
A Cooperative Search Framework for Distributed
Agents

Marios M. Polycarpouy, Yanli Yangy and Kevin M. Passinoz

yDepartment of Electrical and Computer Engineering and Computer Science
University of Cincinnati, Cincinnati, OH 45221-0030, USA

polycarpou@uc.edu, yangyanl@ececs.uc.edu

zDepartment of Electrical Engineering, The Ohio State University
2015 Neil Avenue, Columbus, OH 43210-1272, USA

passino@ee.eng.ohio-state.edu

Abstract| This paper presents an approach for coopera-
tive search of a team of distributed agents. We consider
two or more agents, or vehicles, moving in a geographic
environment, searching for targets of interest and avoiding
obstacles or threats. The moving agents are equipped with
sensors to view a limited region of the environment they
are visiting, and are able to communicate with one another
to enable cooperation. The agents are assumed to have
some \physical" limitations including possibly maneuver-
ability limitations, fuel/time constraints and sensor range
and accuracy. The developed cooperative search framework
is based on two inter-dependent tasks: (i) on-line learning
of the environment and storing of the information in the
form of a \search map"; and (ii) utilization of the search
map and other information to compute on-line a guidance
trajectory for the agent to follow. The distributed learning
and planning approach for cooperative search is illustrated
by computer simulations.

I. Introduction

During the last decade there has been signi�cant progress
in the design and analysis of intelligent control schemes.
These techniques have enhanced the overall e�ectiveness
of decision and control methods mainly in two frontiers.
First, they enhanced the ability of feedback control systems
to deal with greater levels of modeling uncertainty. For
example, on-line approximation techniques, such as neu-
ral networks, allow the design of control systems that are
able to \learn" on-line unknown, nonlinear functional un-
certainties and thus enhance the overall performance of the
closed-loop system in the presence of signi�cant modeling
uncertainty. Second, intelligent control techniques have en-
hanced our ability to deal with greater levels of uncertainty
in the environment by providing methods for designing
more autonomous systems with high-level decision making
capabilities (outer-loop control). In this framework, high-
level decision making may deal, for example, with generat-
ing on-line a guidance trajectory for the low-level controller
(inner-loop control) to follow, or with designing a switching
strategy for changing from one control scheme to another
in the presence of changes in the environment or after the

This research was �nancially supported by DAGSI and AFRL un-
der the project entitled \Distributed Cooperation and Control for
Autonomous Air Vehicles." Please address any correspondence to
Marios Polycarpou (polycarpou@uc.edu).

detection of a failure.
In this paper, we address a problem in the second frame-

work of intelligent control, as described above. Speci�cally,
we present an approach for cooperative search among a
team of distributed agents. Although the presented frame-
work is quite general, the main motivation for this work is
to develop and evaluate the performance of strategies for
cooperative control of autonomous air vehicles that seek to
gather information about a dynamic target environment,
evade threats, and possibly coordinate strikes against tar-
gets. Recent advances in computing, wireless communi-
cations and vehicular technologies are making it possible
to deploy multiple unmanned air vehicles (UAVs) that op-
erate in an autonomous manner and cooperate with one
another to achieve a global objective [1], [2], [3]. A large
literature of relevant ideas and methods can also be found
in the area of \swarm robotics" (e.g., see [4]) and, more
generally, in coordination and control of robotic systems
(e.g., see [5]). Search problems occur in a number of mil-
itary and civilian applications, such as search-and-rescue
operations in open-sea or sparsely populated areas, search
missions for previously spotted enemy targets, seek-destroy
missions for land mines, and search for mineral deposits. A
number of approaches have been proposed for addressing
search problems. These include optimal search theory [6],
[7], exhaustive geographic search [8], obstacle avoidance [9]
and derivative-free optimization methods [10].
We consider a team of vehicles moving in an environ-

ment of known dimension, searching for targets of interest.
The vehicles are assumed to be equipped with: 1) target
sensing capabilities for obtaining a limited view of the en-
vironment; 2) wireless communication capabilities for ex-
changing information and cooperating with one another;
and 3) computing capabilities for processing the incom-
ing information and making on-line guidance decisions. It
is also assumed that each vehicle has a tandem of actu-
ation/sensing hardware and an inner-loop control scheme
for path following. In this paper, we focus solely on the
design of the guidance controller (outer-loop control), and
for convenience we largely ignore the vehicle dynamics.
The vehicles are assumed to have some maneuverability

limitations, which constrain the maximum turning radius

of the vehicle. The developed cooperative search frame-
work is based on two inter-dependent tasks: (i) on-line
learning of the environment and storing of the informa-
tion in the form of a \search map"; and (ii) utilization of
the search map and other information for computing on-
line a guidance trajectory for the vehicle. The distributed
learning and planning approach for cooperative search is
illustrated by computer simulations.
While there are di�erent command-ow con�gurations

that can be deployed (such as a hierarchical con�guration
or having one leader coordinate all the activities of the
group), in this paper we consider the vehicles as a team
of autonomous agents which exchange information but ul-
timately make their own decisions based on the received
information. In the rest of the paper, we will be using the
general term \agent" to represent a UAV or other type of
appropriate vehicle.

II. Distributed Guidance and Control

Architecture

We consider N agents deployed in some search region
X of known dimension. As each agent moves around in
the search region, it obtains sensory information about the
environment in the form of automatic target recognition
(ATR) data. It also receives information from other agents
via a wireless communication channel, which may be com-
ing at a di�erent rate (usually at a slower rate) than the
sensor information from its own sensors.
Depending on the speci�c application, the global objec-

tive pursued by the team of agents may be di�erent. In
this paper, we focus mainly on the problem of cooperative
search, where the team of agents seeks to follow a trajec-
tory that would result in minimization of the uncertainty
about the environment; however, the presented framework
can be easily expanded to include more advanced missions
such as evading threats, attacking targets, etc.
Each agent has two basic control loops that are used in

guidance and control, as shown in Figure 1. The \outer-
loop" controller for agent Ai utilizes sensor information vi
from Ai, as well as sensor information from Aj , j 6= i,
to compute on-line a desired trajectory (path) to follow,
which is denoted by Pi(k). The sensor information coming
from other agents is represented by the vector

Vi = [v1; : : : ; vi�1; vi+1; : : : ; vN]
>
;

where vj represents the information received from agent
Aj . The above formulation doesn't necessarily assume that
all agents are in range and can communicate with each
other; it can also be used for the case where some of the
information from other agents is missing, or the informa-
tion from di�erent agents is received at di�erent sampling
rates. The desired trajectory Pi(k) is generated as a digi-
tized look-ahead path of the form

Pi(k) = fpi(k); pi(k + 1); : : : ; pi(k + q)g ;

where pi(k + j) is the desired location of agent Ai at time
k + j, and q is the number of look-ahead steps in the path
planning procedure.

vi

Guidance
Controller

Path
Following
Controller

Trajectory
to follow

Information from
other agents

Sensed
variables
for i-th agent

Actuator
inputs

Ai iV
vivi ui

pi

Fig. 1. Inner- and outer-loop controllers for guidance and control of
air vehicles.

The inner-loop controller uses sensed information vi from
Ai to generate inputs ui to the actuators of Ai so that the
agent will track the desired trajectory Pi(k). We largely
ignore the agent dynamics, and hence concentrate on the
outer-loop control problem. In this way, our focus is solidly
on the development of the controller for guidance, where
the key is to show how resident information of agent Ai

can be combined with information from other agents so
that the team of agents can work together to minimize the
uncertainty in the search region X .
The design of the outer-loop control scheme is broken

down into two basic functions, as shown in Figure 2. First,
it uses the sensor information received to update its \search
map", which is a representation of the environment|this
will be referred to as the agent's learning function, and for
convenience it will be denoted by Li. Based on its search
map, as well as other information (such as its location and
direction, the location and direction of the other agents,
remaining fuel, etc.), the second function is to compute a
desired path for the agent to follow|this is referred to as
the agent's guidance decision function, and is denoted by
Di. In this setting the guidance control decisions made by
each agent are autonomous, in the sense that no agent tells
another what to do in a hierarchical type of structure, nor
is there any negotiation between agents. Each agent sim-
ply receives information about the environment from the
remaining agents (or a subset of the remaining agents) and
makes its decisions, which are typically based on enhanc-
ing a global goal, not only its own goal. Therefore, the
presented framework can be thought of as a passive coop-
eration framework, as opposed to active cooperation where
the agents may be actively coordinating their decisions and
actions.

vi

Learning

strategies, storage

of information about

environment

Decision-making

for where to search,

what to engage,

how to evade

Vi

L i D i

Guidance Controller

Pi

Fig. 2. Learning and decision-making components of the outer-loop
controller for trajectory generation of air vehicles.

III. Distributed Learning

Each agent has a three dimensional map, which we will
refer to as \search map," that serves as the agent's knowl-
edge base of the environment. The x and y coordinates
of the map specify the location in the target environment
(i.e., (x; y) 2 X), while the z coordinate speci�es the cer-

tainty that the agent \knows" the environment at that
point. The search map will be represented mathematically
by an on-line approximation function as z = S(x; y; �),
where z 2 [0; 1]. If S(x; y; �) = 0 then the agent knows
nothing (is totally uncertain) about the nature of the en-
vironment at (x; y). On the other hand, if S(x; y; �) = 1
then the agent knows everything (or equivalently, the agent
is totally certain) about the environment at (x; y). As the
agent moves around in the search region it incorporates the
new information about the environment gathered by itself
and received from other agents. Therefore, the search map
of each agent is continuously evolving as new information
about the environment is collected and processed.
We de�ne S : X � <q 7! [0; 1] to be an on-line ap-

proximator (for example, a neural network), with a �xed
structure whose input/output response is updated on-line
by adapting a set of adjustable parameters, or weights, de-
noted by the vector � 2 <q. The weight vector �(k) is up-
dated based on an on-line learning scheme, as is common,
for example, in training algorithms of neural networks.
While it is possible to create a simpler memory/storage

scheme (without learning) that simply records the infor-
mation received from the sensors, a learning scheme has
some key advantages: 1) it allows generalization between
points; 2) information from di�erent types of sensors can
be recorded in a common framework (on the search map)
and discarded; 3) it allows greater exibility in dealing
with information received from di�erent angles; 4) in the
case of dynamic environments (for example, targets mov-
ing around), one can conveniently make adjustments to the
search map to incorporate the changing environment (for
example, by reducing the output value z over time using a
decay factor).
The search map is formed dynamically as the agent

moves, gathers information about the environment, and
processes the information. This is illustrated in Figure 3,
where we show the area scanned by a \generic" sensor on a
UAV during a sampling period [kT; kT+T] where T > 0 is
the sampling time. Although in di�erent applications the
shape of the scanned area maybe be di�erent, the main
idea remains the same. The received data can then be dig-
itized and each grid point is used to adjust the search map
S(x; y; �̂) by adapting �̂.

Fig. 3. An example of a scan area for a UAV.

In practice, in addition to the problem of minimizing
the uncertainty in the search region, the overall objective
may include, for example, �nding speci�c targets, or avoid-
ing certain obstacles and threats. Therefore, the learning
scheme described above for minimizing uncertainty may
need to be expanded by changing the value region or the
dimension of z . For example, one possible way to include a
mission of searching for speci�c targets can be achieved by
allowing the output z of the on-line approximator S to take

values in the region z 2 [�1; 1], where: z = 1 represents
high certainty that a target is present at (x; y); z = �1 rep-
resents high certainty that a target is not present at (x; y);
and z = 0 represents total uncertainty whether a target is
present at (x; y).
In this general framework, the tuning of the search map

can be viewed as \learning" the environment. Mathe-
matically, S tries to approximate an unknown function
S�(x; y; k), where for each (x; y), the function S� charac-
terizes the presence (or not) of a target; the time variation
indicated by the time step k is due to (possible) changes in
the environment (such as having moving targets). Hence,
the learning problem is de�ned in using information from
agent Ai and from other agents Aj , j 6= i at each sampled

time k, to adjust the weights �̂(k) such that
S(x; y; �̂(k))� S�(x; y; k)

(x;y)2X

is minimized.
Due to the nature of the learning problem, it is conve-

nient to use spatially localized approximation models so
that learning in one region of the search space does not
cause any \unlearning" at a di�erent region [11]. In gen-
eral, the learning problem in this application is straight-
forward, and the use of simple approximation functions
and learning schemes is suÆcient; e.g., the use of piecewise
constant maps or radial basis function networks, with dis-
tributed gradient methods to adjust the parameters, pro-
vides suÆcient learning capability. However, complexity
issues do arise and are crucial since the distributed nature
of the architecture imposes limits not only on the amount
of memory and computations needed to store and update
the maps but also in the transmission of information from
one agent to another.
At the time of deployment, it is assumed that each agent

has a copy of an initial search map estimate, which re-
ects the current knowledge about the environment X .
In general, each agent is initialized with the same search
map. However, in some applications it may be useful to
have agents be \specialized" to search in certain regions,
in which case the search environment for each agent, as
well as the initial search map, may be di�erent.

IV. Cooperative Path Planning

One of the key objectives of each agent is to on-line se-
lect a suitable path in the search environment X . To be
consistent with the motion dynamics of physical vehicles
(and, in particular, air vehicles), it is assumed that each
agent has limited maneuverability, which is represented by
a maximum angle �m that the agent can turn from its cur-
rent direction. For simplicity we assume that all agents
move at a constant velocity � (this assumption can be eas-
ily relaxed).

A. Plan Generation

To describe the movement path of agentAi between sam-
ples, we de�ne the movement sampling time Tm as the time
interval in the movement of the agent. In this framework,

we let pi(k) be the position (in terms of (x; y) coordinates)
of i-th agent at time t = kTm, with the agent following
a straight line in moving from pi(k) to its new position
pi(k + 1). Since the velocity � of the agent is constant,
the new position pi(k+1) is at a distance �Tm from pi(k),
and based on the maneuverability constraint, it is within
an angle ��m from the current direction, as shown in Fig-
ure 4. To formulate the optimization problem as an integer
programming problem, we discretize the arc of possible po-
sitions for pi(k + 1) into m points, denoted by the set

P i(k + 1) =
n
�p1i (k + 1); : : : �pji (k + 1); : : : �pmi (k + 1)

o
:

Therefore, the next new position for the i-th agent belongs
to one of the elements of the above set; i.e., pi(k + 1) 2
P i(k + 1).

pi(k)

p
i
(k+1)j_

p
i
(k+1)m_

p
i
(k+1)1_

µTm

Fig. 4. Selection of the next point in the path of the vehicle.

The agent selects a path by choosing among a possible set
of future position points. In our formulation we allow for
a recursive q-step ahead planning, which can be described
as follows:

� When agent Ai is at position pi(k) at time k, it has
already decided the next q positions: pi(k + 1), pi(k + 2),
. . . , pi(k + q).
� While the agent is moving from pi(k) to pi(k+1) it selects
the position pi(k + q + 1), which it will visit at time t =
k + q + 1.

To get the recursion started, the �rst q positions, pi(1),
pi(2), . . . , pi(q) for each agent need to be selected a pri-
ori. Clearly, q = 1 corresponds to the special case of no
planning ahead. The main advantage of a planning ahead
algorithm is that it creates a bu�er for path planning. From
a practical perspective this can be quite useful if the agent
is an air vehicle that requires (at least) some trajectory
planning. The recursive q-step ahead planning procedure
is illustrated in Figure 5 for the case where q = 6.

p
i
(k+q+1)j_

pi(k+1)

pi(k+2)

pi(k)

pi(k+q)

Fig. 5. Illustration of the recursive q-step ahead planning algorithm.

B. Plan Selection

Given the current information available via the search
map, and the location/direction of the team of agents (and
possibly other useful information, such as fuel remaining,
etc.), each agent uses a multi-objective cost function J to
select and update its search path. At decision sampling
time Td, the agent evaluates the cost function associated
with each path and selects the optimal path. The deci-
sion sampling time Td is typically equal to the movement
sampling time Tm. The approach can be thought of as
an \adaptive model predictive control" approach where an
adaptive model is developed on-line that is used to predict
ahead in time, and on-line optimization methods are em-
ployed in the formation of the model and in evaluating the
candidate paths to move the agent along.
A key issue in the performance of the cooperative search

approach is the selection of the multi-objective cost func-
tion associated with each possible path. The approach
followed in this paper is quite exible in that it allows
the characterization of various mission-level objectives, and
trade-o�s between these. In general, the cost function com-
prises of a number of sub-goals, which are sometimes com-
peting. Therefore the cost criterion J can be written as:

J = !1J1 + !2J2 + : : :+ !sJs

where Ji represents the cost criterion associated with the
i-th subgoal, and !i is the corresponding weight. The
weights are normalized such that 0 � !i � 1 and the sum
of all the weights is equal to one; i.e.,

Ps

i=1 !i = 1. Priori-
ties to speci�c sub-goals is achieved by adjusting the values
of weights !i associated with each subgoal.
The following is a list (not exhaustive) of possible sub-

goals that a search agent may include in its cost criterion.
For a more clear characterization, these sub-goals are cat-
egorized according to three mission objectives: Search (S),
Cooperation (C), and Engagement (E). In addition to sub-
goals that belong purely to one of these classes, there are
some that are a combination of two or more missions. For
example, SE1 (see below) corresponds to a search and en-
gage mission.
S1 Follow the path where there is maximum uncertainty in
the search map. This sub-goal simply considers the uncer-
tainty reduction associated with the sweep region between
the current position pi(k) and each of the possible candi-

date positions �pji (k + 1) for the next sampling time (see

the rectangular regions between pi(k) and �pji (k+1) in Fig-
ure 6). The cost criterion can be derived by computing a
measure of uncertainty in the path between pi(k) and each

candidate future position �pji (k + 1).
S2 Follow the path that leads to the region with the maxi-
mum uncertainty (on the average) in the search map. The
�rst cost criterion S1 pushes the agent towards the path
with the maximum uncertainty. However, this may not be
an optimal path, over a longer period of time, if it leads to
a region where the average uncertainty is low. Therefore,
it's important for the search agent to seek not only the
instantaneous minimizing path, but also a path that will

cause the agent to visit (in the future) regions with large
uncertainty. The cost criterion can be derived by comput-
ing the average uncertainty of a triangular type of region
associated with the heading direction of the agent (see the

triangular regions ahead of �pji (k + 1) in Figure 6).

pi(k)
p

i
(k+1)m_

p
i
(k+1)1_

Fig. 6. Illustration of the regions that are used in the cost function
for �nding the optimal search path.

C1 Follow the path where there is the minimum overlap
with other agents. Since the agents are able to share their
new information about the search region, it is natural that
they may select the same search path as other agents (es-
pecially since in general they will be utilizing the same
search algorithm). This will be more pronounced if two
agents happen to be close to each other. However, in or-
der to minimize the global uncertainty associated with the
emergent knowledge of all agents, it is crucial that there
is minimum overlap in their search e�orts. This can be
achieved by including a cost function component that pe-
nalizes agents being close to each other and heading in the
same direction. This component of the cost function can
be derived based on the relative locations and heading di-
rection (angle) between pairs of agents.
SE1 Follow the path that maximizes coverage of the highest
priority targets. In mission applications where the agents
have a target search map with priorities assigned to de-
tected targets, it is possible to combine the search of new
targets with coverage of discovered targets by including
a cost component that steers the agent towards covering
high priority targets. Therefore, this leads to a coordinated
search where both coverage and priorities are objectives.
E1 Follow the path toward highest priority targets with
most certainty if fuel is low. In some applications, the
energy of the agent is limited. In such cases it is important
to monitor the remaining fuel and possibly switch goals
if the fuel becomes too low. For example, in search-and-
engage operations, the agent may decide to abort search
objectives and head towards engaging high priority targets
if the remaining fuel is low.
EC1 Follow the path toward targets where there will be
minimum overlap with other agents. Cooperation between
agents is a key issue not only in search patterns but also|
and even more so|in engagement patterns. If an agent
decides to engage a target, there needs to be some cooper-
ation such that no other agent tries to go after the same
target; i.e., a coordinated dispersed engagement is desir-

able.
The above list of sub-goals and their corresponding cost

criteria provide a avor of the type of issues associated with
the construction of the overall cost function for a general
mission. In addition to incorporating the desired sub-goals
into the cost criterion (i.e., maximize bene�t), it is also
possible to include cost components that reduce undesir-
able sub-goals (minimize cost).
In the next section, we consider some simulation studies

that are based on a cost function consisting of the �rst
three sub-goals. Therefore the main goal is to search in a
cooperative framework.

V. Simulation Results

The proposed cooperative search and learning framework
has been tested in several simulated studies. Two of these
simulation studies are presented in this section. In the �rst
simulation experiment a team of �ve agents is employed to
show the performance of the proposed cooperative search
scheme as compared to other search methods, while in the
second simulation we use two agents to illustrate the impor-
tance of cooperative behavior. In both simulation studies
we are using the recursive q-step ahead planning algorithm
with q = 3.
The results for the case of �ve agents are shown in Fig-

ure 7. The upper-left plot shows a standard search pat-
tern(zamboni coverage pattern [12]) for the �rst 500 time
samples, while the upper-right plot shows the correspond-
ing result for a random search, which is subject to the
maneuverability constraints. And the lower-left plot shows
the result of the cooperative search method. The search
region is a 200 by 200 area, and the �ve search agents
start at the location indicated by the triangles. It is as-
sumed that there is some a priori information about the
search region: the light polygons indicate complete cer-
tainty about the environment (for example, these can rep-
resent regions where are no targets for sure due to the ter-
rain); the dark polygons represent partial certainty about
the environment. The remaining search region is assumed
to be completely uncertain. In this simulation the only
mission is for the agents to work cooperatively in reducing
the uncertainty in the environment.
The search map used in this simulation study is based on

piecewise constant basis functions, and the learning algo-
rithm is a simple update algorithm of the form �̂(k + 1) =

0:5�̂(k) + 0:5, where the �rst encounter of a search block
results in the maximum reduction in uncertainty. Fur-
ther encounters result in reduced bene�t. For example,
if a block on the search map starts from certainty value
of zero (completely uncertain) then after four visits from
(possibly di�erent) agents, the certainty value changes to
0 7! 0:5 7! 0:75 7! 0:875 7! 0:9375. The percentage of
uncertainty is de�ned as the distance of the certainty value
from one. The cooperative search algorithm has no pre-set
search pattern. As seen from Figure 7, each agent adapts
its search path on-line based on current information from
its search results, as well as from search results of the other
agents. The lower-right plot of Figure 7 shows the per-

centage of uncertainty with time for the standard search
pattern, the random search pattern and the cooperative
search pattern described above. The ability of the coop-
erative search algorithm to make path planning decisions
on-line results in a faster rate of uncertainty reduction.

0 50 100 150 200

0

50

100

150

200

x

y

Standard Search (200samples)

0 50 100 150 200

0

50

100

150

200

x

y

Random Search(200samples)

0 50 100 150 200

0

50

100

150

200

x

y

Cooperative Search (200samples)

0 200 400 600 800 1000
0

20

40

60

80

100

Sample (k)

 P
er

ce
nt

ag
e

of
 U

nc
er

ta
in

ty
 (

%
)

Comparison for the three search patterns

Standard Search
Random Search
Coopearative Search

Fig. 7. Comparison of the cooperative search pattern with a \stan-
dard" search pattern and a random search pattern for the case of
�ve moving agents.

The simulation results in the case of two agents moving
in the same environment is shown in Figure 8. The left
plot of Figure 8 shows that the paths of the two agents are
overlapping if the cooperation sub-goal C1 is not included
in the cost function J . The right plot of Figure 8 shows
that by including C1 in the cost function, the algorithm
can e�ectively seperate the two agents so as to search the
region more eÆciently.
In these simulation studies, we assume that the sam-

pling time Tm = 1 corresponds to the rate at which each
agent receives information from its own sensors, updates
its search map and makes path planning decisions. Infor-
mation from other agents is received at a slower rate at a
communication sampling time Tc = 5Tm.
It is noted that in these simulations the path planning

of the cooperative search algorithm is rather limited since
at every sampled time each agent is allowed to either go
straight, left, or right (the search direction is discretized
into only three possible points; i.e., m = 3). As the com-
plexity of the cooperative search algorithm is increased and
the design parameters (such as the weights associated with
the multi-objective cost function) are �ne-tuned or opti-
mized, it is anticipated that the search performance can be
further enhanced.

VI. Concluding Remarks

Advances in distributed computing and wireless commu-
nications have enabled the design of distributed agent sys-
tems. One of the key issues for a successful and wide de-
ployment of such systems is the design of cooperative de-
cision making and control strategies. Traditionally, feed-
back control methods have focused mostly on the design

0 50 100 150 200

0

50

100

150

200

x

y

Noncooperative Search (150 samples)

0 50 100 150 200

0

50

100

150

200

x

y

Cooperative Search(150 samples)

Fig. 8. Comparison of non-cooperative search pattern (left) and
cooperative search pattern (right).

and analysis of centralized, inner-loop techniques. Decision
and control of distributed agent systems requires a frame-
work that is based more on cooperation between agents,
and outer-loop schemes. In addition to cooperation, issues
such as coordination, communication delays and robust-
ness in the presence of losing one or more of the agents are
crucial. In this paper, we have presented a framework for a
special type of problem, the cooperative search. The pro-
posed framework consists of two main components: learn-
ing the environment and using that knowledge to make in-
telligent high-level decisions on where to go (path planning)
and what do to. We have presented some ideas regarding
the design of a cooperative planning algorithm based on a
recursive q-step ahead planning procedure and illustrated
these ideas with simulation studies.

References

[1] M. Pachter and P. Chandler, \Challenges of autonomous con-
trol," IEEE Control Systems Magazine, pp. 92{97, April 1998.

[2] D. Jacques and R. Leblanc, \E�ectiveness analysis for wide area
search munitions," in Proceedings of the AIAA Missile Sciences
Conference, (Monterey, CA), Nov. 17{19 1998.

[3] D. Godbole, \Control and coordination in uninhabited combat
air vehicles," in Proceedings of the 1999 American Control Con-
ference, pp. 1487{1490, June 1999.

[4] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence:
From Natural to Arti�cial Systems. NY: Oxford Univ. Press,
1999.

[5] R. Arkin, Behavior-Based Robotics. Cambridge, MA: MIT
Press, 1998.

[6] L. Stone, Theory of Optimal Search. New York: Acadamic Press,
1975.

[7] B. Koopman, Search and Screening: General principles with
Historical Application. New York: Pergarnon, 1980.

[8] S. Spires and S. Goldsmith, \Exhaustive geographic search with
mobile robots along space-�lling curves," in Collective Robotics
(A. Drogoul, M. Tambe, and T. Fukuda, eds.), pp. 1{12, Springer
Verlag: Berlin, 1998.

[9] S. Cameron, \Obstacle avoidance and path planning," Industrial
Robot, vol. 21, pp. 9{14, 1994.

[10] A. Conn, K. Scheinberg, and P. Toint, \Recent progress in un-
constrainted nonlinear optimization without derivatives," Math-
ematical Programming, vol. 79, pp. 397{414, 1997.

[11] S. Weaver, L. Baird, and M. Polycarpou, \An analytical frame-
work for local feedforward networks," iEEE Transactions on
Neural Networks, vol. 9, no. 3, pp. 473{482, 1998.

[12] V. Ablavsky and M. Snorrason, \Optimal search for a mov-
ing target: a geometric approach," in AIAA Guidance, Navi-
gation, and Control Conference and Exhibit, (Denver, CO), Au-
gust 2000.

