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Abstract. Today, most cyber-physical systems (CPS) in smart build-
ings require a wireless-based network infrastructure for sensing, commu-
nication, and actuation. In such CPSs, the energy expenditure and hence
battery lifetime of the wireless network infrastructure depend heavily
upon the placement of the base stations (BS). However, in indoor envi-
ronments, BS placement is particularly challenging due to the impact of
building structures and floors/walls separations. In this paper, we study
the problem of jointly optimizing BS placement and power control in
buildings to prolong the battery lifetime of sensors in the CPS network
infrastructure. We first show that the joint BS placement and power
control problem can be formulated as a mixed-integer non-convex pro-
gram (MINCP), which is NP-hard and difficult to solve especially when
the network size is large. To address this difficulty, we propose a novel
efficient algorithm called ECPC that targets at large-sized network in-
frastructures in buildings. Our theoretical analysis and numerical results
show that ECPC achieves competitive solutions compared to the true
optimal solutions obtained by the branch-and-bound method.

1 Introduction

Today, most cyber-physical systems (CPS) in smart buildings require a wireless
network infrastructure for sensing, communication, and actuation. However, stud-
ies show that the poor battery lifetime performance of current wireless sensors is
becoming a critical factor that affects the future prospect of these emerging CPSs
in smart buildings. To prolong battery lifetime, there are two complementary ap-
proaches. The first one is to increase battery capacity, which had proved to be
difficult over the years. The second approach is to reduce the energy expenditure.
Since a wireless sensor’s energy expenditure depends heavily on the distance from
its associated base station (BS), BS placement optimization has become one of
the most effective methods to address the battery lifetime issue.

In the literature, BS placement optimization has been studied for various types
of wireless networks (see, e.g., cellular networks [1,2], sensor networks [3–5], and
references therein). However, the focus of these existing work is not on CPS in
building environments. Indeed, when the unique physical features of building
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environments are taken into consideration, BS placement optimization becomes
much more challenging. In addition to the obvious change from 2-D planes to
3-D spaces, building environments have a complex impact on wireless channels:
Different interior spaces (e.g., atrium, office, hallway, or basement) with differ-
ent wall/floor separations yield different signal path losses and fading patterns.
Also, building safety codes may impose further physical restrictions to the BS
locations, which is unseen in the conventional BS placement literature. So far, it
is unclear how to construct good mathematical models and optimization algo-
rithms to capture these unique physical factors for CPS network infrastructure.

In this paper, we address the above challenges by studying the joint optimiza-
tion of BS placement and power control to minimize the uplink transmission
power of wireless sensors for CPSs in building environments. The main results
of this work are as follows: i) we show that the joint BS placement and power
optimization is a challenging mixed-integer non-convex optimization problem
(MINCP), which is NP-hard and no off-the-shelf optimization methods can be
readily applied; ii) to address this difficulty, we propose an efficient algorithm
called ECPC (abbreviation for expansion-clustering-projection-contraction) that
incorporates several novel ideas specifically designed for CPSs in buildings; and
iii) we perform complexity and approximation ratio analysis for the proposed
ECPC algorithm. Both our theoretical and numerical results indicate that ECPC
yields competitive solutions compared to the global optimal solutions.

The remainder of this paper is organized as follows. In Section 2, we review
the related work reported in the literature, putting our work in a comparative
perspective. We then present our network model and problem formulation in
Section 3. The proposed ECPC solution procedures, along with their numerical
results, are presented in Section 4. Section 5 concludes this paper.

2 Related Work

In the literature, there has been a large body of work on BS placement for cellular
networks (see e.g., [1,2]) and sensor networks (see, e.g., [3–5]). In contrast, results
on BS placement in buildings remains limited and most work in this area consid-
ered performance metrics different from ours (e.g., minimum number of BSs to
ensure network coverage [6–11], channel assignment/load balancing [12, 13], bit
error rate minimization [14,15], and throughput maximization [16–18]). Most of
these efforts, except [18], considered problems in 2-D planes (i.e., single floor).
The focus of [18], however, was on indoor propagation model evaluations and
little effort was made in developing optimization algorithms to optimize BS
placement. Moreover, a common problem formulation approach in [8–11, 19] is
to discretize the coverage region into a set of finite candidate locations. As a
result, BS placement problems were usually modeled as a mixed-integer linear
programming problem (MILP), which can be readily solved by off-the-shelf inte-
ger programming solvers (e.g., CPLEX). In contrast, our model allows the region
to be continuous. This leads to a much more challenging problem because there
are an infinite number of BS candidate locations, implying that off-line path loss
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Fig. 1. An illustration of a CPS wireless infrastructure with multiple BSs and SAs in
a multi-floor building

computation is no longer feasible. In our previous related works [20,21], we have
proposed two non-trivial reformulation approaches to transform the problem
into a mixed-integer convex program (MICP) and a mixed-integer linear pro-
gram (MILP), respectively, thus enabling the use of branch-and-bound method
(BB) to find a global optimal solution. However, due to the NP complexity na-
ture of BB, the global optimization algorithms in [20,21] do not scale well as the
network size increases.

3 Network Model and Problem Formulation

1) Indoor Wireless Channel Modeling.We consider a wireless CPS network
infrastructure in a multi-floor building with M BSs and N sensing areas (SA),
as shown in Figure 1. We use N to denote the set of all SAs. Here, an SA
could be any subregion in the building where wireless sensors of the CPS are
installed. For simplicity, we assume in this paper thatM is large enough to ensure
network coverage. We denote the BSs and SAs as BS1, . . ., BSM and SA1,. . .,
SAN , respectively. We further assume that co-channel interference among all
BSs is negligible under a proper channel assignment and reuse scheme. The
case where co-channel interference exists will be left for our future study. We
use (ui, vi, wi), i = 1, . . . , N , to denote coordinates of the center of SA i. The
length and width of SA i are denoted as Li and Wi, respectively. Similarly,
(xm, ym, zm), m = 1, . . . ,M , denotes the coordinates of BS m, which are to be
determined. Due to the practical use of building space, the BSs of a CPS network
infrastructure are usually required to be mounted on the ceiling of each floor.
Also, in buildings, a wireless sensor could be installed on each floor. As a result,
the vertical coordinates wi and zm cannot be arbitrary and can only take on
integer values: 1, 2, . . . , F , where F is the maximum number of floors.

To ensure that BS m can cover every point in SA i, we define the distance as
the straight line between BS m and the point in SA i that is furthest away from
BSm. We let h and ρi denote the height of each floor and the average installation
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height of the sensors in SA i, respectively. Then, it is not difficult to show that
the distance between BS m and SA i, denoted as dim, can be computed as:

dim = [(|xm − ui|+
1

2
Li)

2 + (|ym − vi|+
1

2
Wi)

2 + |(zm −wi + 1)h− ρi|2]
1
2 . (1)

In this paper, we adopt the following path loss model in building environments
[22]: PRm = PTi − Ld0 − 10α log10 (dim/d0) − LFAF , where α is the path loss
index and LFAF denotes the path loss caused by floor attenuation factor (FAF).
Moreover, numerous field tests had indicated that FAF approximately follows
the following relationship [22, Table 4.4]:

LFAF =

{
Λ1 + (ϕ− 1)Λa, if ϕ ≥ 1,
0, if ϕ = 0,

(2)

where Λ1 represents the FAF for a single floor separation, Λa represents the
FAF for each additional floor, and ϕ denotes the number of separating floors.
Combining all the earlier discussions and after converting PRm , PTi , and Ld0

from dB scale to a linear scale, it is not difficult to derive the following result
for path loss modeling in building environments:

PRm =
PTi

H(zm, wi)Λ|zm−wi|dαim
, ∀i,m. (3)

Here, H(zm, wi) is a step function that depends on zm and wi and has the
following structure:

H(zm, wi) =

{
H0, if zm = wi,
H1, if zm �= wi,

where H0 = Ld0d
−α
0 , H1 = Ld0d

−α
0 10(Λ1−Λa)/10, and Λ = 10Λa/10.

2) QoS Requirement Constraints. To maintain the transmission data rate
that satisfies a sensor’s QoS requirement, a necessary condition is that the
received power at the BS should be greater than a certain threshold value.
We let Pmin denote the minimum threshold value. According to (3), we have:

PTi

H(zm,wi)Λ|zm−wi|dα
im

≥ Pmin, ∀i,m. After rearranging and letting Bi(zm, wi) =

H0Pmin if zm = wi or H1Pmin if zm �= wi, we have

Bi(zm, wi)Λ
|zm−wi|dαim − PTi ≤ 0, ∀i,m. (4)

3) BS Association Modeling.Unlike conventional wireless networks, in build-
ing environments, the channel to the nearest BS may not be the best because the
nearest BS could be separated by floors, which leads to an inferior channel due
to FAF. Rather than specifying a BS association rule, we model BS association
as a part of the overall joint BS placement and power control optimization. For
this purpose, we define the following set of binary variables:

γim =

{
1 if SA i is associated with BS m,

0 otherwise.
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Then, the BS association can be modeled as:

M∑
m=1

γim = 1, ∀i = 1, . . . , N. (5)

Considering BS association, we modify the QoS constraint in (4) as:

Bi(zm, wi)γimΛ|zi−wi|dαim − PTi ≤ 0, ∀i,m. (6)

4) Problem Formulation. To prolong the sensor battery lifetime and ensure
fairness among all SAs, we can minimize the total transmission power from all
SAs. Incorporating all constraints, the joint BS placement and power optimiza-
tion (BSPO) can be formulated as:

BSPO: Minimize
∑
∀i

PTi

subject to Constraints in (1), (5), and (6).

Since (1) and (6) are non-convex and involve integer variables, BSPO is a mixed-
integer non-convex program (MINCP), which is NP-hard in general [23]. Fur-
ther, since Problem BSPO is highly unstructured, no off-the-shelf optimization
method can be readily applied. As mentioned earlier, in [20,21], we have proposed
two novel reformulation strategies to transform BSPO into a mixed-integer con-
vex program (MICP) and a mixed-integer linear program (MILP), respectively,
both of which enabled the use of branch-and-bound (BB) approach to solve the
problem to global optimality. The major benefit of using BB is that, upon its con-
vergence, it guarantees finding a global optimal solution to the BSPO problem.
However, we note that due to the NP nature of the mixed-integer problems, the
convergence time of BB increases exponentially as the network size gets large.
Therefore, in this paper, we focus on designing an efficient algorithm that offers
competitive solutions for large-sized building networks.

4 ECPC: An Efficient Solution Approach

In this section,wepropose analgorithmcalledECPC(abbreviation for “expansion–
clustering–projection–contraction”) for large-sizedbuilding networks. In what fol-
lows, we will first present the basic idea of ECPC. Then, from Section 4.1 to Sec-
tion 4.3, we present the details of each component in ECPC.

Basic Idea of ECPC: The basic idea of ECPC is motivated by the observation
that the main difficulty in solving BSPO stems from: i) the FAF effect, and ii)
the integrality constraints on the vertical coordinates. This observation leads us
to the following idea: First, suppose that we can expand the network from the
original space to an equivalent virtual 3-D space without floors and yet the path
loss effect after expansion is equivalent, then the problem becomes much easier.
This is because we can partition the SAs into M clusters in the virtual space,
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where SAs in each cluster are “close” to each other. Since there is no FAF effect
within each cluster, it is easy to determine the optimal BS placement for each
cluster. Next, we project the BS placement to the locations corresponding to the
nearest floor in the virtual space and then shrink the virtual space back to the
original one. As a result, we arrive at a solution to the original problem.

Clearly, the solution quality of the ECPC approach hinges heavily on the
details in carrying out the expansion, clustering, projection, and contraction. As
will be seen later, the expansion subtask is non-trivial and care must be taken
to obtain a satisfactory performance. In the remainder of this section, we will
develop these key components of ECPC.

4.1 Expansion

Let S and Ŝ represent the original space and the expanded space, respectively.
We let e(pi) ∈ Ŝ denote the image of the expansion mapping of point pi ∈ S.
The concept of equivalent distance is defined as follows:

Definition 1. For two points pi, pj ∈ S, if the path loss effect between e(pi) ∈ Ŝ
and e(pj) ∈ Ŝ is the same as that between pi and pj, then we call the distance

d̂ij between points e(pi) and e(pj) the equivalent distance for pi and pj.

For ease of algebraic manipulations, we consider sij � d2ij and ŝij � d̂2ij rather

than dij and d̂ij directly. Under Definition 1 and the discussions in Section 3, it
is not difficult to derive the following expression (details are omitted here due
to space limitation):

ŝij =

{
sij , if wi = wj ,
sijG(wi, wj), if wi �= wj ,

(7)

where the term G(wi, wj) is defined as G(wi, wj) � 10
Λ1+(|wi−wj|−1)Λa

20α .

Next, we need to determine the new coordinates of the SAs in Ŝ. A natural
choice is to find a new set of coordinates (ũi, ṽi, w̃i) ∈ Ŝ, i = 1, . . . , N , such

that the pair-wise distance d̃ij is as close to d̂ij as possible. Notice that w̃i is

no longer integer-valued in Ŝ. This problem is closest in spirit to the classical
multidimensional scaling (MDS) problem that often arises in statistics and infor-
mation visualization [24]. However, we point out that classical MDS techniques
cannot be applied here due to the “arbitrariness” of the MDS solutions. That is,
for an optimal MDS solution, any rotation or reflection is also a valid optimal
solution. This poses a problem to our ECPC approach since we not only need
to determine the optimal BSs locations in Ŝ, but also need to recover the cor-
responding locations in S. The arbitrariness of an MDS solution makes such a
reversed mapping difficult. In this paper, we propose the following approach to
circumvent the above MDS limitations.

We first note that in S, there is no floor separation between SAs on the same
floor. As a result, ŝij = sij for any two SAs i and j on the same floor. From
this observation, a natural approach is to retain the horizontal coordinates of
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f(Θ)

0

Θ

Θ∗

Fig. 2. An illustration of the structure of the objective function in Problem (9).

all SAs to preserve the distances between same-floor SAs. This also means that
the expansion will only occur along the vertical direction. However, due to the
nonlinear FAF effect, it is difficult to precisely model the appropriate expansion
along the vertical direction. To simplify the problem, we propose to use the
following linear expansion rule:

(ũi, ṽi, w̃i) = (ui, vi, wihθ), (8)

where θ > 1 is a linear vertical scaling factor. Under this rule, we have d̃2ij =

(ui − uj)
2 + (vi − vj)

2 + (wi − wj)
2h2θ2, ∀i, j ∈ {1, . . . , N}, wi �= wj . Next,

we want to find the optimal θ such that the total difference between d̃2ij and
the equivalent squared distance ŝij is minimized. This can be formulated as the
following minimization problem after some algebraic manipulations (details are
omitted due to space limitation):

Minimize
Θ≥0

∑
i,j∈Ω

|aijΘ + bij | , (9)

where aij � (wi − wj)
2h2, bij � (ui − uj)

2 + (vi − vj)
2 − ŝij , Θ � θ2, and

Ω � {i, j ∈ {1, . . . , F} : i < j, wi �= wj}. In (9), Θ is the decision variable.
For convenience, let f(Θ) denote the objective function of Problem (9). Since

f(Θ) is convex and piece-wise linear, f(Θ) has a structure as depicted in Fig-
ure 2. Due to this special structure, we can devise a polynomial-time line search
algorithm. First, it is easy to see that the minimizer of Problem (9) must be
located at the non-differentiable points of f(Θ) because all other points have
non-zero derivatives. The non-differentiable points of f(Θ), denoted as ΘND

ij ,

can be easily computed as ΘND
ij = −bij/aij , for all (i, j) ∈ Ω. Also, noting that

Θ ≥ 0, we only need to consider the set of non-negative ΘND
ij . Let the set Ω+

be defined as Ω+ = {(i, j) ∈ Ω : ΘND
ij ≥ 0}. For convenience, we re-index the

elements in Ω+ such that Θ1 ≤ . . . ≤ Θ|Ω+|. Then, solving Problem (9) becomes
finding the optimal index, denoted as I∗, from Ω+. Let I = {I1, . . . , I2} be the
initial index set, where I1 = 1 and I2 = |Ω+|. Then, our algorithm is based on
the following result:

Proposition 2. Let I ′1 and I ′2 be two indices with I1 ≤ I ′1 < I ′2 ≤ I2. If
f(ΘND

I′
1
) > f(ΘND

I′
2
), then I ′1 ≤ I∗ ≤ I2. On the other hand, if f(ΘND

I′
1
) < f(ΘND

I′
2
),

then I1 ≤ I∗ ≤ I ′2.
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Proof. By contradiction, suppose that when f(ΘND
I′
1
) > f(ΘND

I′
2
), we have I1 ≤

I∗ < I ′1. Since I∗ is the optimal index, we have f(ΘND
I∗ ) < f(ΘND

I′
2
). Also,

since ΘND
I∗ ≤ ΘND

I′
1

< ΘND
I′
2
, we have that ΘND

I′
1

can be represented as a con-

vex combination of ΘND
I∗ and ΘND

I′
2
. By the convexity of f(·), we have f(ΘND

I′
1
) <

max{f(ΘND
I∗ ), f(ΘND

I′
2
)} = f(ΘND

I′
2
), contradicting the assumption that f(ΘND

I′
1
) >

f(ΘND
I′
2
). This completes the proof of the first half of the lemma. The other half

of the lemma can also be proved similarly. ��

Proposition 2 implies that we can reduce the index set by ignoring either the
indices that are larger than I ′2 or smaller than I ′1, depending on the comparison
between f(ΘND

I′
1
) and f(ΘND

I′
2
). Thus, we can choose I ′1 and I ′2 in the following

dichotomous way: for I = {I1, . . . , I2}, we let I ′1 =
⌊
I1+I2

2

⌋
and I ′2 =

⌊
I1+I2

2

⌋
+1.

This process continues until there are only two elements left in the index set.
Then, the optimal index I∗ can be found by simply comparing the objective
values at these two indices. In finding I∗, the computation complexity is dom-
inated by the evaluation of f(·). Since we reduce the size of the index set by
approximately half in each iteration, we only need O(log2(|Ω+|)) objective value
evaluations, which is evidently polynomial-time.

4.2 Clustering

To perform clustering, we first construct a matrix D̃ in Ŝ, where the entry [D̃]ij
in the i-th row and the j-th column represents the distance between SA i and SA
j. Initially, we treat each SA in S as an individual cluster. Then, the clustering
proceeds in the following “bottom-up greedy” fashion. In each iteration, we
merge two closest clusters (could be two SAs, two clusters, or a cluster and an
SA) into a new cluster. Next, update the new distances of the remaining clusters
to the new cluster. In the next iteration, we repeat the merging based on the
updated D̃. After each iteration, the number of clusters in Ŝ is reduced by 1.
This process continues until there are M clusters remaining.

Different strategies could be employed in updating D̃ in each iteration. For
example, the distance between an existing cluster E1 and a new cluster E2

could be computed using the maximum distance between the elements of each
cluster, i.e., d(E1, E2) = max{d(p1, p2) : p1 ∈ E1, p2 ∈ E2}, or the average
distance between the elements of each cluster, i.e., d(E1, E2) =

1
|E1||E2|

∑
p1∈E1∑

p2∈E2
d(p1, p2). We refer to these two strategies as “updating with maximum

distance” (UMD) and “updating with average distance” (UAD), respectively.
After clustering, we need to determine the optimal BS location for each clus-

ter. Since there is no floor separation in Ŝ, each SA’s power is solely determined
by the distance to the BS in the cluster. Thus, we only need to find an optimal
BS location to minimize a certain metric related to the distance from the BS
to the SAs. Let Cm denote the m-th cluster. Let (x̃m, ỹm, z̃m) ∈ Ŝ denote the
location of the m-th BS for the m-th cluster. Then, the optimal BS location can
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be formulated as the following optimization problem (details are omitted due to
space limitation):

Minimize
∑|Cm|

i=1 s
−α

2
im

subject to sim ≥ (x̃m − ũi)
2 + (ỹm − ṽi)

2

+(z̃m − w̃i)
2, ∀(ũi, ṽi, w̃i) ∈ Cm.

(10)

The decision variables in (10) are (x̃m, ỹm, z̃m) and sim. It can be easily veri-
fied that (10) is a standard second-order cone program (SOCP), which can be
efficiently solved by standard convex programming solvers.

4.3 Projection and Contraction

Since the expansion in ECPC occurs only along the vertical direction, the pro-
jection of the m-th BS can be easily done by fixing x̃m and ỹm and changing the
value of z̃m to the vertical coordinate of the nearest floor. Then, the contraction
of the m-th BS location back to the S can be done by simply letting xm = x̃m,
ym = ỹm, and zm = z̃m/hθ∗. Here, θ∗ is the optimal expansion factor obtained
earlier by solving Problem (9).

4.4 Complexity and Approximation Ratio Analysis

In this section, we first analyze the computational complexity of the ECPC
algorithm. As mentioned earlier, in ECPC, to determine the expansion ratio Θ,
we need O(log2(|Ω+|)) times of objective function evaluations. Note that |Ω+|
is on the order of O(N2). For partitioning the N SAs into M clusters, exactly
N − M times of groupings and updates are needed. The complexity of solving
M SOCP in the form of (10) is O(M

√
N/M) = O(

√
NM) [25]. Finally, we need

exactly 2M iterations in performing projection and contraction. Thus, combining
all the above discussions, we have the following result, which clearly shows that
the ECPC scheme is a polynomial-time algorithm:

Proposition 3. The computational complexity of the proposed ECPC scheme
is O(2 log2 N + 2M +

√
NM).

Next, we analyze the approximation ratio of the ECPC algorithm. First, we
note that the dominant source error comes from the expansion step, in which
we only use a linear expansion factor to model the complex relationship in the
equivalent space, which is obviously nonlinear. The inexact expansion will in
turn lead to erroneous group in the clustering stage, which may associate an
SA with a BS that has an inferior channel quality. However, a nice feature of
the ECPC scheme is that all the inexact expansions only occur between SAs in
different floors. Based on this insight, we can derive the following approximation
ratio bound for the ECPC algorithm:

Theorem 4. The approximation ratio of the proposed ECPC scheme is upper
bounded by

1 +
|Ω|
N

(
F 2h2 + x2

max + y2max

min(i,j)∈N dij

)α

. (11)
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Fig. 3. The solution for a 40-SA 10-BS network under the ECPC approach

Due to space limitation, we relegate the proof details of Theorem 4 to [26]. It is
worth pointing out that the approximation ratio bound in (11) is a worst case
upper bound. In practice, the ECPC algorithm usually works much better than
the bound in (11), as evidenced by the numerical examples presented in the next
subsection.

4.5 Numerical Results

To see the efficiency of ECPC, we use a network with 40 SAs in a 7-story build-
ing as an example. The building’s length, width, and per-floor height are 100,
60, and 3 meters, respectively. We use 10 BSs to serve the entire network. The
maximum transmission power for each sensor is 1 W. The minimum received
power threshold for each sensor is −90 dBm. The path loss exponent is 4. Note
that the BB approach in [20, 21] is not a practical choice for such a large-sized
network. Under ECPC, however, it only takes 9.98 seconds to find a solution,
which shows the efficiency of ECPC. The BSs placement and the BS-SA associ-
ations are illustrated in Figure 3 (for better visibility, we only plot the centers
of the SAs in Figure 3).

To compare the gap between ECPC solutions and the objective values ob-
tained under the BB approach in [20, 21], we randomly generated 50 networks
with 3 BSs, 10 SAs, in a 3-story building. As mentioned earlier, a major feature
of BB is that it guarantees finding an optimal solution to the original problem.
For these 50 examples, the mean objective value of ECPC and the mean of
the true optimal values are 0.4181 W and 0.2073 W, respectively. The standard
deviation are 0.3252 and 0.1313 W, respectively. Further, there are 36 (72%)
examples where the ECPC objective value is less than twice of the true opti-
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mal objective value, including 8 examples (16%) where two solutions coincide .
The mean of normalized objective values (ECPC divided by true optimum) is
1.995 (with a standard deviation of 0.7261). Thus, we can see that ECPC offers
competitive results compared to true optimal solutions.

5 Conclusion

In this paper, we investigated the joint BS placement and power control opti-
mization to prolong the sensor battery lifetime for cyber-physical systems (CPS)
in building environments. We show that the joint BS placement and power con-
trol problem can be formulated as a mixed-integer non-convex program, which is
difficult to solve to global optimality for large-sized networks even after convex-
ification and linearization. To address this difficulty, we developed an efficient
algorithm called ECPC that incorporates several novel ideas specifically designed
for CPSs in building environments. We conducted both theoretical and numer-
ical analysis for the ECPC scheme. Our numerical results showed that ECPC
provides competitive solutions compared to the true optimal solutions obtained
by the branch-and-bound based approach used in our previous work. We note
that CPS network infrastructure in smart buildings is an important and yet
under-explored area. Possible future directions include to study the trade-off
between power and other performance metrics, such as throughput, delay, etc.
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