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Abstract— In this article we consider a discrete time one-
dimensional asynchronous swarm. First, we describe the
mathematical model for motions of the swarm members.
Then, we analyze the stability properties of that model.
The stability concept that we consider, which matches ex-
actly with stability of equilibria in control theory, character-
izes stability of a particular position (relative arrangement)
of the swarm members, that we call the comfortable position
(with comfortable intermember distance). Our stability analy-
sis employs some results on contractive mappings from the
parallel and distributed computation literature.

I. Introduction

The area of swarm stability analysis is an active research
area that has become more important due to its potential
use in characterizing and analyzing mechanisms for coop-
erative control for groups of autonomous vehicles. Impor-
tant past work includes the work done by mathematical
biologists [1], [2], [3], where they consider models of the
density of the swarm and study its properties. In [4] Jin
et al. studied the stability properties of one-dimensional
and two-dimensional synchronized swarms. Note that the
stability of one dimensional swarms is similar to the con-
cept of “platoon” stability in automated highway systems
and there has been a significant work in that area (see,
for example, [5], [6], [7], [8]). On the other hand, [9] is,
to best of our knowledge, one of the first stability results
for asynchronous methods. There they consider a “lin-
ear” swarm model and prove sufficient conditions for the
asynchronous convergence of the swarm to a synchronously
achievable configuration. Although their method is asyn-
chronous, they do not have time delays in the system. The
stability of totally asynchronous swarm models (i.e., asyn-
chronous swarmmodels with time delay) was, to best of our
knowledge, first considered by Liu et al. in [10], [11]. In [10]
they analyze the stability (cohesiveness) of one-dimensional
asynchronous swarm model, whereas in [11] the stability of
one-dimensional mobile swarm model is considered.
In this work, we use the representation of a single swarm

member from [10], [11]; however, we consider a different
mathematical model for the intermember interactions and
motions in a swarm. We prove stability of the comfortable
position for the new model using different mathematical
tools for analysis. Namely, we use some earlier results de-
veloped for computer networks in [12]. First, we prove the
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stability in case of synchronism with no delays. Then, we
use this result to prove the stability under total asynchro-
nism (with included delays).

II. The Swarm Model

In this section we introduce the swarm model that we
use in this article. First, we describe the model of a sin-
gle swarm member. Then, we present the one-dimensional
swarm model (i.e., when many swarm members are ar-
ranged next to each other on a line).

A. Single Swarm Member Model

The single swarm model described in this section is taken
from [10], [11]. We present it here for convenience. The
single swarm member model that we consider is shown in
Figure 1. As seen in the figure, it has a driving device

(left and right)
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Fig. 1. Single swarm member.

for performing the movements and a neighbor position sen-
sors for sensing the position of the adjacent (left and right)
neighbors. It is assumed that there is no restriction on the
range on these sensors. In other words, we assume that
they can provide the accurate position of the neighbor even
if the neighbor is far away. Each swarm member also has
two proximity sensors on both sides (left and right). These
sensors have sensing range of ε > 0 and can sense instan-
taneously in this proximity. Therefore, if another swarm
member reaches an ε distance from it, then this will be in-
stantaneously known by both of the members. However, if
the neighbors of the swarm member are out of the range of
the proximity sensor, then it will return an infinite value
(i.e., −∞ for the left sensor and +∞ for the right sensor)



or some large number that will be ignored by the swarm
member. The use of this sensor is to avoid collisions with
the other members in the swarm.
In the next section we describe the model of a swarm

(collection) of members described in this section arranged
on a line.

B. One-Dimensional Swarm Model

Consider a discrete time one-dimensional swarm de-
scribed by the model

x1(k + 1) = x1(k), ∀k
xi(k + 1) = max

{
xi−1(k) + ε,min

{
xi(k)− g

(
xi(k)

−xi−1(τ
i
i−1(k))+xi+1(τ

i
i+1(k))

2

)
,

xi+1(k)− ε
}}

, ∀k ∈ Ki, i = 2, . . . , N − 1
xN (k + 1) = max

{
xN−1(k) + ε, xN (k)− g

(
xN (k)

−xN−1(τN
N−1(k))− d

)}
, ∀k ∈ KN ,

(1)
where xi(k), i = 1, . . . , N , represents the position of mem-
ber i at time k and Ki ⊆ K = {1, 2, . . .} is the set of time
instants at which member i updates its position. At the
other time instants member i is stationary. In other words,
we have

xi(k + 1) = xi(k), ∀k 	∈ Ki and i = 2, . . . , N. (2)

Note that the first member of the swarm is always station-
ary at position x1(0). The other members (except member
N), on the other hand, try to move to the position which
their current information tells them is the middle of their
adjacent neighbors. In other words, they try to move to
the position ci(k) defined as

ci(k) =
xi−1(τ i

i−1(k)) + xi+1(τ i
i+1(k))

2
, i = 2, . . . , N − 1,

where τ i
j , j = i − 1, i + 1, is used to represent the time

index at which member i obtained position information of
its neighbor j. Of course due to the delays ci(k) may not
be the midpoint between members i − 1 and i + 1 at time
k. The last member (member N), on the other hand, tries
to move to

cN (k) = xN−1(τN
N−1(k)) + d,

what it perceives to be a distance d from its left neighbor.
The constant d represents the comfortable intermember dis-
tance. Note that, in contrast to the work in [10], [11], only
the N th member of the swarm knows (or decides) the value
of d. It is assumed that d 
 ε.
The elements of K (and therefore of Ki) should be viewed

as indices of the sequence of physical times at which the up-
dates occur (similar to the times of events in discrete event
systems), not as actual times. In other words, they are
integers that can be mapped to actual times. The sets Ki

are independent from each other for different i. However,
it is possible to have Ki∩Kj 	= ∅ for i 	= j (i.e., two or more
members move simultaneously). Note that τ i

j (k) satisfies
0 ≤ τ i

j(k) ≤ k for k ∈ Ki, where τ i
j(k) = 0 means that

member i did not obtain any position information about
member j so far (it still has the initial position informa-
tion), whereas τ i

j(k) = k means that it has the current
position information of member j. The constant ε is the
range of the proximity sensors as discussed in the preceding
section.
The function g describes the attractive and repelling

relationships between a swarm member and its adjacent
neighbors. It determines the step size that a member will
take toward the middle of its neighbors (if it is not already
there). We assume that

αy(t) ≤ g(y(t)) ≤ ᾱy(t), if y(t) ≥ 0
ᾱy(t) ≤ g(y(t)) ≤ αy(t), if y(t) < 0, (3)

where α and ᾱ are two constants satisfying

0 < α < ᾱ < 1.

Figure 2 shows the plot of one such g. In the figure we also
plotted αy(t) and ᾱy(t) for α = 0.1 and ᾱ = 0.9.
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Fig. 2. The g function.

Notice that the model in Eq. (1) is in a sense a discrete
event model which does not allow for collisions between
the swarm members. This is because if during movement
member i suddenly finds itself within an ε range of one (or
both) of its neighbors, it will restrain its movement by that
neighbor according to Eq. (1).
We will at times use the notation x(k) = [x1(k), . . . , xN (k)]�

to represent the position at time k of all the members of
the swarm. Define the swarm comfortable position as

xc = [x1(0), x1(0) + d, . . . , x1(0) + (N − 1)d]�.

In this article we consider the stability of this position by
considering the motions of the swarm members when they
are initialized at positions different from xc. We will con-
sider two cases: synchronous operation with no delays and
totally asynchronous operation. These are described in the
following two assumptions.

Assumption 1: (Synchronism, No Delays) The sets Ki

and the times τ i
j(k) satisfy Ki = K for all i and τ i

j(k) = k
for all i and j = i − 1, i + 1.



This assumption says that all the swarm members will
move at the same time instants. Moreover, every mem-
ber will always have the current position information of its
adjacent neighbors.
The next assumption, on the other hand, says that the

members can move at totally independent time instants
and that the “delay” between two measurements performed
by a member can become arbitrarily large. However, there
always will be next time when the member will perform a
measurement.

Assumption 2: (Total Asynchronism) The sets Ki are in-
finite, and if {k
} is a sequence of elements of Ki that tends
to infinity, then lim
→∞ τ i

j (k
) = ∞ for every j.
Now we have the following preliminary result. We state

it here, because it will be used in the next section.
Lemma 1: For the swarm described in Eq. (1) given any

x(0), there exists a constant b̄ = b̄(x(0)) such that xi(k) ≤
b̄, for all k and all i, 1 ≤ i ≤ N .

Proof: We prove this via contradiction. Assume that
xi(k) → ∞ for some i, 1 ≤ i ≤ N . This implies that
xj(k) → ∞ for all j ≥ i. We will show that it must be the
case that xi−1(k) → ∞. Assume the contrary. Then we
have xi(k)− xi−1(k) → ∞, whereas xi−1(k)− xi−2(k) < b
for some b. However, there is always a time ki−1 ∈ Ki−1 at
which member i− 1 performs position sensing of its neigh-
bors and since at some time xi(k) − xi−1(k) 
 xi−1(k) −
xi−2(k), it moves to the right. Repeating the argument for
each time instant, we obtain xi−1(k) → ∞. Continuing
this way it can be shown that xi(k) → ∞ for all i 	= 1.
Moreover, since x1 is constant and x2(k)− x1(k) → ∞ we
have all xi(k)− xi−1(k) → ∞, i = 2, . . . , N . To see this as-
sume that x2(k) − x1(k) → ∞, whereas x3(k) − x2(k) < b
for some b. Then, there exists always a time k2 ∈ K2 at
which member 2 performs a position sensing of its neigh-
bors and it moves to the left. Therefore, it must be the case
that x3(k) − x2(k) → ∞. Repeating the argument for the
other members we arrive at the conclusion that it should
hold for all i. This leads to a contradiction since there is
always a time kN ∈ KN at which member N performs posi-
tion sensing of its left neighbor. From the definition of the
model if xN (k)−xN−1(k) > d the N th member will move to
the left. In other words, xN (k)− xN−1(k) cannot diverge.
Then, there is always a time kN−1 ∈ KN , kN−1 > kN at
which member N−1 performs position sensing of the neigh-
bors, and since xN−1(k)− xN−2(k) > xN (k)− xN−1(k) it
moves to left. Therefore, xN−1(k) − xN−2(k) also cannot
diverge. Continuing with similar reasoning one can show
that all xi(k) − xi−1(k) are bounded implying the result.

This result is important, because it basically says that for
the given swarm model unboundednes of the swarm mem-
ber positions and intermember distances (the dissolution of
the swarm) will not occur. Therefore, the main question to
be answered is whether the swarm member positions x(k)
will have periodic solutions or will converge to some con-
stant. In the next section we will analyze the system in the
case of synchronism with no delays. This will be used later
in the proof of our main result.

III. The System Under Total Synchronism

In this section we will assume that Assumption 1 holds
(i.e., all the members move at the same time and they
always have the current position information of the neigh-
bors) and analyze the stability properties of the system.
Now we have the following preliminary result.
Lemma 2: For the system in Eq. (1) assume that As-

sumption 1 holds (i.e., we have synchronism with no de-
lays). If x(k) → x̄ as k → ∞, where x̄ is a constant vector,
then x̄ = xc.

Proof: First of all, note that the intermember dis-
tances on all the states that the system can converge to
are such that x̄i − x̄i−1 > ε for all i (i.e., it is impossible
for the states to converge to positions that are very close
to each other). To prove this, we assume that x̄i− x̄i−1 = ε
for some i and x̄j − x̄j−1 > ε for all j 	= i and seek to show
a contradiction. In that case,

x̄i+1 − x̄i > ε

so
x̄i − x̄i−1 + x̄i+1

2
< 0

and we have from model constraints in Eq. (1) that

x̄i−1 + ε < x̄i − g
(
x̄i − x̄i−1 + x̄i+1

2
)

< x̄i+1 − ε.

From Eq. (1) this implies that at the next time instant
ki ∈ Ki member i will move to the right toward member
i+1. Therefore, it must be the case that x̄i+1−x̄i = ε since
otherwise x̄i − x̄i−1 = ε also cannot hold. Continuing this
way one can prove that all intermember distances must be
equal to ε. However, in that case, since d 
 ε, from last
equality in Eq. (1) we have

x̄N − g(ε − d) > x̄N−1 + ε

and this implies that on the next time instant kN ∈ KN

member N will move to the right. Therefore, no intermem-
ber distance can converge to ε. For this reason, to find x̄
we can drop the min and max and consider only the middle
terms in Eq. (1).
Since x(k) → x̄ as t → ∞ it should be the case that

ultimately

x̄1 = x̄1

x̄i = x̄i − g
(
x̄i − x̄i−1 + x̄i+1

2
)
, i = 1, . . . , N − 1

x̄N = x̄N − g
(
x̄N − x̄N−1 − d

)
,

from which we obtain

x̄1 = xc
1

2x̄i = x̄i−1 + x̄i+1, i = 1, . . . , N − 1
x̄N = x̄N−1 + d. (4)

Solving the second equation for x̄N−1 we have

2x̄N−1 = x̄N−2 + x̄N



from which we obtain

x̄N−1 = x̄N−2 + d.

Continuing this way, we obtain

x̄i = x̄i−1 + d, ∀i = 1, . . . , N − 1.

Then since the first member is stationary we have x̄1 =
x1(t) = x1(0) = xc

1 and this proves the result.

This lemma basically says that xc is the unique fixed point
or equilibrium point of the system described by Eq. (1).
In this article we analyze the stability of this fixed point
which corresponds to the arrangement with comfortable
intermember distance.

Lemma 3: Assume that xi(0) − xi−1(0) > ε for all
i = 2, . . . , N . Moreover, assume that Assumption 1
holds (i.e., we have synchronism with no delays). Then,
xi(k)− xi−1(k) > ε for all i = 2, . . . , N , and for all k.

Proof: We will prove this by induction. By assumption
for k = 0 we have xi(0) − xi−1(0) > ε for all i = 2, . . . , N .
Assume that for some k we have xi(k)−xi−1(k) > ε for all
i = 2, . . . , N . Then we have

xi−1(t) + xi−2(t)
2

<
xi(t) + xi−1(t)

2
− ε. (5)

On the other hand, from Eq. (4) we have

xi(k + 1) = xi(k)− αi

(
xi(k)− xi−1(k) + xi−2(k)

2
)

=
(
1− αi

)
xi(k) + αi

(xi−1(k) + xi−2(t)
2

)
,

where α < αi < ᾱ. Therefore, as shown in Figure 3, we
have
if xi(k) < xi−1(k)+xi−2(k)

2

then xi(k) < xi(k + 1) < xi−1(k)+xi−2(k)
2

and
if xi(k) > xi−1(k)+xi−2(k)

2

then xi(k) > xi(k + 1) > xi−1(k)+xi−2(k)
2 .

Then, Eq. (5) implies that xi(k +1)− xi−1(k + 1) > ε and

i(k)c x (k)i+1xi−1(k) xi(k)

ic (k) − xi(k)

αi

xi(k+1)

i(k) − xi(k)c )(

Fig. 3. Step of a swarm member.

this completes the proof.

This lemma implies that for the synchronous case with no
delays, provided that initially the members are sufficiently
apart from each other, the proximity sensors will not be
used and that we can drop the min and max operations in
Eq. (1) and the system can be represented as

x1(k + 1) = x1(k)

xi(k + 1) = xi(k)− g
(
xi(k)− xi−1(k) + xi+1(k)

2
)
,

xN (k + 1) = xN (k) + g
(
xN (k)− xN−1(k)− d

)
.

Define the following change of coordinates

e1(k) = x1(k)− xc
1

ei(k) = xi(k)− (xi−1(k) + d), i = 1, . . . , N.

Then, one obtains the following representation of the
system

e1(k + 1) = e1(k) = 0,

e2(k + 1) = e2(k)− g
(e2(k)− e3(k)

2
)
,

ei(k + 1) = ei(k)− g
(ei(k)− ei+1(k)

2
)

+g
(ei−1(k)− ei(k)

2
)
, i = 3, . . . , N − 1,

eN(k + 1) = eN (k)− g
(
eN(k)

)
+ g

(eN−1(k)− eN (k)
2

)
.

Noting that it is possible to write the g function as

g(y(k)) = α(k)y(k),

where
0 < α ≤ α(k) ≤ ᾱ < 1,

we can represent the system with

e2(k + 1) =
(
1− α2(k)

2
)
e2(k) +

α2(k)
2

e3(t),

ei(k + 1) =
(
1− αi(k)

2
− αi−1(k)

2
)
ei(k)

+
αi−1(k)

2
ei−1(k)

+
αi(k)
2

ei+1(k), i = 3, . . . , N − 1,

eN(k + 1) =
(
1− αN (k)− αN−1(k)

2
)
eN(k)

+
αN−1(k)

2
eN−1(k),

where we dropped e1(k) since it is zero for all k. In other
words, our system is, in a sense, a linear time varying sys-
tem of the form

e(k + 1) = A(k)e(k),

where e(k) = [e2(k), . . . , eN (k)]� and A(k) is a symmetric
tridiagonal matrix with diagnal

{(
1− α2(k)

2
)
,
(
1− α3(k)

2
− α2(k)

2
)
, . . . ,

(
1− αN−1(k)

2
− αN−2(k)

2
)
,
(
1− αN (k)− αN−1(k)

2
)}

and offdiagonal

{α2(k)
2

, . . . ,
αN−1(k)

2

}
.

Now we present the following lemma that will be used later.



Lemma 4: The spectrum of the matrix A(k), ρ(A(k))
satisfies

ρ(A(k)) ≤ 1

for all k.
Proof: Note that for the given A(k) we have

‖A(k)‖1 = ‖A(k)‖∞ = 1

for all k. On the other hand, for any given matrix A(k) it
is well known that the two norm satisfies

‖A(k)‖2 ≤ ‖A(k)‖1‖A(k)‖∞.

Hence, since we have

ρ(A(k)) = ‖A(k)‖2,

we obtain
ρ(A(k)) ≤ 1

for all k, which completes the proof.

This lemma basically says that the eigenvalues of A(k)
(which are all real numbers since A(k) is symmetric) lie
on the unit disc for each k. However, this result is not
satisfactory and we need to prove that all of the eigenvalues
of A(k) lie within the unit circle for each k. This is done
with the help of the next lemma.

Lemma 5: Let α ≤ αi(k) = αi ≤ ᾱ for all k and i =
2, . . . , N (i.e., the αi’s in the matrix A are all constants).
Then,

ρ(A(k)) = ρ(A) < 1,

and we have e(k) → 0 as k → ∞.
Proof: To prove the assertion, note that A(k) is a sym-

metric matrix. Therefore, there exists a unitary transfor-
mation P (i.e., P−1 = P�) such that Ā = PAP�, where
Ā = diag{ā2, . . . , āN}. For the sake of contradiction as-
sume that ρ(A) = 1. Then, it must be the case that āi = 1
for some i, 2 ≤ i ≤ N . Define the transformation ē = Pe.
Then the system can be described as

ē(k + 1) = Āē(k).

Since Ā is diagonal and āi = 1 we have ēi(k) = ēi(0) for all
k, whereas ēj(k) → 0 as k → ∞ for all j 	= i. This, on the
other hand, implies that e(k) → Piēi(0) = ec as k → ∞,
where Pi is the ith column of P . Depending on the value
of ēi(0), the value of ec can be any number. However, this
contradicts the result of Lemma 2. Therefore, āi < 1 for
all i = 2, . . . , N , and this implies that ρ(A) < 1.

Since in the above lemma α = [α2, . . . , αN ]� was chosen
arbitrary, the result holds for all α such that α ≤ αi ≤ ᾱ.
Hence, we have

ρ(A(k)) < 1

for each k. Before proceeding define

ρ̄ = sup
α≤αi≤ᾱ,i=2...N

{ρ(A)}.

Then, from the above result we have

ρ̄ < 1.

IV. The Main Result

In this section we return to the totally asynchronous
case. In other words, we assume that Assumption 2 holds.
To prove its stability we will use the result from the syn-
chronous case and a result from [12]. For convenience we
present this result here.
Consider the function f : X → X , where X = X1 ×

. . . ,×Xn, and x = [x1, . . . , xn]� with xi ∈ Xi. The func-
tion f is composed of functions fi : X → Xi in the form
f = [f1, . . . , fn]� for all x ∈ X . Consider the problem of
finding the point x∗ such that

x∗ = f(x∗)

using an asynchronous algorithm. In other words, use an
algorithm in which

xi(k + 1) = fi

(
x1(τ i

1(k)), . . . , xn(τ i
n(k))

)
, ∀t ∈ Ki,

where τ i
j(k) are times satisfying

0 ≤ τ i
j(k) ≤ k, ∀k ∈ K.

For all the other times k 	∈ Ki, xi is left unchanged. In
other words, we have

xi(k + 1) = xi(k), ∀k 	∈ Ki.

Consider the following assumption.
Assumption 3: There is a sequence of nonempty sets

{X(k)} with

· · · ⊂ X(k + 1) ⊂ X(k) ⊂ · · · ⊂ X,

satisfying the following two conditions:
1. Synchronous Convergence Condition (SCC): We have

f(x) ∈ X(k + 1), ∀k and x ∈ X(k).

Furthermore, if {yk} is a sequence such that yk ∈ X(k) for
every k, then every limit point of {yk} is a fixed point of
f .
2. Box Condition (BC): For every k, there exist sets
Xi(k) ⊂ Xi such that

X(k) = X1(k)× X2(k)× . . .Xn(k).

Then we have the following result.
Theorem 1: Asynchronous Convergence Theorem [12]:

If the synchronous convergence condition and box condi-
tion of Assumption 3 hold, and the initial solution esti-
mate x(0) = [x1(0), . . . , xn(0)]� belongs to the set X(0),
then every limit point of {x(k)} is a fixed point of f .
This is a powerful result that can be applied to many dif-
ferent problems. The main idea behind its proof is that if
there is a time k1 such that xj(τ i

j (k1)) ∈ Xj(k) for all j
and all i, then the SCC and the BC conditions above guar-
antee that x(k1 + 1) ∈ X(k + 1). Then, x(k) ∈ X(k + 1)
for all k ≥ k1 and due to the total asynchronism assump-
tion there will be always another time k2 > k1 such that
xj(τ i

j (k2)) ∈ Xj(k + 1) for all j and all i. Since initially



we have xj(τ i
j (0)) = xj(0) ∈ Xj(0), we can use the above

arguments in an induction.
Now we state our main result.
Theorem 2: For the N-member swarm modeled in

Eq. (1) with g(·) as given in Eq. (3), if Assumption (2)
holds and xi+1(0) − xi(0) > ε, i = 1, . . . , N − 1, then the
swarm member positions will converge asymptotically to
the comfortable position xc.

Proof: In order to prove this result we once again con-
sider the synchronous case. Recall that for this case the
system can be described by

e(k + 1) = A(k)e(k).

In the previous section it was shown that for the syn-
chronous case we have λ(A(k)) ≤ ρ̄ < 1 for all k and
that e(k) → 0 as k → ∞ (i.e., the position with com-
fortable intermember distance xc). This implies that A(k)
is a maximum norm contraction mapping for all k. Define
the sets

E(k) = {e ∈ R
N−1 : ‖e‖∞ ≤ ρ̄k‖e(0)‖∞}.

Then since A(k) is a maximum norm contraction mapping
for all k we have e(k) ∈ E(k) for all k and

. . . ⊂ E(k + 1) ⊂ E(k) ⊂ . . . ⊂ E = R
N−1.

Moreover, each E(k) can be expressed as

E(k) = E2(k)× E3(k)× . . . EN (k).

Since the position with comfortable intermember distance
e = 0 (i.e., x = xc) is the unique fixed point of the system
and the synchronous swarm converges to it, it is implied
that Assumption 3 above is satisfied. Applying the Asyn-
chronous Convergence Theorem we obtain the result.

This result is important because it says that the stability
of the system will be preserved (i.e., the system will con-
verge to the comfortable distance) even though we have
totally asynchronous motions. Note that the fact that in
the asynchronous case the min and max operations are pre-
served does not change the result since the stability proper-
ties of the synchronous system is preserved even with them
present in the model. In fact, having them is, in a sense,
beneficial because they also serve as another neighbor po-
sition sensing by the members that come to an ε distance
from each other and this provides more accurate neighbor
position information.
A direct consequence of Theorem 2 is the stability of

swarm in which one member in the middle is stationary,
whereas all the other middle members try to move as above
and both of the edge members try to move to a distance d
from their neighbors. In other words, suppose the swarm
is described by

x1(k + 1) = min
{
x1(k)− g

(
x1(k) + d − x2(τ1

2 (k))
)
,

x2(k)− ε
}∀k ∈ K1,

xj(k + 1) = xj(k), ∀k and for some j, 1 ≤ j ≤ N

xi(k + 1) = max
{
xi−1(k) + ε,min

{
xi(k)− g

(
xi(k)

−xi−1(τ i
i−1(k)) + xi+1(τ i

i+1(k))
2

)
,

xi+1(k)− ε
}}

, ∀k ∈ Ki,

i = 2, . . . , N − 1, i 	= j,

xN (k + 1) = max
{
xN−1(k) + ε, xN (k)− g

(
xN (k)

−xN−1(τN
N−1(k))− d

)}
, ∀k ∈ KN . (6)

In this case we have the following corollary as a direct con-
sequence of Theorem 2.

Corollary 1: For the N-member swarm modeled in
Eq. (6) with g(·) as given in Eq. (3), if Assumption (2) holds
and xi+1(0) − xi(0) > ε, i = 1, . . . , N − 1, then the swarm
member positions will converge asymptotically to xc, where
xc is defined such that xc

j = xj(0) and xc
i = xj(0)+(i−j)d,

for all i 	= j.
The importance of this result is for systems in which the

“leader” of the swarm is not the first (or the last) member,
but a member in the middle.

V. Conclusion

In this article we present one-dimensional asynchronous
swarm model and analyze its stability. We show that for
our model we have asymptotic convergence of the positions
of the swarm members to the comfortable position despite
the presence of delays and asynchronism.
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