. The generic target recognition
for this project will be done using probability table look-ups, a confusion
matrix, as is known to those familiar with ATR terminology. In addi-
tion to mis-identifying real targets, the munitions have the potential for
declaring non-target objects to be a real target. For a declared target
(real or otherwise), the minimum information we expect the munition to
communicate is the target priority, (x; y) location, and whether or not
the munition is committed to engaging the target.
The current state-of-the-art in munition wide area search is such that a

ground mobile target free to move in any direction can increase its target
location uncertainty faster (quadratic with time) than a single munition
can search (linear with time). Further, each individual munition has
limited sensing/computing capability with which to positively identify
a target. Assuming the target is found and properly identi�ed, each
munition has a probability of kill given a hit which is less than unity. An
obvious way to compensate for these factors is to use multiple munitions
to help �nd, identify and/or strike critical targets, but this must be done
in such a way that the probability of missing other targets in the area
is minimized. An additional constraint on the solution is the level of
communication that is possible between munitions. For example, it may
be that only a low-bandwidth channel is available between munitions
that are physically near each other. Currently we are also assuming
range degraded communications.
The overall goal should be to increase the macro-level e�ectiveness (as

measured by standard mission e�ectiveness performance metrics), while
at the same time maintaining or reducing the required level of technol-
ogy for each individual munition. The e�ectiveness of our cooperative
control strategies is being compared to a baseline autonomous (non-
cooperating) wide area search munition. Scenarios used as test cases are
parameterized by factors such as target density, munition/target ratio,
ATR performance (probability of correct target report and False Target
Attack Rate, FTAR), warhead lethality, and others. The often compet-
ing objectives being addressed for each scenario are illustrated by the
following cases:

1 Maximize probability of correct target identi�cation: In this sce-
nario we specify that the highest priority is to identify targets,
and that they are only destroyed if there are not further opportu-
nities to identify more aspects of the target environment. In this
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case the group of AMs will likely miss the opportunity to destroy
some targets, but it may be able to communicate a more accurate
picture of the target environment back to a command center for a
follow-on strike.

2 Maximize the probability of high priority kills: In this scenario the
emphasis is on the destruction of the highest priority targets. For
this reason, an AM �nding a high priority target will immediately
initiate an engagement, and a nearby munition may also decide to
engage the same target. However, an AM �nding a lower priority
target may communicate information on the target but continue
searching for a high priority target. In this case the lower priority
targets will only be engaged by munitions that are running low on
fuel and therefore have a low probability of �nding a high priority
target through continued search.

3 Maximize overall mission e�ectiveness: In this case, the set of
AM's will seek to maximize a formula consisting of a weighted
sum of the expected number of kills on real targets (higher prior-
ity counts more) with a negative contribution for an attack on a
non-target vehicle. This case, more than the previous two, pro-
vides a very challenging problem for cooperative behavior strate-
gies because the munition false target attack rate can result in
degraded performance for the cooperative munitions as compared
to the baseline autonomous munitions.

2.2. Simulation Testbeds for the Autonomous
Munitions Problem

There is a simulation testbed written in FORTRAN that is currently
being used at AFIT for evaluating mission e�ectiveness for coopera-
tive control strategies (see Gillen and Jacques, 2000). The simulation
(PSUB) was originally developed by Lockheed Martin Vought Systems
for the LOCAAS program, and has been modi�ed for evaluation of co-
operative attack strategies. This simulation, however, is proprietary and
not well suited to the cooperative search and classi�cation problems. For
these reasons, we developed an open simulation within the MATLAB en-
vironment. The capabilities of the MATLAB simulation are similar to
those of PSUB, namely multiple munitions with generic target recogni-
tion capability (probability table look-ups) searching for multiple moving
targets of di�ering priority, with user speci�ed environmental character-
istics (e.g., target densities, false target densities, etc.). Two example
plots from our testbed are shown in Figure 1.4. Here we show the use of
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\serpentine" and \random" search for a rectangular region (the squares
designate targets and triangles are vehicles).

Figure 1.4. Output from autonomous munitions simulation testbed.

The Matlab cooperative munitions simulation test bed has a friendly
graphical user-interface that facilitates visualization of UAAV swarm
dynamics and the e�ects of coordination strategy design choices. It uses
object-oriented features of Matlab, has Monte-Carlo simulation abilities,
and provides numerical measures of mission e�ectiveness. We use it
in the evaluation of the e�ectiveness of coordination strategies, and to
study trade-o�s in design. A detailed description of the progress made
on the development and evaluation of a \behavioral rule scheme" for the
autonomous munition problem is given in the companion paper (Gillen
and Jacques, 2000).

3. Cooperative Control via Distributed Learning
and Planning

In this section, we present a general cooperative search framework for
distributed agents. This framework is used to explain how the N vehicles
work together to achieve distributed learning about their environment
and how distributed learning can facilitate distributed planning of UAAV
activities for search and engagement missions.

3.1. Distributed Learning

Each UAAV has a three dimensional map, which we will refer to as
\search map," that serves as the vehicle's knowledge base of the envi-
ronment. The x and y coordinates of the map specify the location in the
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target environment (i.e., (x; y) 2 X ), while the z coordinate speci�es the
certainty that the vehicle \knows" the environment at that point. The
search map will be represented mathematically by an on-line approxi-
mation function as

z = S(x; y; �);
where (x; y) is a point in the search region X , and the output z 2 [0; 1]
corresponds the certainty about knowing the environment at the point
(x; y) in the search region. If S(x; y; �) = 0 then the vehicle knows noth-
ing (is totally uncertain) about the nature of the environment at (x; y).
On the other hand, if S(x; y; �) = 1 then the UAAV knows everything
(or equivalently, the vehicle is totally certain) about the environment
at (x; y). As the vehicle moves around in the search region it gathers
new information about the environment which is incorporated into its
search map. Also incorporated into its search map is the information
received by communication with other vehicles. Therefore, the search
map of each vehicle is continuously evolving as new information about
the environment is collected and processed.
We de�ne S : X � <q 7! [0; 1] to be an on-line approximator (for

example, a neural network), with a �xed structure whose input/output
response is updated on-line by adapting a set of adjustable parameters,
or weights, denoted by the vector � 2 <q. According to the standard
neural network notation, (x; y) is the input to the network and z is
the output of the network. The weight vector �(k) is updated based
on an on-line learning scheme, as is common, for example, in training
algorithms of neural networks.
In general, the search map serves as a storage place of the knowledge

that the vehicle has about the environment. While it is possible to cre-
ate a simpler memory/storage scheme (without learning) that simply
records the information received from the sensors, a learning scheme has
some key advantages: 1) it allows generalization between points; 2) in-
formation from di�erent types of sensors can be recorded in a common
framework (on the search map) and discarded; 3) it allows greater ex-
ibility in dealing with information received from di�erent angles; 4) in
the case of dynamic environments (for example, targets moving around),
one can conveniently make adjustments to the search map to incorporate
the changing environment (for example, by reducing the output value z
over time using a decay factor).
The search map is formed dynamically as the vehicle moves, gath-

ers information about the environment, and processes the information
based on automatic target recognition software, or other image process-
ing methods. This is illustrated in Figure 1.5, where we show the area
scanned by a \generic" sensor on a UAAV during a sampling period
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[kT; kT + T ] where T > 0 is the sampling time. Although in di�erent
applications the shape of the scanned area maybe be di�erent, the main
idea remains the same. The received data can then be digitized and each
grid point is used to adjust the search map S(x; y; �̂) by adapting �̂.

Figure 1.5. An example of a scan area for a UAAV.

In practice, the problem of minimizing the uncertainty in the search
region is typically an intermediate goal. The overall objective may in-
clude, for example, �nding speci�c targets, or avoiding certain obstacles
and threats. Therefore, depending on the application being considered,
the learning scheme described above for minimizing uncertainty may
need to be expanded. One possible way to include a mission of search-
ing for speci�c targets is to incorporate the search map into a more
general target search map, which in addition to providing information
about the vehicle's knowledge of the environment, it also contains infor-
mation about the presence (or not) of targets. This can be achieved by
allowing the output z of the on-line approximator S to take values in
the region z 2 [�1; 1], where:

z = S(x; y; �) = 1 represents high certainty that a target is present
at (x; y);

z = S(x; y; �) = �1 represents high certainty that a target is not
present at (x; y);

z = S(x; y; �) = 0 represents total uncertainty whether a target is
present at (x; y).

This representation contains additional information that the vehicle can
utilize in making guidance and path planning decisions. Furthermore,
the learning framework can be extended to a multi-dimensional frame-
work, where the output z of the on-line approximator is a vector of
dimension greater than one. For example, one could use the �rst output
to represent the presence/absence of a target (as above), and the second
output to represent the priority of the target.
In this general framework, the tuning of the search map can be viewed

as \learning" the environment. Mathematically, S tries to approximate
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an unknown function S�(x; y; k), where for each (x; y), the function S�
characterizes the presence (or not) of a target; the time variation indi-
cated by the time step k is due to (possible) changes in the environment
(such as having moving targets). Hence, the learning problem is de�ned
in using sensor information from vehicle Ai and information coming from
other vehicles Aj, j 6= i at each sampled time k, to adjust the weights

�̂(k) such that S(x; y; �̂(k))� S�(x; y; k)
(x;y)2X

is minimized.
Due to the nature of the learning problem, it is convenient to use

spatially localized approximation models so that learning in one region
of the search space does not cause any \unlearning" at a di�erent region
(Weaver et al., 1998). The dimension of the input space (x; y) is two, and
therefore there are no problems related to the \curse of dimensionality"
that are usually associated with spatially localized networks. In general,
the learning problem in this application is straightforward, and the use of
simple approximation functions and learning schemes is suÆcient; e.g.,
the use of piecewise constant maps or radial basis function networks,
with distributed gradient methods to adjust the parameters, provides
suÆcient learning capability. However, complexity issues do arise and
are crucial since the distributed nature of the architecture imposes limits
not only on the amount of memory and computations needed to store
and update the maps but also in the transmission of information from
one vehicle to another.
At the time of deployment, it is assumed that each vehicle has a copy

of an initial search map estimate, which reects the current knowledge
about the environment X . In the special case that no a priori infor-
mation is available, then each point on the search map is initialized as
\completely uncertain." In general, each vehicle is initialized with the
same search map. However, in some applications it may be useful to
have UAAVs be \specialized" to search in certain regions, in which case
the search environment for each UAAV, as well as the initial search map,
may be di�erent.

3.2. Cooperative Path Planning

One of the key objectives of each vehicle is to on-line select a suitable
path in the search environment X . To be consistent with the motion
dynamics of air vehicles, it is assumed that each vehicle has limited
maneuverability, which is represented by a maximum angle �m that the
vehicle can turn from its current direction. For simplicity we assume
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that all vehicles move at a constant velocity � (this assumption can be
easily relaxed).

Plan Generation. To describe the movement path of vehicle Ai

between samples, we de�ne the movement sampling time Tm as the time
interval in the movement of the vehicle. In this framework, we let pi(k)
be the position (in terms of (x; y) coordinates) of i-th vehicle at time
t = kTm, with the vehicle following a straight line in moving from pi(k)
to its new position pi(k + 1). Since the velocity � of the UAAV is
constant, the new position pi(k + 1) is at a distance �Tm from pi(k),
and based on the maneuverability constraint, it is within an angle ��m
from the current direction, as shown in Figure 1.6. To formulate the
optimization problem as an integer programming problem, we discretize
the arc of possible positions for pi(k + 1) into m points, denoted by the
set

Pi(k + 1) =
n
�p1i (k + 1); �p2i (k + 1); : : : �pji (k + 1); : : : �pmi (k + 1)

o
:

Therefore, the next new position for the i-th vehicle belongs to one of
the elements of the above set; i.e., pi(k + 1) 2 P i(k + 1).

pi(k)

p
i
(k+1)j_

p
i 
(k+1)m_

p
i
(k+1)1_

µTm

Figure 1.6. Selection of the next point in the path of the vehicle.

The UAAV selects a path by choosing among a possible set of future
position points. In our formulation we allow for a recursive q-step ahead
planning, which can be described as follows:

When vehicle Ai is at position pi(k) at time k, it has already
decided the next q positions: pi(k + 1), pi(k + 2), . . . , pi(k + q).

While the vehicle is moving from pi(k) to pi(k + 1) it selects the
position pi(k + q + 1), which it will visit at time t = k + q + 1.
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To get the recursion started, the �rst q positions, pi(1), pi(2), . . . , pi(q)
for each vehicle need to be selected a priori. Clearly, q = 1 corresponds
to the special case of no planning ahead. The main advantage of a
planning ahead algorithm is that it creates a bu�er for path planning.
From a practical perspective this can be quite useful since air vehicle
require (at least) some trajectory planning. On the other hand, if the
integer q is too large then, based on the recursive procedure, the position
pi(k) was selected q samples earlier at time k�q; hence the decision may
be outdated, in the sense that it may have been an optimal decision at
time k�q, but based on the new information received since then, it may
not be the best decision anymore. The recursive q-step ahead planning
procedure is illustrated in Figure 1.7 for the case where q = 6.

p
i
(k+q+1)j_

pi(k+1)

pi(k+2)

pi(k)

pi(k+q)

Figure 1.7. Illustration of the recursive q-step ahead planning algorithm.

If practical considerations (such as motion dynamics of the vehicle
and computational demands for path selection) require a relatively large
value for q then the problem of \outdated" decision making can be ame-
liorated by an interleaved type of scheme. We de�ne a (q; r)-interleaved
decision making scheme as follows:

When vehicle Ai is at position pi(k) at time k, it has already
decided the next q positions: pi(k + 1), pi(k + 2), : : : pi(k + q).

While the vehicle is moving from pi(k) to pi(k+1) it re-calculates
the last r points of the path based on the current data and also
selects another new position; i.e., it selects the points pi(k + q �
r + 1), pi(k + q � r + 2), . . . , pi(k + q), pi(k + q + 1).

The term \interleaved" is used to express the fact that decisions are
re-calculated over time, as the vehicle moves, to incorporate new infor-
mation that may have been received about the environment. According
to this formulation, a (q; r)-interleaved decision scheme requires the se-
lection of r+1 points for path planning at each sample Tm. The special
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case of (q; 0)-interleaved scheme (actually, strictly speaking it is a non-
interleaved scheme) corresponds to the recursive q-step ahead planning
scheme described earlier. Similar to the recursive q-step ahead planning
scheme, at the beginning, the �rst q positions for each vehicle need to be
selected a priori. The interleaved path planning procedure is illustrated
in Figure 1.8 for the case where q = 6 and r = 2.

pi(k+1)

pi(k+2)

pi(k)

pi(k+4)

pi(k+6)
_

pi(k+5)
_

pi(k+7)
_

Figure 1.8. Illustration of the (q; r)-interleaved decision making procedure.

The computational complexity of an interleaved decisionmaking scheme
can be signi�cantly higher than the q-step ahead planning algorithm.
Speci�cally, with the q-step ahead planning algorithm, each vehicle has
to select one position among m possible candidates. With the (q; r)-
interleaved algorithm, each vehicle has to select r + 1 positions among
a combination of mr+1 candidates. Therefore, the computational com-
plexity increases exponentially with the value of the interleaved variable
r. This is shown in Figure 1.8 where m = 9, r = 2; therefore at each
sample time the vehicle needs to select among 93 = 243 possible paths
in order to compute the three positions pi(5), pi(6) and pi(7). The �gure
shows a path of points generated by the guidance (outer-loop) controller,
and then shows a tree of possible directions that the vehicle can take.

Plan Selection. Given the current information available via the
search map, and the location/direction of the team of vehicles (and pos-
sibly other useful information, such as fuel remaining, etc.), each vehicle
uses a multi-objective cost function J to select and update its search
path. At decision sampling time Td, the vehicle evaluates the cost func-
tion associated with each path and selects the optimal path. The decision
sampling time Td is typically equal to the movement sampling time Tm.
The approach can be thought of as an \adaptive model predictive con-
trol" approach where we learn the model that we use to predict ahead
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in time, and we use on-line optimization in the formation of that model,
and in evaluating the candidate paths to move the vehicle along.
A key issue in the performance of the cooperative search approach is

the selection of the multi-objective cost function associated with each
possible path. Our approach is quite exible in that it allows the char-
acterization of various mission-level objectives, and trade-o�s between
these. In general, the cost function comprises of a number of sub-goals,
which are sometimes competing. Therefore the cost criterion J can be
written as:

J = !1J1 + !2J2 + : : :+ !sJs;

where Ji represents the cost criterion associated with the i-th subgoal,
and !i is the corresponding weight. The weights are normalized such
that 0 � !i � 1 and the sum of all the weights is equal to one; i.e.,Ps

i=1 !i = 1. Priorities to speci�c sub-goals are achieved by adjusting
the values of weights !i associated with each sub-goal.
The following is a list (not exhaustive) of possible sub-goals that a

search vehicle may include in its cost criterion. Corresponding to each
sub-goal is a cost-criterion component that can be readily designed. For a
more clear characterization, these sub-goals are categorized according to
three mission objectives: Search (S), Cooperation (C), and Engagement
(E). In addition to sub-goals that belong purely to one of these classes,
there are some that are a combination of two or more missions. For
example, SE1 (see below) corresponds to a search and engage mission.

S1 Follow the path where there is maximum uncertainty in the search
map. This cost criterion simply considers the uncertainty reduc-
tion associated with the sweep region between the current position
pi(k) and each of the possible candidate positions �pji (k + 1) for
the next sampling time (see the rectangular regions between pi(k)

and �pji (k + 1) in Figure 1.9). The cost criterion can be derived by
computing a measure of uncertainty in the path between pi(k) and

each candidate future position �pji (k + 1).

S2 Follow the path that leads to the region with the maximum uncer-
tainty (on the average) in the search map. The �rst cost cost
criterion (S1) pushes the vehicle towards the path with the max-
imum uncertainty. However, this may not be the best path, over
a longer period of time, if it leads to a region where the average
uncertainty is low. Therefore, it's important for the search vehi-
cle to seek not only the instantaneous minimizing path, but also a
path that will cause the vehicle to visit (in the future) regions with
large uncertainty. The cost criterion can be derived by computing



18

the average uncertainty of a triangular type of region associated
with the heading direction of the vehicle (see the triangular regions

ahead of �pji (k + 1) in Figure 1.9).

pi(k)

p
i 
(k+1)m_

p
i
(k+1)1_

Figure 1.9. Illustration of the regions that are used in the cost function for �nding
the optimal search path.

C1 Follow the path where there is the minimum overlap with other ve-
hicles. Since the vehicles are in frequent communication with each
other, they are able to share their new information about the search
region, thereby the search map of each individual vehicle is sim-
ilar to the search maps of the other vehicles. Consequently, it is
natural that they may select the same search path as other ve-
hicles (especially since in general they will be utilizing the same
search algorithm). This will be more pronounced if two vehicles
happen to be close to each other. However, in order to minimize
the global uncertainty associated with the emergent knowledge of
all vehicles, it is crucial that there is minimum overlap in their
search e�orts. This can be achieved by including a cost function
component that penalizes vehicles being close to each other and
heading in the same direction. This component of the cost func-
tion can be derived based on the relative locations and heading
direction (angle) between pairs of vehicles.
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SE1 Follow the path that maximizes coverage of the highest priority
targets. In mission applications where the vehicles have a target
search map with priorities assigned to detected targets, it is possi-
ble to combine the search of new targets with coverage of discov-
ered targets by including a cost component that steers the vehicle
towards covering high priority targets. Therefore, this leads to a
coordinated search where both coverage and priorities are objec-
tives.

E1 Follow the path toward highest priority targets with most certainty
if fuel is low. In some applications, the energy of the vehicle is a
key limiting factor. In such cases it is important to monitor the
remaining fuel and possibly switch goals if the fuel becomes too
low. For example, in search-and-engage operations, the vehicle
may decide to abort search objectives and head towards engaging
high priority targets if the remaining fuel is low.

EC1 Follow the path toward targets where there will be minimum over-
lap with other vehicles. Cooperation between vehicles is a key issue
not only in search patterns but also|and even more so|in engage-
ment patterns. If an vehicle decides to engage a target, there needs
to be some cooperation such that no other vehicle tries to go af-
ter the same target; i.e., a coordinated dispersed engagement is
desirable.

The above list of sub-goals and their corresponding cost criteria pro-
vide a avor of the type of issues associated with the construction of the
overall cost function for a general mission. In addition to incorporat-
ing the desired sub-goals into the cost criterion (i.e., maximize bene�t),
it is also possible to include cost components that reduce undesirable
sub-goals (minimize cost). For example, in order to generate a smooth
trajectory for a UAV such that it avoids|as much as possible|the loss
of sensing capabilities during turns, it may be desirable to assign an ex-
tra cost for possible future positions on the periphery (large angles) of
the set P i.
In the next subsection, we consider some simulation studies that are

based on a cost function consisting of the �rst three sub-goals. Therefore
the main goal is to search in a cooperative framework.

3.3. Cooperative Search and Learning Results

The proposed cooperative search and learning framework has been
tested in several simple simulated studies. Three of these simulation
studies are presented in this subsection. In the �rst simulation experi-
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ment there are two vehicles, while in the second simulation we will be
using a team of �ve vehicles. In both of these simulation studies we
are using the recursive q-step ahead planning algorithm with q = 3. In
the �nal simulation experiment we compare the q-step ahead planning
algorithm with the interleaved scheme, and also examine the e�ect of
a dynamic environment, where the location of targets maybe changing
over time.
The results for the case of two vehicles are shown in Figure 1.10. The

upper-left plot shows a standard search pattern for the �rst 500 time
samples, while the upper-right plot shows the corresponding result for a
random search, which is subject to the maneuverability constraints. The
standard search pattern utilized here is based on the so-called zamboni
coverage pattern (Ablavsky and Snorrason, 2000). The lower-left plot
shows the result of the cooperative search method based on the recursive
q-step ahead planning algorithm. The search region is a 200 by 200 area,
and we consider two search vehicles which start at the location indicated
by the triangles. It is assumed that there is some a priori information
about the search region: the green (light) polygons indicate complete
certainty about the environment (for example, these can represent re-
gions where it is known for sure|due to the terrain|that there are
no targets); the blue (dark) polygons represent partial certainty about
the environment. The remaining search region is assumed to be com-
pletely uncertain. For simplicity, in this simulation the only mission is
for the vehicles to work cooperatively in reducing the uncertainty in the
environment (by searching in highly uncertain areas).
The search map used in this simulation study is based on piecewise

constant basis functions, and the learning algorithm is a simple update
algorithm of the form �̂(k+1) = 0:5�̂(k)+0:5, where the �rst encounter of
a search block results in the maximum reduction in uncertainty. Further
encounters result in reduced bene�t. For example, if a block on the
search map starts from certainty value of zero (completely uncertain)
then after four visits from (possibly di�erent) vehicles, the certainty
value changes to 0 7! 0:5 7! 0:75 7! 0:875 7! 0:9375. The percentage
of uncertainty is de�ned as the distance of the certainty value from one.
In the above example, after four encounters the block will have 6:25%
percentage of uncertainty. The cooperative search algorithm has no pre-
set search pattern. As seen from Figure 1.10, each vehicle adapts its
search path on-line based on current information from its search results,
as well as from search results of the other vehicles.
To compare the performance of the three search patterns, the lower-

right plot of Figure 1.10 shows the percentage of uncertainty with time
for the standard search pattern, the random search pattern and the co-
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Figure 1.10. Comparison of the cooperative search pattern with a \standard" search
pattern and a random search pattern for the case of two moving vehicles. The upper-
left plot shows a standard search pattern for the �rst 500 time samples; the upper-right
plot shows the corresponding search pattern in the case of a random search, subject
to some bounds to restrict the vehicle from deserting the search region; The lower-
left plot shows the cooperative search pattern based on the recursive q-step ahead
planning algorithm; the lower-right plot shows a comparison of the performance of
the three search patterns in terms of reducing uncertainty in the environment.

operative search pattern described above. The ability of the cooperative
search algorithm to make path planning decisions on-line results in a
faster rate of uncertainty reduction.
The corresponding results in the case of �ve vehicles moving in the

same environment is shown in Figure 1.11. In this simulation study we
assume that the initial information about the environment is slightly dif-
ferent from before. The results are analogous to the case of two vehicles.

In these simulation studies, we assume that the sampling time Tm = 1
corresponds to the rate at which each vehicle receives information from
its own sensors, updates its search map and makes path planning de-



22

0 50 100 150 200

0

50

100

150

200

x

y

Standard Search (200samples)

0 50 100 150 200

0

50

100

150

200

x

y

Random Search(200samples)

0 50 100 150 200

0

50

100

150

200

x

y

Cooperative Search (200samples)

0 200 400 600 800 1000
0

20

40

60

80

100

Sample (k)

 P
er

ce
nt

ag
e 

of
 U

nc
er

ta
in

ty
 (

%
)

Comparison for the three search patterns

Standard Search    
Random Search      
Coopearative Search

Figure 1.11. Comparison of the cooperative search pattern with a \standard" search
pattern and a random search pattern for the case of �ve moving vehicles. The upper-
left plot shows a standard search pattern for the �rst 500 time samples; the upper-right
plot shows the corresponding search pattern in the case of a random search, subject
to some bounds to restrict the vehicle from deserting the search region; The lower-
left plot shows the cooperative search pattern based on the recursive q-step ahead
planning algorithm; the lower-right plot shows a comparison of the performance of
the three search patterns in terms of reducing uncertainty in the environment.

cisions. Information from other vehicles is received at a slower rate.
Speci�cally, we assume that the communication sampling time Tc be-
tween vehicles is �ve times the movement sampling time; i.e., Tc = 5Tm.
For fairness in comparison, it is assumed that for the standard and ran-
dom search patterns the vehicles exchange information and update their
search maps in the same way as in the cooperative search pattern, but
they do not use the received information to make on-line decisions on
where to go.
In the �rst two simulations it was assumed that learning of the envi-

ronment was monotonically increasing with time; in other words, as the
team of UAAVs moved around the environment, they were able to en-
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hance their knowledge, leading to decreasing levels of uncertainty. In the
case of a dynamic environment the targets may be moving around, and
therefore the represented level of uncertainty increases with time. In the
framework followed in this paper, reduction in the certainty levels due
to a dynamic environment can be implemented by using a decay value
d < 1 that multiplies the search map; i.e., z = S(x; y; �̂)d. Therefore,
in the case of a dynamic environment, learning (which reduces uncer-
tainty) competes with the increase in uncertainty due to a changing
environment. In the third simulation experiment, shown in Fugure 1.12,
we consider the same environment as in Figure1.11 with �ve UAAVs, but
introduce a decay to represent a dynamic environment. The simulation
shown is for three di�erent levels of decay: (i) d = 0:98; (ii) d = 0:995;
and (iii) d = 1 (no decay). This decay factor is applied every 5 steps.
For di�erent levels of decay, we compare the non-interleaved planning
algorithm r = 0 with the interleaved search planning algorithm r = 1.
As expected, the rate of reduction in percentage of uncertainty decreases
as the decay rate d decreases. The plot also shows that, overall, the in-
terleaved search planning algorithm performs slightly better than the
corresponding non-interleaved.
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Figure 1.12. Comparison of interleaved search strategies for varying decay rates.
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It is noted that in these simulations the path planning of the coopera-
tive search algorithm is rather limited since at every sampled time each
vehicle is allowed to either go straight, left, or right (the search direction
is discretized into only three possible points; i.e., m = 3). As the com-
plexity of the cooperative search algorithm is increased and the design
parameters (such as the weights associated with the multi-objective cost
function) are �ne-tuned or optimized, it is anticipated that the search
performance can be further enhanced.

3.4. Related Research Work on Search Methods

Various types of search problems occur in a number of military and
civilian applications, such as search-and-rescue operations in open-sea or
sparsely populated areas, search missions for previously spotted enemy
targets, seek-destroy missions for land mines, and search for mineral de-
posits. A number of approaches have been proposed for addressing such
search problems. These include, among other, optimal search theory
( Stone, 1975; Koopman, 1980), exhaustive geographic search (Spires
and Goldsmith, 1998), obstacle avoidance (Cameron, 1994; Snorrason
and Norris, 1999) and derivative-free optimization methods (Conn et al.,
1997).
Search theory deals with the problem of distribution of search e�ort

in a way that maximizes the probability of �nding the object of interest.
Typically, it is assumed that some prior knowledge about the target dis-
tribution is available, as well as the \payo�" function that relates the
time spent searching to the probability of actually �nding the target,
given that the target is indeed in a speci�c cell (Stone, 1975; Koopman,
1980). Search theory was initially formed during World War II with the
work of Koopmam and his colleagues at the Anti-SubmarineWarfare Op-
erations Research Group (ASWORG). Later on, the principles of search
theory were applied successfully in a number of applications, including
the search for and rescue of a lost party in a mountain or a missing
boat on the ocean, the surveillance of frontiers or territorial seas, the
search for mineral deposits, medical diagnosis, and the search for a mal-
function in an industrial process. Detailed reviews of the current status
of search theory are given by (Stone, 1983; Richardson, 1987; Benkoski
et al., 1991).
The optimal search problem can be naturally divided according to

two criteria that depend on the target's behavior. The �rst division de-
pends on whether the target is evading or not; that is, whether there is a
two-sided optimization by both the searcher and the target, or whether
the target's behavior is independent of the searcher's action. The sec-
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ond division deals with whether the target is stationary or moving. The
two divisions and their combinations form four di�erent categories. A
great deal of progress in solving stationary target problems in the opti-
mal search framework has been made, and solutions have been derived
for most of the standard cases (Stone, 1975). For the moving target
problem, the emphasis in search theory has shifted from mathemati-
cal and analytical solutions to algorithmic solutions (Benkoski et al.,
1991). A typical type of search problem, called the path constrain search
problem (PCSP), that takes into account the movement of the searcher,
was investigated by several researchers (Eagle and Yee, 1990; Stewart,
1980; Hohzaki and Iida, 1995b; Hohzaki and Iida, 1995a). Because of the
NP-complete nature of this problem, most authors proposed a number
of heuristic approaches that result in approximately optimal solutions.
The two-sided search problem can be treated as a game problem for both
the searcher and target strategies. This has been the topic of a number
of research works (Danskin, 1968; Hohzaki and Iida, 2000; Washburn,
1980). So far, search theory has paid little attention to the problem of
having a team of cooperating searchers. A number of heuristic methods
for solving this problem have been proposed by (Dell and Eagle, 1996).
The Exhaustive Geographic Search problem deals with developing a

complete map of all phenomena of interest within a de�ned geographic
area, subject to the usual engineering constraints of eÆciency, robustness
and accuracy (Spires and Goldsmith, 1998). This problem received much
attention recently, and algorithms have been developed that are cost-
e�ective and practical. Application examples of Exhaustive Geographic
Search include mapping mine �elds, extraterrestrial and under-sea ex-
ploration, exploring volcanoes, locating chemical and biological weapons
and locating explosive devices (Spires and Goldsmith, 1998; Goldsmith
and Robinett, 1998; Hert et al., 1996; Choset and Pignon, 1997).
The obstacle avoidance literature deals with computing optimal paths

given some kind of obstacle map. The intent is to construct a physically
realizable path that connects the initial point to the destination in a way
that minimizes some energy function while avoiding all the obstacles
along the route (Cameron, 1994; Snorrason and Norris, 1999). Obstacle
avoidance is normally closely geared to the methods used to sense the
obstacles, as time-to-react is of the essence. The eÆciency of obstacle
avoidance systems is largely limited by the reliability of the sensors used.
A popular way to solve the obstacle avoidance problem is the potential
�eld technique (Khatib, 1985). According to the potential �eld method,
the potential gradient that the robot follows is made up of two compo-
nents: the repulsive e�ect of the obstacles and the attractive e�ect of
the goal position. Although it is straightforward to use potential �eld
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techniques for obstacle avoidance, there are still several diÆculties in
using this method in practical vehicle planning.
Derivative-Free Optimization methods deal with the problem of min-

imizing a nonlinear objective function of several variables when the
derivatives of the objective function are not available (Conn et al., 1997).
The interest and motivation for examining possible algorithmic solutions
to this problem is the high demand from practitioners for such tools. The
derivatives of objective function are usually not available either because
the objective function results from some physical, chemical or economical
measurements, or, more commonly, because it is the result of a possibly
very large and complex computer simulation. The occurrence of prob-
lems of this nature appear to be surprisingly frequent in the industrial
setting. There are several conventional deterministic and stochastic ap-
proaches to perform optimization without the use of analytical gradient
information or measures of the gradient. These include, for example, the
pattern and coordinate search (Torczon, 1997; Lucidi and Sciandrone,
1997), the Nelder and Mead Simplex Method (Nelder and Mead, 1965),
the Parallel Direct Search Algorithm (Dennis and Torczon, 1991), and
the Multi-directional Search Method (Torczon, 1991). In one way or
another most of derivative free optimization methods use measurements
of the cost function and form approximations to the gradient to decide
which direction to move. (Passino, 2001) provides some ideas on how to
extend non-gradient methods to team foraging.

4. Stable Vehicular Swarms

Groups of communicating vehicles, such as automobiles (e.g., in \pla-
toons" in automated highway systems), robots, underwater vehicles, or
aircraft formations have been studied for some time. In the current
project we are conducting an analytical study where we are mathemati-
cally modeling \vehicular swarms" (groups of vehicles that behave as a
single entity) where there are communication delays, and deriving con-
ditions under which the swarms are stable (cohesive). The central focus
of our work is not \swarming" per se, but the factors that drive a group
of UAAVs to decide to aggregate (e.g., work together to search an area,
or make a coordinated attack) or disintegrate (e.g., spread out to search,
or scatter to evade a threat). Such factors include characteristics of the
vehicle-to-vehicle communications, target/threat priorities and densities,
and mission goals.
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4.1. Stable Asynchronous Vehicular Swarms
with Communication Delays

To briey summarize our current work we �rst explain how stability
relates to swarm cohesion, aggregation, and disintegration. Next, we
overview the types of stability conditions we obtain for swarms, and
show the output of a simulation testbed we have developed for studying
swarm dynamics.

Stability, Cohesion, Aggregation, and Disintegration:. To
achieve coordinated actions, a group of autonomous vehicles requires
vehicle-to-vehicle communications. When should a swarm of UAAVs
aggregate and when should it disintegrate? Some examples include:

It could enhance mission e�ectiveness to aggregate for a coordi-
nated attack on high priority target, or to protect one another
from certain types of threats (e.g., vehicles on the edges of the
swarms could protect ones in the middle). Or, it may be bene�cial
to work together to search an area.

In some situations mission e�ectiveness could be enhanced if the
swarm disintegrates (breaks up, disperses) for good search coverage
(i.e., so search areas do not overlap) when there are many similar
stationary targets with a uniform density over the search area. At
other times it may be bene�cial for a swarm to disintegrate in
order to evade certain types of threats (e.g., a threat that has the
ability to kill a whole group of UAAVs, in an especially e�ective
way if they are all grouped together).

Local UAAV goals and overall mission goals, which may compete
with each other, a�ect the dynamics of vehicle swarm aggregation
and disintegration. For instance, if the mission goals dictate that
only the highest priority targets should be engaged, then for some
coordination strategies it may be that there is a higher likelihood
of aggregation near high priority targets for coordinated attacks
on them.

A problem of critical importance is then to determine how characteris-
tics of vehicle-to-vehicle communications a�ect the ability of a group of
UAAVs to aggregate and disintegrate. Can aggregation/disintegration
be achieved when the sensor ranges for each UAAV is limited? How
does the sensor range impact formation of multiple swarms, and the
ability to group vehicles for a coordinated attack? What are the ef-
fects of communication delays on the dynamic behavior of a swarm, and
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its e�ectiveness? Moreover, it is clear that characteristics of the tar-
get/threat environment a�ect swarm aggregation/disintegration. Can
we characterize a relationship between target density and priority and
when it is good to swarm, or how this will drive a group of UAAVs to
swarm? What threat patterns should drive the disintegration of a swarm
of UAAVs? Finally, mission goals a�ect the overall dynamics of the ve-
hicular swarm. How can we make sure that mission goals are properly
speci�ed so that detrimental aggregation/disintegration events do not
occur (e.g., aggregation near a threat so that an entire group of UAAVs
could be easily eliminated), and hence mission e�ectives is maintained.
In summary, stability analysis focuses on the underlying mechanisms

that a�ect the dynamics of the coordinated behavior of the group of
UAAVs. It is of fundamental importance to understand how to exploit
the bene�ts of coordinated search and engagement for a group of UAAVs.

Stability of Swarms Modeled as Distributed Discrete Event

Systems:. Here, our approach to begin to study such problems
is to introduce a discrete event system (DES) framework based on the
approach in (Passino and Burgess, 1998), characterize swarm cohesion
characteristics via stability properties, then use relatively conventional
stability analysis methods (e.g., Lyapunov methods) to provide condi-
tions under which various cohesion properties can be achieved. The key
theoretical diÆculty is how to perform stability analysis for distributed
DES with communication delays; however, the approaches in (Passino
and Burgess, 1998; Tsitsiklis and Bertsekas, 1989) provide a basis to
start, and this is the approach that we take.
A two-dimensional (2-D) swarm is formed by putting many single

swarm members together on the (x1; x2)-plane. Assume that we have
a two-dimensional asynchronous N -member swarm, where N > 1. Let
xi(t) denote the position vector of swarm member i at time t. Let T i

be the set of time indices at which the ith vehicle moves. We have
xi(t) = [xi1(t); x

i
2(t)]

> 2 <2, i = 1; 2; :::; N , where xi1(t) and xi2(t) are
member i's horizontal and vertical position coordinates respectively. The
single swarm member model used here to discuss some of the basic ideas
of our work includes only the simplest of dynamics (point-mass), neigh-
bor position sensors, and proximity sensors. For a swarm member, we
assume all other members which can be sensed by its neighbor position
sensors are its \neighbors," and its sensed position information about its
neighbors may be subjected to random but bounded delays. De�ne � ij(t)
to be the last time at which vehicle i received position information from
vehicle j, where i; j = 1; 2; :::; N , j 6= i. Assume the proximity sensor of
the swarm members has a circular-shaped sensing range with a radius
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" > 0, which can instantaneously indicate the positions of any other
members inside this range. Swarm members like to be close to each
other, but not too close. Assume each member has a \private" area,
which is a circular-shaped area with a radius d > 0 around each mem-
ber, where d is the desired comfortable distance between two adjacent
swarm neighbors, which is known by every swarm member. For some
 > 0, assume [d; d + ] is a \comfortable distance neighborhood" rela-
tive to xi(t) and xj(t) for all i and j, where  is the comfortable distance
neighborhood size. In other words, swarm members do not want other
members to enter its private area and they prefer their neighbors are at
a comfortable distance neighborhood [d; d+ ] from them. Here, for the

sake of illustration we choose  = d = "=2. We assume that jxj =
p
x>x

and jxi(0)�xj(0)j > d, for i; j = 1; 2; :::; N; i 6= j initially. We make cer-
tain assumptions about the times that all the vehicles will update their
position and bounds on the length of the delays for obtaining neighbor's
position information (similar to the \partial asynchronism" assumption
in (Tsitsiklis and Bertsekas, 1989)).
Each swarm member i, i = 1; 2; :::; N , remains stationary at the be-

ginning until some t0 2 T i, where it has sensed all its N � 1 neighbors'
position information and it then calculates the center position of them
as its goal position. Assume the goal position xic(t) of member i at time
t 2 T i is de�ned as

xic(t) =
1

N � 1

NX
j=1;j 6=i

xi(� ij(t));8t 2 T i; i = 1; 2; :::; N (1)

Member i tries to approach this goal position since it wants to be adja-
cent to all its neighbors. Note that xic(t) may not be the real center of
its neighbors since the swarm member's sensed information may include
random delays. Assume swarm member i will move toward xic(t) with a
step size d, which is the radius of its private area if it �nds the distance
between them is larger than or equal to d. It will move to xic(t) with one
step if it �nds the distance is less than d. It will remain stationary if it is
already at xic(t). During movements it does not want any other member
to enter into its private area because swarm members like to be close
to each other, but not so close as to enter others' private area so that
collisions can occur. Hence, assume that before swarm member i moves
to a new position it will detect if there is any member inside the private
area around this new position via its proximity sensors (note that we
choose " = 2d so that the sensing range of proximity sensors is large
enough to detect the new private area). It moves to this new position
only when no member is found in the new private area. Otherwise, it
remains stationary.
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From the above moving rules, we assume the step vector �i(t) of
member i at time t 2 T i is such that

�i(t) = minfd; jxic(t)� xi(t)jg
"
xic(t)� xi(t)

jxic(t)� xi(t)j

#
;

8t 2 T i; i = 1; 2; :::; N (2)

Here, the term in brackets is a unit vector which represents the moving
direction, where xic(t) is the goal position of member i at time t de�ned
in Equation (1), and the item in front of the brackets is a step size
scalar, where \min" is used to model the rules of how to choose the step
size. The step size is equal to d if jxic(t) � xi(t)j � d, and is equal to
jxic(t)� xi(t)j if jxic(t)� xi(t)j < d.
A mathematical model for the above asynchronous mobile swarm is

given by

xi(t+ 1) = xi(t) + �i(t)
NY

j=1;j 6=i

u(jxi(t) + �i(t)� xj(t)j � d);

8t 2 T i; i = 1; 2; :::; N (3)

where \u" is the step function, which is equal to one when the function
variable is larger than or equal to zero, and is equal to zero when the
function variable is less than zero. Clearly, swarm member i will remain
stationary if it detects any neighbor in its new private area, and will
move to a new position xi(t) + �i(t) if no neighbor is found in its new
private area.

4.2. Stability Analysis and Simulation Results

We have derived conditions involving bounds on communication de-
lays, and characteristics of the asynchronous behavior of the commu-
nications, that are suÆcient to guarantee the ability of a 1-D asyn-
chronous vehicular swarm to aggregate. Our approach is based on de�n-
ing a Lyapunov-like function for the inter-vehicle distance for two swarm
members, showing properties for this case, and then using an induction
method to extend it to the multiple-swarm member case. We show
that in some cases intervehicle distances converge to a desired constant
(i.e., asymptotic stability), while if communications are degraded such
distances only converge to a pre-speci�ed neighborhood (i.e., uniform
ultiimate boundedness). We are currently extending these results to the
two (and M) dimensional cases and investigating how the design of the
coordination strategies a�ect stability conditions.
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In addition, we have developed a simulation testbed for gaining in-
sights into the dynamics of vehicular swarms. Below, in Figure 1.13 we
show a sequence of plots to illustrate swarm dynamics for a 2-D swarm.
Here, we show one lead vehicle (the diamond) moving across a plane, and
there are several other vehicles that swarm together and follow the lead
vehicle. Such simulation results show how: (i) aggregation is achieved,
(ii) the dynamics of cohesion (e.g., when moving as a group do the com-
munication delays cause unacceptable oscillations in inter-vehicle dis-
tance), and (ii) characteristics of motion of a mobile swarm (e.g., how
motion in one direction \stretches" the swarm along the velocity vector
of the group, how coordinated motion can slow UAAV velocities since
adjustments made to maintain cohesion result in movements to avoid
collisions that could be opposite to the velocity vector of the swarm).
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Figure 1.13. Mobile vehicular swarm (plots show a sequence of eight positions of the
vehicles over time).

5. Biomimicry of Foraging for Cooperative
Control

Animal species of all sorts have been involved in daily \warfare" for
millions of years when they seek food (prey) and try to avoid noxious
substances or predators (i.e., when they \forage"). What can we learn
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from the evolved behaviors, especially in the case of \social foraging"
where groups of animals work together to capture more prey (in our do-
main, kill targets) and at the same time avoid predators (in our domain,
evade threats)? In this section we will briey overview some initial work
done to understand the relevance of social foraging behaviors of animals
to the cooperative control problem for UAAVs. For more details see (
Passino, 2001).

5.1. Optimal Decision-Making in Foraging

Animals search for and obtain nutrients in a way that maximizes E
T

where E is energy obtained, and T is time spent foraging (or, they max-
imize long-term average rate of energy intake) (Stephens and Krebs,
1986). Evolution optimizes foraging strategies since animals that have
poor foraging performance do not survive. Generally, a foraging strategy
involves �nding a \patch" of food (e.g., group of bushes with berries),
deciding whether to enter it and search for food (do you expect a bet-
ter one?), and when to leave the patch. There are predators and risks,
energy required for travel, and physiological constraints (sensing, mem-
ory, cognitive capabilities). Foraging scenarios can be mathematically
modeled and optimal policies can be found using, for instance, dynamic
programming (Stephens and Krebs, 1986).
Some animals forage as individuals, others forage as groups, and some

will choose which approach to use depending on the current situation.
While to perform social foraging an animal needs communication ca-
pabilities, it can gain advantages in that it can essentially exploit the
sensing capabilities of the group, the group can \gang-up" on large prey,
individuals can obtain protection from predators while in a group, and
in a certain sense the group can forage with a type of collective intel-
ligence. Social foragers include birds, bees, �sh, ants, wildebeasts, and
primates. Note that there is a type of \cognitive spectrum" where some
foragers have little cognitive capability, and other higher life forms have
signi�cant capabilities (e.g., compare the capabilities of a single ant with
those of a human). Generally, endowing each forager with more capa-
bilities can help them succeed in foraging, both as an individual and as
a group.

5.2. E. coli Bacterial Foraging Strategies: Useful
for Cooperative Control of UAAVs?

Consider the foraging behavior (\chemotaxis") of E. coli, which is a
common type of bacteria that takes the following foraging actions (these
are \behavioral rules"):
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1 If in neutral medium alternate tumbles and runs ) Search

2 If swimming up nutrient gradient (or out of noxious substances)
swim longer (climb up nutrient gradient or down noxious gradient)
) Seek increasingly favorable environments

3 If swimming down nutrient gradient (or up noxious substance gra-
dient), then search ) Avoid unfavorable environments

What is the resulting emergent pattern of behavior for a whole group
of E. coli bacteria? Generally, as a group they will try to �nd food and
avoid harmful phenomena, and when viewed under a microscope you
will get a sense that a type of intelligent behavior has emerged since
they will seem to intentionally move as a group (analogous to how a
swarm of bees moves). To help picture how the group dynamics of bac-
teria operate, consider Figure 1.14. Here, a \capillary technique" for
studying chemotaxis in populations of bacteria is shown. A capillary
containing an attractant is placed in a medium with a bacterial suspen-
sion in Figure 1.14(a) and the bacteria then accumulate in the capillary
containing the attractant as shown in Figure 1.14(b). Figure 1.14(c)
shows what happens when the capillary contains neither attractant or
repellant (i.e., a neutral environment relative to the medium it is placed
in) and Figure 1.14(d) shows what happens when it contains a repellant.

(a) (b) (c) (d)

Figure 1.14. Experiment showing how E. coli swarm towards nutrients, and away
from noxious substances (�gure taken from Madigan et al., 1997).

It is interesting to note that E. coli and S. typhimurium can form
intricate stable spatio-temporal patterns in certain semi-solid nutrient
media. They can radially eat their way through a medium if placed
together initially at its center. Moreover, under certain conditions they
will secrete cell-to-cell attractant signals so that they will group and
protect each other. These bacteria can \swarm." Other bacteria such
as M. Xanthus exhibit relatively sophisticated social foraging behaviors
involving several types of swarm behavior for protection, survival, and
success in obtaining nutrients.
There are clear analogies with cooperative control of UAAVs:

Animals, organisms = UAAVs
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Prey, nutrients = targets

Predators, noxious substances = threats

Environment = battle�eld

Are these analogies useful? Biomimicry of social foraging of ants (
Bonabeau et al., 1999) has provided some concepts and algorithms use-
ful for the solution of some engineering problems (where the key con-
tribution is new algorithms for combinatorial optimization). What the
relevance of the decision-making strategies of social foraging animals to
the development of cooperative control strategies for UAAVs?
To begin to answer this question we have developed a model of the

bacterial foraging process and have shown how a computer algorithm
that emulates the behavior of a group of bacteria can solve a type of
distributed optimization problem (in particular, not for combinatorial
optimization, but one for a continuous cost function where there is no
explicit analytical knowledge of the gradient). In particular, consider
Figure 1.15 where we show the trajectories chosen by bacteria in a certain
environment. Notice that they are successful in �nding the areas where
there are nutrients or prey (in our domain, targets) and in avoiding areas
where there are noxious substances or predators (in our domain, threats).
We have also simulated social foraging (swarming) for E. coli and M.
Xanthus and studied mechanisms of aggregation and disintegration for
these.

6. Concluding Remarks

Advances in distributed computing and wireless communications have
enabled the design of distributed agent systems. One of the key issues
for a successful and wide deployment of such systems is the design of
cooperative decision making and control strategies. Traditionally, feed-
back control methods have focused mostly on the design and analysis of
centralized, inner-loop techniques. Decision and control of distributed
vehicle systems requires a framework that is based more on cooperation
between vehicles, and outer-loop schemes. In addition to cooperation,
issues such as coordination, communication delays and robustness in the
presence of losing one or more of the vehicles are crucial. In this paper,
we have presented a framework for a special type of problem, the cooper-
ative search. The proposed framework consists of two main components:
learning the environment and using that knowledge to make intelligent
high-level decisions on where to go (path planning) and what do to. We
have presented some ideas regarding the design of a cooperative planning
algorithm based on a recursive q-step ahead planning procedure and an
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Figure 1.15. Bacterial motion trajectories, generations 1-4, on contour plot.

interleaved planning technique. These ideas were illustrated with simu-
lation studies by comparing them to a restricted random search and a
standard search pattern. Moreover, we studied the stability of vehicular
swarms to try to understand what types of communications are needed
to achieve cooperative search and engagement, and characteristics that
a�ect swarm aggregation and disintegration. Finally, we explored the
utility of using biomimicry of social foraging strategies to develop coor-
dination strategies.
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