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Abstract

This paper presents an approach for cooperative search by a team of distributed agents.
We consider two or more agents moving in a geographic environment, cooperatively searching
for targets of interest and avoiding obstacles or threats. The moving agents are equipped
with sensors to view a limited region of the environment they are visiting, and are able to
communicate with one another to enable cooperation. The agents are assumed to have some
“physical” limitations including possibly maneuverability limitations, fuel/time constraints and
sensor range and accuracy. The developed cooperative search framework is based on two inter-
dependent tasks: (i) on-line learning of the environment and storing of the information in the
form of a “search map”; and (ii) utilization of the search map and other information to compute
on-line a guidance trajectory for the agent to follow. We develop a real-time approach for on-
line cooperation between agents, which is based on treating the paths of other vehicles as “soft
obstacles” to be avoided. Based on artificial potential field methods we develop the concept of
“rivaling force” between agents as a way of enhancing cooperation. The proposed distributed
learning and planning approach is illustrated by computer simulations.

1 Introduction

During the last decade there has been significant progress in the design and analysis of intelligent
control schemes. These techniques have enhanced the overall effectiveness of decision and control
methods mainly in two frontiers. First, they enhanced the ability of feedback control systems to deal
with greater levels of modeling uncertainty. For example, on-line approximation techniques, such
as neural networks, allow the design of control systems that are able to “learn” on-line unknown,
nonlinear functional uncertainties and thus improve the overall performance of the closed-loop
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system in the presence of significant modeling uncertainty. Second, intelligent control techniques
have enhanced our ability to deal with greater levels of uncertainty in the environment by providing
methods for designing more autonomous systems with high-level decision making capabilities (outer-
loop control). In this framework, high-level decision making may deal, for example, with generating
on-line a guidance trajectory for the low-level controller (inner-loop control) to follow, or with
designing a switching strategy for changing from one control scheme to another in the presence of
changes in the environment or after the detection of a failure.

In this paper, we address a problem in the second framework of intelligent control, as described
above. Specifically, we present an approach for cooperative search among a team of distributed
agents. Although the presented framework is quite general, the main motivation for this work is
to develop and evaluate the performance of strategies for cooperative control of autonomous air
vehicles that seek to gather information about a dynamic target environment, evade threats, and
possibly coordinate strikes against targets. Recent advances in computing, wireless communications
and vehicular technologies are making it possible to deploy multiple uninhabited air vehicles (UAVs)
that operate in an autonomous manner and cooperate with each other to achieve a global objective
[1, 2, 3, 4, 5]. A large literature of relevant ideas and methods can also be found in the area
of “swarm robotics” (e.g., see [6, 7, 8]) and, more generally, coordination and control of robotic
systems (e.g., see [9, 7, 10, 11, 12, 13, 14]). Related work also includes the techniques developed
using the “social potential field” method [15, 16, 17] and multi-resolution analysis [18].

We consider a team of vehicles moving in an environment of known dimension, searching for
targets of interest. The vehicles are assumed to be equipped with: 1) target sensing capabilities for
obtaining a limited view of the environment; 2) wireless communication capabilities for exchanging
information and cooperating with one another; and 3) computing capabilities for processing the
incoming information and making on-line guidance decisions. It is also assumed that each vehicle
has a tandem of actuation/sensing hardware and an inner-loop control scheme for path following.
In this paper, we focus solely on the design of the guidance controller (outer-loop control), and for
convenience we largely ignore the vehicle dynamics.

The vehicles are assumed to have some maneuverability limitations, which constrain the maxi-
mum turning radius of the vehicle. The maneuverability constraint is an issue that is typically not
encountered in some of the literature on “collective robotics,” which describes swarms of robots
moving in a terrain [19]. The main contributions of the work presented in this paper are the formu-
lation of an on-line decision making framework for solving a class of cooperative search problems
and the design of a real-time approach for on-line cooperation between agents. The developed
cooperative search framework is based on two inter-dependent tasks: (i) on-line learning of the en-
vironment and storing of the information in the form of a “search map”; and (ii) utilization of the
search map and other information for computing on-line a guidance trajectory for the vehicle. We
develop a real-time approach for on-line cooperation between agents based on treating the paths of
other vehicles as ”soft obstacles” to be avoided. Using artificial potential field methods we develop
the concept of “rivaling force” between agents as a way of enhancing cooperation. The distributed
learning and planning approach for cooperative search is illustrated by computer simulations.

While there are different command-flow configurations that can be deployed (such as a hierar-
chical configuration or having one leader coordinate all the activities of the group), in this paper we
will consider the situation where each vehicle receives information from other vehicles but makes
its own decisions on where to go and what to do. In other words, the group of vehicles can be
considered as being a group of autonomous agents which exchange information but ultimately make
their own decisions based on the received information. The problem of avoiding collisions between
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vehicles is not directly addressed in this article; however, the proposed rivaling force approach for
reducing path planning overlap can be extended to address the issue of avoiding collisions. In the
rest of the paper, we will be using the general term “agent” to represent a UAV or other type of
appropriate vehicle.

2 Related Research Work on Search Methods

Search problems occur in a number of military and civilian applications, such as search-and-rescue
operations in open-sea or sparsely populated areas, search missions for previously spotted enemy
targets, seek-destroy missions for land mines, and search for mineral deposits. A number of ap-
proaches have been proposed for addressing such search problems. These include, among other,
optimal search theory [20, 21], exhaustive geographic search [22], obstacle avoidance [23, 24] and
derivative-free optimization methods [25].

Search theory deals with the problem of distribution of search effort in a way that maximizes
the probability of finding the object of interest. Typically, it is assumed that some prior knowledge
about the target distribution is available, as well as the “payoff” function that relates the time
spent searching to the probability of actually finding the target, given that the target is indeed
in a specific cell [20, 21]. Search theory was initially developed during World War II with the
work of Koopmam and his colleagues at the Anti-Submarine Warfare Operations Research Group
(ASWORG). Later on, the principles of search theory were applied successfully in a number of
applications, including the search for and rescue of a lost party in a mountain or a missing boat on
the ocean, the surveillance of frontiers or territorial seas, the search for mineral deposits, medical
diagnosis, and the search for a malfunction in an industrial process. Detailed reviews of the current
status of search theory have been given by Stone [26], Richardson [27], and Monticino [28].

The optimal search problem can be naturally divided according to two criteria that depend
on the target’s behavior. The first division depends on whether the target is evading or not; that
is, whether there is a two-sided optimization by both the searcher and the target, or whether the
target’s behavior is independent of the searcher’s action. The second division deals with whether
the target is stationary or moving. The two divisions and their combinations form four different
categories. A great deal of progress in solving stationary target problems in the optimal search
framework has been made, and solutions have been derived for most of the standard cases [20].
For the moving target problem, the emphasis in search theory has shifted from mathematical and
analytical solutions to algorithmic solutions [28]. A typical type of search problem, called the
path constraint search problem (PCSP), that takes into account the movement of the searcher,
was investigated by several researchers [29, 30, 31, 32]. Because of the NP-complete nature of this
problem, most authors proposed a number of heuristic approaches that result in “approximately
optimal” solutions. The two-sided search problem can be treated as a game problem for both the
searcher and target strategies. This has been the topic of a number of research works [33, 34, 35].
So far, search theory has paid little attention to the problem of having a team of cooperating
searchers. A number of heuristic methods for solving this problem have been proposed by Dell and
Eagle [36].

The Exhaustive Geographic Search problem deals with developing a complete map of all phe-
nomena of interest within a defined geographic area, subject to the usual engineering constraints
of efficiency, robustness and accuracy [22]. This problem received much attention recently, and
algorithms have been developed that are cost-effective and practical. Application examples of
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Exhaustive Geographic Search include mapping mine fields, extraterrestrial and under-sea explo-
ration, exploring volcanoes, locating chemical and biological weapons and locating explosive devices
[22, 37, 38, 39].

The obstacle avoidance literature deals with computing optimal paths given some kind of ob-
stacle map. The intent is to construct a physically realizable path that connects the initial point to
the destination in a way that minimizes some energy function while avoiding all the obstacles along
the route [23, 24]. Obstacle avoidance is normally closely geared to the methods used to sense
the obstacles, as time-to-react is of the essence. The efficiency of obstacle avoidance systems is
largely limited by the reliability of the sensors used. A popular way to solve the obstacle avoidance
problem is the potential field technique [40]. According to the potential field method, the potential
gradient that the robot follows is made up of two components: the repulsive effect of the obstacles
and the attractive effect of the goal position. Although it is straightforward to use potential field
techniques for obstacle avoidance, there are still several difficulties in using this method in practical
vehicle planning.

Derivative-Free Optimization methods deal with the problem of minimizing a nonlinear objec-
tive function of several variables when the derivatives of the objective function are not available
[25]. The interest and motivation for examining possible algorithmic solutions to this problem is the
high demand from practitioners for such tools. The derivatives of objective function are usually not
available either because the objective function results from some physical, chemical or economical
measurements, or, more commonly, because it is the result of a possibly very large and complex
computer simulation. The occurrence of problems of this nature appear to be surprisingly frequent
in the industrial setting. There are several conventional deterministic and stochastic approaches to
perform optimization without the use of analytical gradient information or measures of the gradi-
ent. These include, for example, the pattern and coordinate search [41, 42], the Nelder and Mead
Simplex Method [43], the Parallel Direct Search Algorithm [44], and the Multi-directional Search
Method [45]. In one way or another, most derivative free optimization methods use measurements
of the cost function and form approximations to the gradient to decide which direction to move.
Passino [46] provides some ideas on how to extend non-gradient methods to team foraging.

3 Distributed Guidance and Control Architecture

We consider N agents deployed in some search region X of known dimension. As each agent moves
around in the search region, it obtains sensory information about the environment, which helps
to reduce the uncertainty about the environment. This sensory information can be in the form of
an image, which can be processed on-line to determine the presence of a certain entity or target.
Alternatively, it can be in the form of a sensor coupled with automatic target recognition (ATR)
software. In addition to the information received from its own sensors, each agent also receives
information from other agents via a wireless communication channel. The information received
from other agents can be in raw form or it may be pre-processed, and it may be coming at a
different rate (usually at a slower rate) or with a delay, as compared to the sensor information
received by the agent from its own sensors.

Depending on the specific application, the global objective pursued by the team of agents may
be different. In this paper, we focus mainly on the problem of cooperative search, where the team
of agents seeks to follow a trajectory that would result in maximum gain in information about the
environment; i.e., the objective is to minimize the uncertainty about the environment. Intuitively,
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each agent wants to follow a trajectory that leads to regions in X that have not been visited
frequently before by the team of agents. Alternatively, if some information about the location of
targets is known (e.g., in terms of a probability density distribution), the team of agents seeks to
coordinate its activities so as to reach as large a number of targets as quickly as possible. The
presented framework can be easily expanded to include more advanced missions such as evading
threats, attacking targets, etc. In general, the team may have an overall mission that combines
several of these objectives according to some desired priority. However, for simplicity in this paper
we will be focusing mostly on the cooperative search problem.

Each agent has two basic control loops that are used in guidance and control, as shown in
Figure 1. The “outer-loop” controller for agent Ai utilizes sensor information from Ai, as well as
sensor information from Aj, j �= i, to compute on-line a desired trajectory (path) to follow, which
is denoted by Pi(k). The sensor information utilized in the feedback loop is denoted by vi and may
include information from standard vehicle sensors (e.g. pitch, yaw, etc.) and information from
on-board sensors that has been pre-processed by resident ATR software. The sensor information
coming from other agents is represented by the vector

Vi = [v1, . . . , vi−1, vi+1, . . . , vN ]� ,

where vj represents the information received from agent Aj. Although in the above formulation it
appears that all agents are in range and can communicate with each other, this is not a required
assumption—the same framework can be used for the case where some of the information from
other agents is missing, or the information from different agents is received at different sampling
rates, or with a communication delay. The desired trajectory Pi(k) is generated as a digitized
look-ahead path of the form

Pi(k) = {pi(k), pi(k + 1), . . . , pi(k + q)} ,
where pi(k + j) is the desired location of agent Ai at time k+ j, and q is the number of look-ahead
steps in the path planning procedure.
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Figure 1: Inner- and outer-loop controllers for guidance and control of air vehicles.

The inner-loop controller uses sensed information vi from Ai to generate inputs ui to the actu-
ators of Ai so that the agent will track the desired trajectory Pi(k). We largely ignore the agent
dynamics, and hence concentrate on the outer-loop control problem. In this way, our focus is
solidly on the development of the controller for guidance, where the key is to show how resident
information of agent Ai can be combined with information from other agents so that the team of
agents can work together to minimize the uncertainty in the search region X .

The design of the outer-loop control scheme is broken down into two basic functions, as shown
in Figure 2. First, it uses the sensor information received to update its “search map”, which is a

5



representation of the environment—this will be referred to as the agent’s learning function, and
for convenience it will be denoted by Li. Based on its search map, as well as other information
(such as its location and direction, the location and direction of the other agents, remaining fuel,
etc.), the second function is to compute a desired path for the agent to follow—this is referred to
as the agent’s guidance decision function, and is denoted by Di. In this setting we assume that the
guidance control decisions made by each agent are autonomous, in the sense that no agent tells
another what to do in a hierarchical type of structure, nor is there any negotiation between agents.
Each agent simply receives information about the environment from the remaining agents (or a
subset of the remaining agents) and makes its decisions, which are typically based on enhancing
a global goal, not only its own goal. Therefore, the presented framework can be thought of as a
passive cooperation framework, as opposed to active cooperation where the agents may be actively
coordinating their decisions and actions.

vi

Learning 
strategies, storage
of information about
environment

Decision-making
for where to search,
what to engage, 
how to evade

Vi

Li Di

Guidance Controller

Pi

Figure 2: Learning and decision-making components of the outer-loop controller for trajectory
generation of air vehicles.

4 Distributed Learning

Each agent has a three dimensional map, which we will refer to as “search map,” that serves as the
agent’s knowledge base of the environment. The x and y coordinates of the map specify the location
in the target environment (i.e., (x, y) ∈ X ), while the z coordinate specifies the certainty that the
agent “knows” the environment at that point. The search map will be represented mathematically
by an on-line approximation function as

z = S(x, y; θ),

where (x, y) is a point in the search region X , and the output z ∈ [0, 1] corresponds to the certainty
about knowing the environment at the point (x, y) in the search region. If S(x, y; θ) = 0 then the
agent knows nothing (is totally uncertain) about the nature of the environment at (x, y). On
the other hand, if S(x, y; θ) = 1 then the agent knows everything (or equivalently, the agent is
totally certain) about the environment at (x, y). As the agent moves around in the search region
it gathers new information about the environment which is incorporated into its search map. Also
incorporated into its search map is the information received by communication with other agents.
Therefore, the search map of each agent is continuously evolving as new information about the
environment is collected and processed.

We define S : X × �q → [0, 1] to be an on-line approximator (for example, a neural network),
with a fixed structure whose input/output response is updated on-line by adapting a set of ad-
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justable parameters, or weights, denoted by the vector θ ∈ �q. According to the standard neural
network notation, (x, y) is the input to the network and z is the output of the network. The weight
vector θ(k) is updated based on an on-line learning scheme, as is common for example in training
algorithms of neural networks.

In general, the search map serves as a storage place of the knowledge that the agent has
about the environment. While it is possible to create a simpler memory/storage scheme (without
learning) that simply records the information received from the sensors, a learning scheme has
some key advantages: 1) it allows generalization between points; 2) information from different
types of sensors can be recorded in a common framework (on the search map) and discarded; 3)
it allows greater flexibility in dealing with information received from different angles; 4) in the
case of dynamic environments (for example, targets moving around), one can conveniently make
adjustments to the search map to incorporate the changing environment (for example, by reducing
the output value z over time using a decay factor).

The search map is formed dynamically as the agent moves, gathers information about the
environment, and processes the information. This is illustrated in Figure 3, where we show the
area scanned by a “generic” sensor on a UAV during a sampling period [kT, kT +T ] where T > 0
is the sampling time. Although in different applications the shape of the scanned area maybe be
different, the main idea remains the same. The received data can then be digitized and each grid
point is used to adjust the search map S(x, y; θ̂) by adapting θ̂.

Figure 3: An example of a scan area for a UAV.

In practice, the problem of minimizing the uncertainty in the search region is typically an
intermediate goal. The overall objective may include, for example, finding specific targets, or
avoiding certain obstacles and threats. Therefore, depending on the application being considered,
the learning scheme described above for minimizing uncertainty may need to be expanded. One
possible way to include a mission of searching for specific targets is to incorporate the search map
into a more general target search map, which in addition to providing information about the agent’s
knowledge of the environment, also contains information about the presence (or not) of targets.
This can be achieved by allowing the output z of the on-line approximator S to take values in the
region z ∈ [−1, 1], where:

• z = S(x, y; θ) = 1 represents high certainty that a target is present at (x, y);

• z = S(x, y; θ) = −1 represents high certainty that a target is not present at (x, y);

• z = S(x, y; θ) = 0 represents total uncertainty whether a target is present at (x, y).

This representation contains additional information that the agent can utilize in making guidance
and path planning decisions. Furthermore, the learning framework can be extended to a multi-
dimensional framework, where the output z of the on-line approximator is a vector of dimension
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greater than one. For example, one could use the first output to represent the presence/absence of
a target (as above), and the second output to represent the priority of the target.

In this general framework, the tuning of the search map can be viewed as “learning” the envi-
ronment. Mathematically, S tries to approximate an unknown function S∗(x, y, k), where for each
(x, y), the function S∗ characterizes the presence (or not) of a target; the time variation indicated
by the time step k is due to (possible) changes in the environment (such as having moving targets).
Hence, the learning problem is defined as using sensor information from agent Ai and information
coming from other agents Aj , j �= i at each sampled time k, to adjust the weights θ̂(k) such that

∥∥∥S(x, y; θ̂(k)) − S∗(x, y, k)
∥∥∥
(x,y)∈X

is minimized.

Due to the nature of the learning problem, it is convenient to use spatially localized approxi-
mation models so that learning in one region of the search space does not cause any “unlearning”
at a different region [47]. The dimension of the input space (x, y) is two, and therefore there are
no problems related to the “curse of dimensionality” that are usually associated with spatially
localized networks. In general, the learning problem in this application is straightforward, and the
use of simple approximation functions and learning schemes is sufficient; e.g., the use of piecewise
constant maps or radial basis function networks, with distributed gradient methods to adjust the
parameters, provides sufficient learning capability. However, complexity issues do arise and are
crucial since the distributed nature of the architecture imposes limits not only on the amount of
memory and computations needed to store and update the maps but also in the transmission of
information from one agent to another.

At the time of deployment, it is assumed that each agent has a copy of an initial search map
estimate, which reflects the current knowledge about the environment X . In the special case that
no a priori information is available, then each point on the search map is initialized as “completely
uncertain.” In general, each agent is initialized with the same search map. However, in some
applications it may be useful to have agents be “specialized” to search in certain regions, in which
case the search environment for each agent, as well as the initial search map, may be different.

5 Cooperative Path Planning

One of the key objectives of each agent is to on-line select a suitable path in the search environment
X . To be consistent with the motion dynamics of physical vehicles (and, in particular, air vehicles),
it is assumed that each agent has limited maneuverability, which is represented by a maximum angle
θm that the agent can turn from its current direction. For simplicity we assume that all agents
move at a constant velocity µ (this assumption can be easily relaxed).

5.1 Plan Generation

To describe the movement path of agent Ai between samples, we define the movement sampling
time Tm as the time interval in the movement of the agent. In this framework, we let pi(k)
be the position (in terms of (x, y) coordinates) of i-th agent at time t = kTm, with the agent
following a straight line in moving from pi(k) to its new position pi(k + 1). Since the velocity µ
of the agent is constant, the new position pi(k + 1) is at a distance µTm from pi(k), and based on
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the maneuverability constraint, it is within an angle ±θm from the current direction, as shown in
Figure 4. To formulate the optimization problem as an integer programming problem, we discretize
the arc of possible positions for pi(k + 1) into m points, denoted by the set

P i(k + 1) =
{
p̄1

i (k + 1), p̄2
i (k + 1), . . . p̄j

i (k + 1), . . . p̄m
i (k + 1)

}
.

Therefore, the next new position for the i-th agent belongs to one of the elements of the above set;
i.e., pi(k + 1) ∈ P i(k + 1).

pi(k)

p
i
(k+1)j_

p
i 
(k+1)m_

p
i
(k+1)1_

µTm

Figure 4: Selection of the next point in the path of the vehicle.

The agent selects a path by choosing among a possible set of future position points. In our
formulation we allow for a recursive q-step ahead planning, which can be described as follows:

• When agent Ai is at position pi(k) at time k, it has already decided the next q positions:
pi(k + 1), pi(k + 2), . . . , pi(k + q).

• While the agent is moving from pi(k) to pi(k + 1) it selects the position pi(k + q + 1), which
it will visit at time t = k + q + 1.

To get the recursion started, the first q positions, pi(1), pi(2), . . . , pi(q) for each agent need to
be selected a priori. Clearly, q = 1 corresponds to the special case of no planning ahead. The
main advantage of a planning ahead algorithm is that it creates a buffer for path planning. From
a practical perspective this can be quite useful if the agent is an air vehicle that requires (at least)
some trajectory planning. Planning ahead is also useful for cooperation between agents since it
may be communicated to other vehicles as a guide of intended plan selection. This can be especially
important if there are communication delays or gaps, or if the sampling rate for communication is
slow. On the other hand, if the integer q is too large then, based on the recursive procedure, the
position pi(k) was selected q samples earlier at time k− q; hence the decision may be outdated, in
the sense that it may have been an optimal decision at time k−q, but based on the new information
received since then, it may not be the best decision anymore. The recursive q-step ahead planning
procedure is illustrated in Figure 5 for the case where q = 6.

If practical considerations (such as motion dynamics of the agent and computational demands
for path selection) require a relatively large value for q then the problem of “outdated” decision
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pi(k)

pi(k+q)

Figure 5: Illustration of the recursive q-step ahead planning algorithm.

making can be ameliorated by an interleaved type of scheme. We define a (q, r)-interleaved decision
making scheme as follows:

• When agent Ai is at position pi(k) at time k, it has already decided the next q positions:
pi(k + 1), pi(k + 2), . . . pi(k + q).

• While the agent is moving from pi(k) to pi(k+ 1) it re-calculates the last r points of the path
based on the current data and also selects another new position; i.e., it selects the points
pi(k + q − r + 1), pi(k + q − r + 2), . . . , pi(k + q), pi(k + q + 1).

The term “interleaved” is used to express the fact that decisions are re-calculated over time, as the
agent moves, to incorporate new information that may have been received about the environment.
According to this formulation, a (q, r)-interleaved decision scheme requires the selection of r + 1
points for path planning at each sample Tm. The special case of (q, 0)-interleaved scheme (actually,
strictly speaking it is a non-interleaved scheme) corresponds to the recursive q-step ahead planning
scheme described earlier. Similar to the recursive q-step ahead planning scheme, at the beginning,
the first q positions for each agent need to be selected a priori. The interleaved path planning
procedure is illustrated in Figure 6 for the case where q = 6 and r = 2.

pi(k+1)

pi(k+2)

pi(k)

pi(k+4)

pi(k+6)
_

pi(k+5)
_

pi(k+7)
_

Figure 6: Illustration of the (q, r)-interleaved decision making procedure.

The computational complexity of an interleaved decision making scheme can be significantly
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higher than the q-step ahead planning algorithm. Specifically, with the q-step ahead planning
algorithm, each agent has to select one position among m possible candidates. With the (q, r)-
interleaved algorithm, each agent has to select r + 1 positions among a combination of mr+1

candidates. Therefore, the computational complexity increases exponentially with the value of the
interleaved variable r. This is shown in Figure 6 where m = 9, r = 2; therefore at each sample time
the agent needs to select among 93 = 243 possible paths in order to compute the three positions
pi(5), pi(6) and pi(7). The figure shows a path of points generated by the guidance (outer-loop)
controller, and then shows a tree of possible directions that the vehicle can take.

5.2 Plan Selection

Given the current information available via the search map, and the location/direction of the team
of agents (and possibly other useful information, such as fuel remaining, etc.), each agent uses a
multi-objective cost function J to select and update its search path. At decision sampling time Td,
the agent evaluates the cost function associated with each path and selects the optimal path. The
decision sampling time Td is typically equal to the movement sampling time Tm. The approach can
be thought of as an “adaptive model predictive control” approach where we learn the model that
we use to predict ahead in time, and we use on-line optimization in the formation of that model,
and in evaluating the candidate paths to move the agent along.

A key issue in the performance of the cooperative search approach is the selection of the multi-
objective cost function associated with each possible path. Our approach is quite flexible in that
it allows the characterization of various mission-level objectives, and trade-offs between these. In
general, the cost function comprises of a number of sub-goals, which are sometimes competing.
Therefore the cost criterion J can be written as:

J = ω1J1 + ω2J2 + . . . + ωsJs

where Ji represents the cost criterion associated with the i-th subgoal, and ωi is the corresponding
weight. The weights are normalized such that 0 ≤ ωi ≤ 1 and the sum of all the weights is equal
to one; i.e.,

∑s
i=1 ωi = 1. Priorities to specific sub-goals are achieved by adjusting the values of

weights ωi associated with each subgoal.

The following is a list (not exhaustive) of possible sub-goals that a search agent may include
in its cost criterion. Corresponding to each sub-goal is a cost-criterion component that need to
be designed. For a more clear characterization, these sub-goals are categorized according to three
mission objectives: Search (S), Cooperation (C), and Engagement (E). In addition to sub-goals
that belong purely to one of these classes, there are some that are a combination of two or more
missions. For example, SE1 (see below) corresponds to a search and engage mission.

S1 Follow the path where there is maximum uncertainty in the search map. This cost criterion
simply considers the uncertainty reduction associated with the sweep region between the
current position pi(k) and each of the possible candidate positions p̄j

i (k + 1) for the next
sampling time (see the rectangular regions between pi(k) and p̄j

i (k + 1) in Figure 7). The
cost criterion can be derived by computing a measure of uncertainty (or potential “gain” in
knowledge) in the path between pi(k) and each candidate future position p̄j

i (k + 1).

S2 Follow the path that leads to the region with the maximum uncertainty (on the average) in the
search map. The first cost criterion pushes the agent towards the path with the maximum
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uncertainty. However, this may not be the best path over a longer period of time if it leads to
a region where the average uncertainty is low. Therefore, it’s important for the search agent
to seek not only the instantaneous minimizing path, but also a path that will cause the agent
to visit (in the future) regions with large uncertainty. The cost criterion can be derived by
computing the average uncertainty of a triangular type of region associated with the heading
direction of the agent (see the triangular regions ahead of p̄j

i (k + 1) in Figure 7).

pi(k)

p
i 
(k+1)m_

p
i
(k+1)1_

Figure 7: Illustration of the regions that are used in the cost function for finding the optimal search
path.

C1 Follow the path where there is the minimum overlap with other agents. Since the agents are able
to share their new information about the search region, it is natural that they may select the
same search path as other agents (especially since in general they will be utilizing the same
search algorithm). This will be more pronounced if two agents happen to be close to each
other. However, in order to minimize the global uncertainty associated with the emergent
knowledge of all agents, it is crucial that there is minimum overlap in their search efforts.
This can be achieved by including a cost function component that penalizes agents being
close to each other and heading in the same direction. This component of the cost function
can be derived based on the relative locations and heading direction (angle) between pairs of
agents. This component of the cost function is investigated more thoroughly in Section 6.

SE1 Follow the path that maximizes coverage of the highest priority targets. In mission applications
where the agents have a target search map with priorities assigned to detected targets, it is
possible to combine the search of new targets with coverage of discovered targets by including
a cost component that steers the agent towards covering high priority targets. Therefore, this
leads to a coordinated search where both coverage and priorities are objectives.

E1 Follow the path toward highest priority targets with most certainty if fuel is low. In some
applications, the energy of the agent is limited. In such cases it is important to monitor the
remaining fuel and possibly switch goals if the fuel becomes too low. For example, in search-
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and-engage operations, the agent may decide to abort search objectives and head towards
engaging high priority targets if the remaining fuel is low.

EC1 Follow the path toward targets where there will be minimum overlap with other agents. Co-
operation between agents is a key issue not only in search patterns but also—and even more
so—in engagement patterns. If an agent decides to engage a target, there needs to be some
cooperation such that no other agent tries to go after the same target; i.e., a coordinated
dispersed engagement is desirable.

The above list of sub-goals and their corresponding cost criteria provide a flavor of the type
of issues associated with the construction of the overall cost function for a general mission. In
addition to incorporating the desired sub-goals into the cost criterion (i.e., maximize benefit), it
is also possible to include cost components that reduce undesirable sub-goals (minimize cost). For
example, in order to generate a smooth trajectory for a UAV such that it avoids—as much as
possible—the loss of sensing capabilities during turns, it may be desirable to assign an extra cost
for possible future positions on the periphery (large angles) of the set Pi.

6 On-Line Cooperation Approach for Distributed Agents

The framework developed in this paper is based on distributed agents working together to enhance
the global performance of a multi-agent system — in contrast to a framework where distributed
agents may be competing with each other for resources. Therefore, one of the key issues in coop-
erative control is the ability of distributed agents to coordinate their actions and avoid overlap. In
a decentralized environment, cooperation between agents may not come natural since every agent
tries to optimize its own behavior. In typical complex scenarios it may not be clear to an individual
agent how its own behavior is related to the global performance of the multi-agent system.

To illustrate this, consider the following “Easter egg hunt” scenario: each agent is asked to pick
up Easter eggs from a field. For simplicity, we assume that the location of the eggs is known (no
search is necessary). Each agent is initialized at some location in the field and its goal is to decide
which direction to go. The velocity of each agent is fixed and once an agent is at the location of an
egg then that egg is considered as having been picked. The global performance criterion is for all
the eggs to be pick up in the minimum possible time. This simple scenario provides a nice framework
for illustrating some of the key concepts of cooperative behavior. For example, an agent Ai may be
tempted to head towards the direction of the closest Easter egg even though this may not enhance
the global performance criterion if another agent Aj is closer to that egg and will get there before
agent Ai. On the other hand, just because agent Aj is closest to that particular egg it does not
necessarily imply that it will pick it up before agent Ai (it may go after some other eggs). If the
Easter egg hunt problem was to be solved in a centralized framework then it would be rather easier
to assign different eggs to different agents. However, in a distributed decision making setting, each
agent is required to make decisions for enhancing the global performance criterion without having
a clear association between its own action and the global cost function. In uncertain environments
(for example, if the location of a certain Easter egg is not known unless the agent is within a
certain distance and possibly within a certain heading angle from the egg) decisions need to be
made on-line and therefore the cooperation issue becomes more challenging.

Cooperation between agents can be considered at different levels. For example, if each agent
can perform several tasks (such as search for targets, classification, engagement and evaluation of
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attack) then cooperation between agents may involve coordinating their behavior while making
decisions on which task to perform at what time. In this paper, we are primarily focusing on the
cooperative search problem. Therefore, the global objective of the team of agents is to update the
overall search map (which represents the knowledge of the environment) in the minimum amount
of time. To achieve this, each agent has a responsibility to select its path to benefit the team
by selecting a path with minimum overlap with other agents’ paths, as described in Section 5.2
(sub-goal C1). Next we develop a real-time approach to realize the cooperative search activities
among a team of distributed agents.

Before going into the details we present the main idea of the cooperative search scheme. Each
agent possesses information about past paths of other agents via inter-agent communication. As
discussed before, this information is used for updating the search map of each agent. Therefore, an
agent is able to avoid going over paths previously searched by other agents simply by evaluating its
search map and following a path that would result in maximum gain. However, this does not prevent
an agent from following a path that another agent is about to follow, or has followed since the last
communication contact. Therefore, the main idea of the proposed on-line cooperation scheme is
for each agent to try to avoid selecting a path that may be followed by another agent in the near
future. In this framework, paths of other agents are treated as “soft obstacles” to be avoided in
path selection. However, special consideration is given to scenarios where path overlap may occur
at approximately right angles, since in this case the overlap time is quite minimum, thereby not
worth causing an interception in an agent’s path planning. In other words, the scenario that should
be avoided is two agents close to each other and heading in approximately the same direction. By
treating paths of other vehicles as “soft obstacles” we employ a type of artificial potential field
method [40] to derive an algorithm for generating the “rivaling force” that neighboring agents’
paths may exert on a certain vehicle. The overall rivaling force exerted on an agent is taken into
consideration in deciding which direction the vehicle will follow. Next we discuss the details of this
approach.

6.1 Generating the Rivaling Force Between Agents

According to the proposed cooperative search framework, at time k, agent Ai uses the q-step ahead
planning to select the position pi(k+ q+ 1) ∈ P i(k+ q+ 1), which it will visit at time t = k+ q+ 1.
By communicating with other vehicles at time t = k − d (where d is the communication delay),
agent Ai knows their q-step ahead positions pj(k + q − d) and heading directions hj(k + q − d)
(measured in degrees from a reference direction). The rivaling force Fij(k) exerted by agent Aj

onto agent Ai at time k is non-zero if both of the following conditions hold:

1. The location pj(k + q − d) of agent Aj is within a maximum distance µ̄ and maximum angle
±ϕ̄ from the location of agent Ai (see the shaded region in Figure 8).

2. The difference in heading angle χij(k) between agent Aj and agent Ai lies within either
[−χ̄, χ̄] or [1800 − χ̄, 1800 + χ̄], where χ̄ is the maximum allowed difference in heading angle.

The first condition imposes a requirement that agent Aj needs to be sufficiently close to agent
Ai before it exerts any rivaling force on Ai. In addition to the distance, the angle between the two
locations needs to be within ±ϕ̄. This requirement prevents a vehicle Aj which is behind Ai from
exerting any rivaling force on Ai. In such a situation, there will be a rivaling force in the opposite
direction from Ai to Aj. In the scenario shown in Figure 8, agents A2 and A3 satisfy Condition 1
with respect to their position to agent A1, while agent A4 does not satisfy Condition 1.
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Figure 8: Illustration of conditions that generate non-zero rivaling forces between agents.

The second condition imposes the requirement that in order for agent Aj to exert a rivaling
force on agent Ai it must either be heading in approximately the same direction, or be coming from
approximately the opposite direction. This condition prevents the generation of any rivaling force
if the two vehicles are heading in approximately perpendicular directions. Due to maneuverability
constraints on the vehicles, the possible overlap in the paths of two agents is significant only if the
heading angles are close to each other. At the same time, it is not desirable to impede the path of
a vehicle if there is another vehicle coming at approximately right angles. In the scenario shown in
Figure 8, agents A2 and A4 satisfy Condition 2 with respect to their heading direction in relation
to agent A1 (because both angles χ12, χ14 are small), while agent A3 does not satisfy Condition 2.
Therefore, only agent A2 satisfies both Conditions 1 and 2, and therefore it is the only one that
exerts any rivaling force on agent A1.

For vehicles satisfying both Conditions 1 and 2, the next step is to compute the magnitude and
direction of the rivaling force exerted on agent Ai. The main objective here is that the magnitude
of the rivaling force Fij(k) exerted by agent Aj onto agent Ai at time k should be “large” if agent
Ai is close to the path of agent Aj, and should get smaller as agent Ai is further away from the
path of agent Aj. This approach is similar to artificial potential field methods, which are used in
many applications, including the problem of obstacle avoidance of robotic systems. In our case,
the obstacle to be avoided is actually the path of another vehicle.

Based on this formulation, we select the rivaling force to be of the form

Fij(k) =

{
k1e

−αρij�ρij if Conditions 1 and 2 hold
0 otherwise

(1)

where k1, α are positive design constants, ρij is the shortest distance between agent Ai and the
path of agent Aj, and �ρij is a unit vector of the corresponding normalized partial derivative (see
Figure 9). Typically k1 will be a large constant, corresponding to the magnitude of the rivaling
force if the distance ρij is zero. Note that since we treat paths of neighboring agents as “soft
obstacles” there is no need to set the magnitude of the rivaling force to ∞ as is sometimes done
in the case of obstacle avoidance problems. The design parameter α > 0 corresponds to the rate
at which the rivaling force is decreasing as the distance ρij is increasing. The rivaling force is not
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necessarily symmetric (i.e., Fij(k) �= Fji(k) since it depends on the relative position and heading
direction of the two agents. In fact, as we saw earlier, it is possible for Fij(k) to be zero while
Fji(k) is quite large (this would occur if agent Aj is behind Ai and heading in approximately the
same direction). Figure 9 illustrates the potential field lines associated with the path of agent A2,
and the resulting rivaling force exerted by A2 onto A1.

A

AA2

ρ

2

Figure 9: Illustration of the potential field lines associated with the path of agent A2, and the
resulting rivaling force exerted by A2 onto A1.

As seen from Figure 9, the path of A2 that generates a rivaling force onto A1 includes not
only the forward path but also some of the backward (previous) path. The reason for this is that
communication delays may cause A1 to have incomplete (outdated) information about the path
followed by A2. It is also noted that the actual path of an agent may not be a straight line as
assumed in Figure 9. However, due to maneuverability constraints, this is a reasonable and simple
approximation of the actual path for cooperation purposes.

The overall rivaling force exerted by the entire team of agents upon an agent Ai at time k is
given by

Fi(k) =
∑
j �=i

Fij(k) (2)

Intuitively, according to the overall rivaling force Fi(k) exerted on it, agent Ai is impelled to select
a path pi(k + q + 1), among the possible set of paths P i(k + q + 1), that is more in line with
avoiding the paths of other vehicles. Therefore, in addition to the magnitude of the rivaling force,
a key parameter is the angle difference between the direction of the overall rivaling force Fi(k)
and the direction of each possible path from the set P i(k + q + 1), which we denote by θi(j, k).
From a cooperative viewpoint, the objective is to select the path with the minimum θi(j, k) among
j ∈ [1, 2, . . . m].

6.2 Formulation of the Cooperation Cost Function

Using the algorithm described in Section 6.1, each agent can compute the rivaling force exerted on
it by other agents that are located in close proximity and, based on the overall rivaling force, select
an optimal path that would minimize the overlap with paths of other vehicles. However, avoidance
of path overlap is only one of an agent’s objectives. Indeed, its main objective is to search for
(and possibly engage) targets. Therefore, the goal of cooperation needs to be quantified as a cost
function component and integrated with the remaining components of the cost criterion.
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To integrate the cooperative sub-goal with other objectives, the cooperation cost function is
required to generate a performance measure of cooperation associated with each possible path.
After normalization, the cost function component for cooperation (denoted by J(i, j, k)) should be
a function mapping each possible path j ∈ [1, 2, . . . ,m] into an interval [0, 1]. According to the
formulation considered in this paper, the value of the cooperation cost function depends on the
magnitude of the overall rivaling force Fi(k) and the angle difference θi(j, k) between the direction of
the overall rivaling force and the direction of each possible path from the set P i(k+q+1). Figure 10
illustrates the case where there are three possible paths for agent A1 to follow. The corresponding
angles θ1(1, k), θ1(2, k), θ1(3, k) are denoted by θ1, θ2, θ3 respectively for diagrammatic simplicity.
Hence, we consider a general function

A

AA2

θ1

2

θ3
θ2 p

1

1−

1

p

Figure 10: Illustration of computing the cooperation cost function.

J(i, j, k) = f(|Fi(k)|, θi(j, k))

where f : �+ × [−π, π] → [0, 1] is required to have the following attributes:

• As the magnitude of the rivaling force Fi(k) becomes larger, the differences in the normalized
cost function values between alternative paths should become larger. In other words, if
|Fi(k)| is large then cooperation is a crucial issue and therefore there should be a significant
difference in the cooperation cost function to steer the agent into selecting the path of maximal
cooperation. On the other hand, if |Fi(k)| is small then cooperation is not a crucial issue,
therefore the cooperation cost function component should be approximately equal for each
alternative path plan, thereby allowing the agent to make its path decision based on the cost
function associated with the other sub-goals.

• As the magnitude of the angle difference θi(j, k) becomes larger, the differences in the normal-
ized cost function values between alternative paths should become larger. Again, if |θi(j, k))|
is small then cooperation is not a crucial issue, therefore, the cooperation cost function
component is approximately equal for each alternative path plan. If |θi(j, k))| is large then
cooperation is a crucial issue and therefore there should be a significant difference in the
cooperation cost function to steer the agent into selecting the path of maximal cooperation.

Deriving an appropriate function f with these attributes is rather straightforward. In the simula-
tions presented in the next section, we use the following cooperative cost function

J(i, j, k) = expγ0|Fi(k)| cos( θi(j,k)

2
) (3)
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where γ0 is a positive design constant.

It is important to note that the specific functions selected in Equation (1) for the rivaling force
and in Equation (3) for the cooperative cost function, are not as important as the attributes of
these functions. Specifically, other functions with the same attributes can be utilized to obtain
similar results.

7 Simulation Results

The approach described in this paper has been implemented and evaluated by several simulation
studies. A representative sample of these studies is presented in this section. First, we describe
the details of the cost function criterion and then present two simulations studies. In the first
simulation study, a team of UAVs is searching in a mostly unknown environment. In the second
simulation, we consider a scenario where the environment consists of three targets whose location
belongs to a certain probability distribution.

7.1 Design of Simulation Experiment

According to the proposed cooperative path planning approach, each agent uses a multi-objective
cost function J to select and update its search path. This approach is quite flexible in that it
allows the characterization of various mission-level objectives and facilitates possible trade-offs.
The simulation examples presented in this section consider only the first three of the sub-goals (S1,
S2, C1) described in Section 5. These sub-goals correspond to the main issues associated with the
cooperative search problem.

The cost functions associated with each sub-goal are computed as follows:

• The first cost function JS1(i, j, k) is the gain of agent Ai on sub-goal S1 if it selects path
j ∈ [1, 2, . . . ,m] at time k. It is a positive value denoting the gain on the certainty of the
search map by following path j at time k. The following function is used to evaluate the
actual gain obtained by selecting the jth path:

JS1(i, j, k) =
∑

(x,y)∈Ri,j

[S(x, y; θ(k)) − S(x, y; θ(k − 1))] (4)

where (x, y) denotes any point in the search area Ri,j that will be encountered if agent Ai

follows path j, and S(x, y; θ(k)) is the certainty value of point (x, y) at time k.

• The second cost function JS2(i, j, k) is used to evaluate the potential gain based on the
average uncertainty of a triangular region R

′
i,j associated with the heading direction j. The

cost function JS2(i, j, k) is generated by

JS2(i, j, k) =
∑

(x,y)∈R
′
i,j

(1 − S(x, y; θ(k))) (5)

where (x, y) denotes all the points in the region R
′
i,j.

• The third cost-function is used to evaluate the sub-goal C1, which was formulated in Sec-
tion 6.2.

JC1(i, j, k) = expγ0|Fi(k)| cos( θi(j,k)

2
) (6)
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After normalizing the three cost-functions and selecting appropriate weight coefficients, the
overall multi-objective cost function is described by

J(i, j, k) = w1 · JS1(i, j, k) + w2 · JS2(i, j, k) + w3 · JC1(i, j, k) (7)

where Jq for q ∈ {S1, S2, C1} denote the normalized cost functions and wi are the weights, which
satisfy w1 +w2 +w3 = 1. In the simulation examples different weight values were used to illustrate
various aspects of cooperation. The normalized cost functions Jq are computed by

J q =
Jq(i, j, k)

maxj{Jq(i, j, k)} .

Therefore, each cost function Jq ∈ [0, 1]. An agent Ai selects a path based on which j ∈ [1, · · · ,m]
gives the largest value, as computed by (7).

7.2 High Uncertainty Environment

The first simulation study considers a scenario of high uncertainty in the environment. The search
region is a 200 by 200 area. It is assumed that there is some a-priori information about the
search region: the green (light) polygons indicate complete certainty about the environment (for
example, these can represent regions where it is known for sure—due to the terrain—that there
are no targets); the blue (dark) polygons represent partial certainty about the environment. The
remaining search region is assumed initially to be completely uncertain. First we consider the case
of two agents, and then we use a team of five agents.

In both simulations we are using the recursive q-step ahead planning algorithm with q = 3.
The weights of the cost function are set to: w1 = 0.3125, w2 = 0.375, w3 = 0.3125, which gives
approximately equal importance to each of the three sub-goals. The parameters of the potential
field function used for sub-goal C1 are set to: k1 = 50, α = 1, γ0 = 1. The results for the case
of two agents are shown in Figure 11. The upper-left plot shows a standard search pattern for
the first 500 time samples, while the upper-right plot shows the corresponding result for a random
search, which is subject to the maneuverability constraints. The standard search pattern utilized
here is based on the so-called zamboni coverage pattern [48]. The lower-left plot shows the result
of the cooperative search method based on the recursive q-step ahead planning algorithm.

The search map used in this simulation study is based on piecewise constant basis functions,
and the learning algorithm is a simple update algorithm of the form θ̂(k+1) = 0.5θ̂(k)+0.5, where
the first encounter of a search block results in the maximum reduction in uncertainty. Further
encounters result in reduced benefit. For example, if a block on the search map starts from certainty
value of zero (completely uncertain) then after four visits from (possibly different) agents, the
certainty value changes to 0 → 0.5 → 0.75 → 0.875 → 0.9375. The percentage of uncertainty is
defined as the distance of the certainty value from one. In the above example, after four encounters
the block will have 6.25% percentage of uncertainty. The cooperative search algorithm has no
pre-set search pattern. As seen from Figure 11, each agent adapts its search path on-line based on
current information from its search results, as well as from search results of the other agents.

To compare the performance of the three search patterns, the lower-right plot of Figure 11
shows the percentage of uncertainty with time for the standard search pattern, the random search
pattern and the cooperative search pattern described above. The ability of the cooperative search
algorithm to make path planning decisions on-line results in a faster rate of uncertainty reduction.
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Figure 11: Comparison of the cooperative search pattern with a “standard” search pattern and a
random search pattern for the case of two moving agents. The upper-left plot shows a standard
search pattern for the first 500 time samples; the upper-right plot shows the corresponding search
pattern in the case of a random search, subject to some bounds to restrict the agent from deserting
the search region; The lower-left plot shows the cooperative search pattern based on the recursive
q-step ahead planning algorithm; the lower-right plot shows a comparison of the performance of
the three search patterns in terms of reducing uncertainty in the environment.

Specifically, after 2000 time steps the percentage of uncertainty in the environment reduces from
approximately 85% initially to 40.4%, 34.4%, 29.2% for the random search, standard search, and
cooperative search, respectively. Therefore, there is approximately a 15% improvement with the
cooperative search over the standard search. This is mainly due to the presence of some known
regions, which the standard search and random search algorithms are not trying to avoid.

The corresponding results in the case of five agents moving in the same environment is shown in
Figure 12. The results are analogous to the case of two agents. After 2000 time steps the percentage
of uncertainty in the environment reduces to 13.9%, 12.0%, 7.1% for the random search, standard
search, and cooperative search, respectively.

In these simulation studies, we assume that the sampling time Tm = 1 corresponds to the rate
at which each agent receives information from its own sensors, updates its search map and makes
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Figure 12: Comparison of the cooperative search pattern with a “standard” search pattern and a
random search pattern for the case of five moving agents. The upper-left plot shows a standard
search pattern for the first 200 time samples; the upper-right plot shows the corresponding search
pattern in the case of a random search, subject to some bounds to restrict the agent from deserting
the search region; The lower-left plot shows the cooperative search pattern based on the recursive
q-step ahead planning algorithm; the lower-right plot shows a comparison of the performance of
the three search patterns in terms of reducing uncertainty in the environment.

path planning decisions. Information from other agents is received at a slower rate. Specifically,
we assume that the communication sampling time Tc between agents is five times the movement
sampling time; i.e., Tc = 5Tm. For fairness in comparison, it assumed that for the standard and
random search patterns the agents exchange information and update their search maps in the same
way as in the cooperative search pattern, but they do not use the received information to make
on-line decisions on where to go.

It is noted that in these simulations the path planning of the cooperative search algorithm is
rather limited since at every sampled time each agent is allowed to either go straight, left, or right
(the search direction is discretized into only three possible points; i.e., m = 3). The left and right
directions are at angles of −150 and +150 respectively from the heading direction, which reflects the
maneuverability constraints of the vehicles. As the complexity of the cooperative search algorithm
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is increased and the design parameters (such as the weights associated with the multi-objective cost
function) are fine-tuned or optimized, it is anticipated that the search performance can be further
enhanced.

7.3 Low Uncertainty Environment

In this second simulation study we consider a more structured environment, where we assume
that according to the a-priori information there are three targets whose location is uncertain but
satisfies a certain Gaussian distribution. The environment is again a 200 by 200 area and the
assumed center of Gaussian probability distributions of each target is located at the coordinates
(50, 50), (100, 150), (150, 100), as shown in Figure 13. The probability of the target distribution
satisfies a Gaussian distribution of the form

p(x, y) = e
1
σ

d2
c(x,y), (8)

where dc(x, y) is the minimum distance of the point (x, y) from one of the three target distribution
centers, and σ is a constant given by σ = 2π

√
1200. If an agent passes through a point (x, y) that

none of the agents have visited before then the team derives a target search gain described by the
probability distribution p(x, y) given in (8). Once a point is visited by at least one agent then no
further target search gain is assumed available. This is slightly different from the simulation study
of the high uncertainty environment where the gain was decreased with every visit to a particular
position.

In the simulation shown in Figure 13 we compare the performance of three different runs, all
based on the search procedure developed in this paper using the recursive q-step ahead planning
algorithm. The team of agents consists of five vehicles with the same maneuverability constraints
as in the first simulation study. The only difference between the three runs is the amount of
cooperation included, as defined by the third cost function component JC1. The upper left plot
shows the trajectories of the team of agents using the cooperative search algorithm with the weights
selected as w1 = 1/8, w2 = 2/8, w3 = 5/8. In the second simulation run, shown in the upper right
plot, we show the trajectories selected by the five vehicles for a weakly cooperative system with the
weights selected as w1 = 1/4, w2 = 2/4, w3 = 1/4. Finally, in the third simulation run there is no
cooperation between the five agents, in the sense that the weights are set to: w1 = 1/3, w2 = 2/3,
w3 = 0.

As seen from Figure 13, in the case of the cooperative search algorithm (upper left) the five
vehicles split up between the two nearest targets and soon they also cover the distant target. In the
case of the weakly cooperative search algorithm (upper right) the five agents first go to the nearest
target on the lower left, and from there, some agents go to the other two targets. In the case of
non-cooperation (lower left plot) all five vehicles head for the nearest target on the lower left and
spend considerable time there before they move on to the other targets (in fact, the simulation
shows 200 time steps—as compared to 100 samples for the other two simulation runs—because
during the first 100 steps all five vehicles remained at the first target). With no cooperation there
is significant overlap of the paths of vehicles.

The performance of the three search patterns for the first 200 time steps is shown in the lower
right plot of Figure 13 in terms of the percentage of target search gain over time. The percentage
of target search gain is computed as the total gain of all five vehicles at time k divided by the
initial total target search gain in the environment. After 200 time steps the target search gain
for the cooperative search is 59.3%, for the weakly cooperative search it is 54.1% and for the
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Figure 13: Comparison of the cooperative search pattern with a “weakly cooperative” search pattern
and a non-cooperative search pattern for the case of five moving agents searching for three targets
located according to a Gaussian distribution function around three center points. The upper-left
plot shows a cooperative search pattern for the first 100 time samples; the upper-right plot shows
the corresponding search pattern in the case of a weakly cooperative search algorithm; The lower-
left plot shows the non-cooperative search pattern for the first 200 time samples; the lower-right
plot shows a comparison of the performance of the three search patterns in terms of the percentage
of target search gain over time for each of the three search patterns.

non-cooperative search it is 42.8%. It is noted that in this simulation study we do not show the
performance of a “standard search pattern” and the random search algorithm because comparably
both do not perform well due to the highly structured environment.

8 Concluding Remarks

Advances in distributed computing and wireless communications have enabled the design of dis-
tributed agent systems. One of the key issues for a successful and wide deployment of such systems
is the design of cooperative decision making and control strategies. Traditionally, feedback con-
trol methods have focused mostly on the design and analysis of centralized, inner-loop techniques.
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Decision and control of distributed agent systems requires a framework that is based more on
cooperation between agents, and outer-loop schemes. In addition to cooperation, issues such as
coordination, communication delays and robustness in the presence of losing one or more of the
agents are crucial. In this paper, we have presented a framework for a special type of problem,
the cooperative search. The proposed framework consists of two main components: learning the
environment and using that knowledge to make intelligent high-level decisions on where to go (path
planning) and what do to. We have presented some ideas regarding the design of a cooperative
planning algorithm based on a recursive q-step ahead planning procedure and an interleaved plan-
ning technique, and developed a real-time approach for on-line cooperation between agents. These
ideas were illustrated with simulation studies by comparing them to a restricted random search, a
standard search pattern, as well as a non-cooperative search algorithm.
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